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Abstract. In this work we present an iterative algorithm for solving a
parameter identification problem relative to a system of diffusion, con-
vection and reaction equations. The parameters to estimate are the re-
tardation factors, diffusivity, reaction and transport coefