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Abstract

We propose a variational formulation of a macroscopic model for crowd mo-

tion involving a conservation law describing mass conservation coupled with an

eikonal equation giving the flow direction. To get a self contain paper we recall

many results concerning flow mapping and convection process associated with

non smooth vector field V .

1 The crowd motion problem

We consider a set Ω ⊂ R
N representing a room and we denote by Γ = Γw ∪ Γo

its boundary, where Γw represents the solid wall, and Γo the doors (we also assume
Γw ∩ Γo = ∅). The natural setting for the problem considered in this paper is N = 2,
but the 3D problem arises for example for fishes in an aquarium or flock of birds in a
portion of sky.

The aim of this paper is to present a variational formulation of a model describing
the motion of pedestrians in a finite set Ω. The control parameter of the crowd dynamics
is the speed vector field V (which is time dependent) and equation (2.1) below expresses
the conservation of the pedestrian mass

∫

Ω
ρ(t, x) dx, where ρ = ρ(t, x) denotes the

pedestrian density. We study the dynamic system on a time interval I = (0, τ), the
final time τ being arbitrary.

2 Crowd motion

We denote by v ∈ R
N the velocity, which is the norm of speed vector V , i.e. v(t, x) =

|V (t, x)|. The conservation of the mass, ρ being the density, is classically expressed by
the following equation in conservation form

(2.1)

ρt + div(ρ V ) = 0, in I × Ω,

ρ(0) = ρ0,

V.n = 0, on Γw,

V = v ~n, v ≥ 0, on Γo.
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The “crowd rheology” modeling is done in two steps. First, we impose that v is a
decreasing function of the density ρ, which means that the pedestrian is going faster
when there are less people around him. We assume given a decreasing function f (we
will consider as an example the function f(ρ) = 1 − ρ, so that we have

(2.2) v = f ◦ ρ.

Secondly, we want to take into account the fact that pedestrians try to minimize their
travel time. As a consequence, they prefer avoiding high density regions, where they
would proceed at low velocity. This behavior can be recovered by means of an eikonal
equation whose running cost is given by the reciprocal of the velocity, as proposed by
[3]. More precisely, we impose that there exists some potential function Φ, which solves

(2.3)
‖∇Φ‖ =

1

f(ρ)
, in Ω,

Φ = 0, on Γo,

such that

(2.4) V = f2(ρ) ∇Φ.

Since the geometrical domain Ω is assumed to be simply connected, the existence of Φ
such that (2.4) holds implies the following curl free condition (assuming that f never
reaches zero):

(2.5) curl

(

V

f2(ρ)

)

= 0

We observe that curl
(

V
f2(ρ)

)

= f−2 curlV + ∇( f−2 ) × V , then (2.5) is equivalent to

(2.6) f(ρ) curlV − 2f ′(ρ) ∇ρ× V = 0,

which, taking f = 1 − ρ + κ (for some constant κ > 0), simplifies to the following
bilinear condition:

(2.7) (1 − ρ) curlV + 2 ∇ρ× V = 0 .

Concerning the boundary condition for the vector field V , we shall assume that the
initial density ρ0 is compactly supported inside the domain Ω so that during the time
τ , the speed of the crowd being bounded, no pedestrian will reach the boundary so that
without any loss of generality and for sake of simplicity we shall assume V.n = 0 on
the wall Γw and ||V || ≤ vmax, where vmax > 0 is the maximum speed for a pedestrian.
The ”strong” boundary bondition Φ = 0 on Γ0 is lost in this process but is preserved
in weak form as, from V = v~n on Γ0, we get Φ = cte on Γ0.

3 Speed vector V

We assume Ω to be a bounded domain in R
N with “smooth boundary” Γ. We consider

a vector field V ∈ L1(I, L1(Ω;RN )) with divergence divV ∈ L1(I, L1(Ω)) and normal
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component V.n = 0 at the boundary (as an element of W−1,1(Γ)). As a definition we
set E(V ) the family of such L1 vector fields V . We denote by V (t) the partial mapping
x → V (t)(x) = V (t, x).

3.1 Regularization

We assume now Ω to be star shaped, and without any loss of generality we assume
that 0 ∈ Ω and the domain to be star shaped with respect to 0. (In fact in all what
follows in this section it suffices the domain to be locally star shaped.) We denote by
V e the extension of V to RN by zero outside of Ω. And we set

V̄n(t, x) = V e (t, (1 + 1/n)x) ,

which is compactly supported in Ω. Let λn be a mollifier and consider

Vn(t) = λn ⋆ V̄n(t) ∈ C∞
c (Ω,RN ))

We assume the mollifier suitably chosen, so that Vn(t) is also compactly supported in
Ω. We get divV̄n(t, x) = (1 + 1/n) (divV )e(t, (1 + 1/n)x )

divVn(t) = (1 + 1/n)λn ⋆ divV̄n

So that we have the following strong convergences

Vn → V in L1(I, L1(Ω,RN )); divVn → divV in L1(I, L1(Ω))

4 Flow mapping

Consider V ∈ L1(I, C1(Ω) ∩H1
0 (Ω)). We prove here, following [6], that the mapping

mapping Tt(V ) defined over the bounded domain Ω .

4.1 Existence

Let X ∈ Ω, we consider the sequence

x0(t) = X

x1(t) = X +

∫ t

0

V (s, x0(s))ds

...

xn+1(t) = X +

∫ t

0

V (s, xn(s))ds(4.1)

As a first result we have xn(t) ∈ Ω̄. We apply Ascoli compactness theorem to the family
xn(.) ∈ C0(I, Ω̄). We verify the equicontinuity of this family at any t ∈ I = [0, τ ]:

xn(t + ε) − xn(t) =

∫ t+ε

t

V (s, xn(s)) ds
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∀n, ||xn(t + ε) − xn(t)|| ≤

∫ t+ε

t

‖V (s)‖L∞(Ω,RN ) ds

Then this sequence converges in C0(I, Ω̄) to an element x(t), passing to the limit in
(4.1) we observe that x(t) is a solution to the flow equation.

4.2 Uniqueness

Assume xi, i = 1, 2 are two solutions. We set y(t) = x2(t) − x1(t), we get

y(t) =

∫ t

0

[

∫ 1

0

DV (s, x1(s) + λy(s) ) dλ ].y(s) ds

Then

∀t ∈ I, ‖y(t)‖ ≤

∫ t

0

‖DV (s)‖L∞ ‖y(s)‖ ds ≤ max
s

‖y(s)‖

∫ t

0

‖DV (s)‖L∞ ds

Choose tV such that k =
∫ tV

0
‖DV (s)‖L∞ds < 1, then we get y = 0 on [0, tV ]. Then

the solution is unique on this interval [0, tV ]. Now the interval I can be decomposed
in a finite number of such intervals, then the solution is unique on I.

Let X ∈ Ω, we set Tt(V )(X) = x(t), and T (V ) denotes the mapping (t,X) 7→
Tt(V )(X)

Proposition 4.1. Let V ∈ L1(I, C1(Ω) ∩H1
0 (Ω)), the flow mapping Tt(V ) is defined

for any t ≤ τ and Tt(V ) ∈ C1(Ω). It is invertible and Tt(V )−1 = Tt(V
t) where

V t(s) = −V (t− s), so that Tt(V )−1 ∈ C1(Ω).

4.3 Convection

Let ζ0 ∈ L1(Ω) and set ζ(t) = ζ0◦Tt(V )−1. This function solves the convection problem

(4.2) ζt + ∇ζ(t).V (t) = 0, ζ(0) = ζ0

Moreover, as ζt = −div(ζV )+ζ divV (t) ∈ L1(I,W−1,1(Ω)), we get ζ ∈ C(I,W−1,1(Ω)).

5 Solution to transport equation (2.1)

5.1 The homogeneous equation

Proposition 5.1. Let V ∈ L1(I, L1(Ω,RN )) with divV ∈ L1(I × Ω) and V.n = 0
on Γ as an element of W−1,1(Γ). Let ρ0 ∈ L∞(Ω). Then there exists a solution
ρ ∈ L∞(I × Ω) to the transport equation (4.2). Moreover, we have the following
estimates

(5.1) ‖ρ‖L∞(I×D) ≤ ‖ρ0‖L∞(Ω)
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Proof. Let Vn a smooth field strongly converging to V . Let ρn be the solution of this
equation associated to the smooth vector field Vn, that is:

(5.2) ρn(t) = ρ0 ◦ Tt(Vn)−1

then
||ρn||L∞(I×D) = ||ρ0||L∞(Ω)

There exists a subsequence which is σ∗ weakly converging to some element ρ verifying
‖ρ‖L∞(I×D) ≤ ‖ρ0‖L∞(Ω) and we can pass to the limit in the weak formulation :

∀ϕ ∈ C∞(I × Ω), ϕ(τ) = 0,

∫ τ

0

∫

Ω

ρn(−ϕt − div(ϕVn)) dx dt +

∫

Ω

ρ0ϕ(0) dx = 0

5.2 The non-homogeneous equation

Proposition 5.2. Let V ∈ L1(I, L1(Ω,RN )) with divV ∈ L1(I × Ω) and V.n = 0
on Γ as an element of W−1,1(Γ). Let ρ0 ∈ L∞(Ω), ‖ρ0‖ ≤ 1. Assume that F ∈
L1(I, L∞(Ω)), then there exists a solution ρ ∈ L∞(I × Ω) to the transport equation

(5.3) ρt + ∇ρ.V = F, ρ(0) = ρ0

Moreover, we have the following estimate

(5.4) ‖ρ‖L∞(I×D) ≤ ‖ρ0‖L∞(Ω) +

∫ τ

0

‖F (s)‖L∞(Ω) ds.

Proof. Let Vn be a smooth field strongly converging to V . Let ρn be the solution
associated to the smooth vector field Vn, that is:

(5.5) ρn(t) = [ρ0 +

∫ t

0

F (s) ◦ Ts(Vn)ds] ◦ Tt(Vn)−1

then

∀t, ‖ρn(t)‖L∞(Ω) = ‖ρ0 +

∫ t

0

F (s) ◦ Ts(Vn) ds‖L∞Ω)

≤ ||ρ0||L∞(Ω) +

∫ t

0

||F (s)||L∞(Ω) ds.(5.6)

Then

‖ρn(t)‖L∞(I×Ω) ≤ ‖ρ0‖L∞(Ω) +

∫ τ

0

‖F (s)‖L∞(Ω) ds,

The weak formulation gives

ϕ(τ) = 0,

∫ τ

0

∫

Ω

ρn(−ϕt − div(ϕVn)) dxdt +

∫

Ω

ρ0ϕ(0, x) dx =

∫ τ

0

∫

Ω

Fϕ dxdt
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for all ϕ ∈ C∞(I × Ω). Now

div(ϕVn) = ϕ divVn + ∇ϕ.Vn −→ div(ϕV ) in L2,

which, together with the weak convergence of ρn to some ρ, enables us to pass to the
limit and obtain the weak formulation of a solution ρ to equation (5.5). The bound
leads to the convergence (up to a subsequence) weakly in σ − ∗, and the (weak) limit
preserves the estimate.

6 The conservation equation

Proposition 6.1. Let ρ0 ∈ L∞(Ω) and V ∈ L1(I × Ω,RN ), divV ∈ L1(I, L∞(Ω)),
with V.n = 0 in W−1,1(Γ). Assuming ‖divV ‖L1(I,L∞(Ω)) < 1, there exists a solution
ρ ∈ L∞(I × Ω) to equation (2.1).

Proof. Equation (2.1) writes

ρt + ∇ρ.V = − ρ divV, ρ(0) = ρ0.

Let
ρn+1
t + ∇ρn+1.V = − ρn divV, ρn+1(0) = ρ0

and
δn,p = ρn+p − ρn.

From ??, as δn,p(0) = 0, we get,

‖δn+1,p‖L∞(I,L∞) ≤ ‖δn,p divV ‖L1(I,L∞)

≤ ‖δn,p‖L∞(I,L∞) ‖divV ‖L1(I,L∞(Ω))

≤ ‖δn−1,p‖L1(I,L∞) ‖divV ‖2L1(I,L∞(Ω)

...

≤ ‖δ1,p‖L∞(I,L∞(Ω)) ‖divV ‖nL1(I,L∞(Ω))

= ‖ρp+1 − ρ1‖L∞(I,L∞(Ω)) ‖divV ‖nL1(I,L∞(Ω)).

Now

‖ρp+1‖L∞(I,L∞(Ω))

≤ ‖ρ0‖L∞(Ω) + ‖ρp divV ‖L1(I,L∞(Ω))

≤ ‖ρ0‖L∞(Ω) + ‖ρp‖L∞(I,L∞(Ω))‖divV ‖L1(I,L∞(Ω))

≤ ‖ρ0‖L∞(Ω) +
(

‖ρ0‖L∞(Ω) + ‖ρp−1 divV ‖L1(I,L∞(Ω))

)

‖divV ‖ L1

(I,L∞(Ω)

≤ ‖ρ0‖L∞(Ω) +
(

‖ρ0‖L∞(Ω) + ‖ρp−1‖L1(I,L∞(Ω))‖divV ‖L1(I,L∞(Ω))

)

‖divV ‖L1(I,L∞(Ω))

...

≤ ‖ρ0‖L∞(Ω)Σi=0,....,p+1‖divV ‖iL1(I,L∞(Ω))

We get

∀p, ‖ρp‖L∞(I,L∞(Ω)) ≤ ‖ρ0‖L∞(Ω)

(

1 − ‖divV ‖L1(I,L∞(Ω))

)−1
.

So {ρn}n is a Cauchy sequence in L∞(I, L∞(Ω)) .
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Theorem 6.1. Let ρ0 ∈ L∞(Ω) and V ∈ L1(I × Ω,RN ), divV ∈ L1(I, L∞(Ω)) with
V.n = 0 in W−1,1(Γ). Then there exists a solution ρ ∈ L∞(I × Ω) to equation (2.1).

Proof. We consider a finite covering of the interval I = [0, τ ] by open intervals ]ti, ti +

τi[, i = 0, . . . , k, with t0 = 0, tk + τk = τ , and such that
∫ ti+τi

ti
‖V (t)‖L∞(Ω) dt < 1 for

all i. From the next proposition, there exists a solution ρ1 on the interval ]t0, t0 + τ0[
verifying ρ1(0) = ρ0. This solution is continuous in the following sense:

ρ1 ∈ C([t0, t0 + τ0],W−1,1(Ω)).

Then for all t ∈ [t0, t0 + τ0] the element ρ1(t) is defined as an element of W−1,1(Ω), but
for a.e. t ∈ [t0, t0 + τ0] this element is in L∞(Ω). So we can choose such an element
t̃1 ∈]t1, t0 +τ0[ with ρ1(t̃1) ∈ L∞(Ω). Then on the interval I2 = (t̃1, t1 +τ1) by the next
proposition we built a solution ρ2, and so on on each interval Ii. We obtain a solution
on the whole interval (0, τ).

7 Crowd motion variational formulation

Let us denote by I the time interval, I = ]0, τ [. To any element V ∈ E(Ω) ⊂
L1(I, L1(Ω, RN )), we associate the set RV of solutions to the conservation equation
(2.1) and we introduce the functionals

(7.1) J(V, ρ) = ‖f ◦ρ−|V |‖L1(I,L1(Ω)) +β‖(1−ρ) curlV + 2∇ρ×V ‖L1(I,W−1,1(Ω,RN ))

(7.2) j(V ) = inf
ρ∈RV

J(V, ρ)

which can be rewritten as

(7.3) j(V ) = inf
r∈L∞(I,L∞Ω))

sup
θ∈W

L(V, r, θ)

where
W =

{

θ ∈ L1(I,W 1,∞(Ω)) ∩W 1,1(I, L1(Ω)), : θ(τ) = 0
}

and

L(V, r, θ) = J(V, r) +

∫

I

∫

Ω

r (θt + ∇θ.V )) dxdt +

∫

D

ρ0θ(0) dx.

We have the obvious

Proposition 7.1. Let V ∈ E(Ω) such that j(V ) = 0, then it solves the crowd problem
in the sense that there exists a solution ρ ∈ RV such that (V, ρ) solves the crowd system
(2.1), (2.3), (2.4).

If such a speed vector V exists it minimizes the positive functional j over the
space E(Ω). The variational approach for the crowd problem under consideration is to
replace it by the weaker one which is the minimization of the non negative functional
j over E(Ω). Our approach is now to compute the gradient of the functional j to be
minimized.

We remark that, if the infimum of the functional j is not zero, then, in some sense,
the crowd problem formulated as (2.1), (2.3), (2.4) would have no solution. If the
infimum reaches zero it would built a solution.
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8 Minimization of the functional

The main objective is to calculate the gradient of j.
We denote by j′(V ;W ) = lim infε>0, ε→0 j(V + εW ). If the limit exists, it is the

classical Gateau semi derivative. For sake of simplicity let us first compute the gradient
for a regularized functional jγ expressed in the following form

(8.1) jγ(V ) = j2(V ) +
γ

2

∫

I

∫

D

‖V (t)‖2Hdt,

where H stands here for a Banach space of function over the domain Ω which will
ensure the set RV of solutions to the conservation equation (2.1) to be a singleton
element ρV . This will be the case for the following choices :

H = {V ∈ H3(Ω, RN ), ∆v = 0, V.n = vmax on Σ } ⊂ E(Ω) ∩ C1(Ω̄)
or

H = {V ∈ BV (Ω, RN ) with divV ∈ L∞(Ω)},
and where j2 is the quadratic version of j, that is j2(V ) = infρ∈RV

J2(V, ρ) with

(8.2) J2(V, ρ) = ‖f ◦ ρ− |V |‖2L2(I,L2(Ω)) + β‖(1 − ρ) curlV + 2∇ρ× V ‖2L2(I,L2(Ω,RN ))

We briefly recall now the calculus of the gradient of the functional expressed in Min
Max.

8.1 Derivative of a function in Min Max form, from [1], [6]

Let E, F be two Banach spaces and L(s, e, f) be a function defined from [0, 1]×KE×KF

into R, where KE , KF are convex sets, respectively in E and F . Assume that the
Lagrangian functional L is convex l.s.c. with repect to e , concave u.s.c. with respect
to f and continuously differentiable with respect to the parameter s. Assume moreover
that there exists a non empty set S(s) of saddle points. Then it always takes the
following form:

S(s) = A(s) ×B(s), A(s) ⊂ KE , B(s) ⊂ KF , such that :

∀a(s) ∈ A(s), ∀b(s) ∈ B(s), ∀γ ∈ KA, ∀β ∈ KB ,

L(s, a(s), β) ≤ L(s, a(s), b(s)) ≤ L(t, γ, b(s))

So that ∀γ′ ∈ KE , ∀β′ ∈ KF we have

−L(0, γ′, b(0)) ≤ −L(0, a(0), b(0)) ≤ −L(0, a(0), β′).

By choosing γ = a(0), β = b(0), γ′ = a(s), β′ = b(s), and adding the two previous
inequalities we get for any s > 0 :

L(s, a(s), b(0)) − L(0, a(s), b(0))

s
≤

L(s, a(s), b(s)) − L(0, a(0), b(0))

s

≤
L(s, a(0), b(s)) − L(0, a(0), b(s))

s
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Under reasonable smoothness assumptions on L and Kuratowski continuity of the sets
A(s) and B(s) we get the semi-derivative of

l(s) = min
a∈KE

max
b∈KF

L(s, a, b)

i.e.

(8.3) l′(0) = min
a∈A(0)

max
b∈B(0)

∂

∂s
L(0, a, b)

In the following section we shall make use of that semi-derivative in the specific situation
in which the set S(0) is reduced to a unique pair, A(0) = {y}, B(0) = {p}, where y and
p will be the “state” and “adjoint-state” solution associated with the wave equation
under consideration. In this situation the function l is differentiable at s = 0 and the
derivative (8.3) takes the following form:

l′(0) =
∂

∂s
L(0, y, p).

8.2 The optimal system

Just for shortness of the expressions we make β = 0 and m = 1 so that

J ′
γ(V ;W )=

∫

I

∫

Ω

(

2(|V | − f ◦ ρV )
V

|V |
.W + ρV W.∇P

)

dxdt+γ

∫

I

∫

Ω

D∆V.D∆W dxdt,

where the adjoint state P is the solution to the following backward adjoint problem:

(8.4) Pt + ∇P.V = 2(f ◦ ρV − |V |)f ′ ◦ ρV , P (τ) = 0.

Obviously the gradient is

∇Jǫ(V ) = 2(|V | − f ◦ ρV )
V

|V |
+ ρV ∇P − γ∆V.

Proposition 8.1. If the vector field V minimizes the functional jγ , then it solves the
optimality system

ρt + div(ρ V ) = 0, ρ(0) = ρ0,

Pt + ∇P.V = −2( 1 − ρ + γ − |V |), P (τ) = 0,

( 2(|V | − f ◦ ρ)
V

|V |
+ ρ∇P − γ∆V = 0.

V (t).n = 0 on Γω, V (t).n = vmax on Γ0, ∆V (t) = ∆2V (t) = 0, on Σ
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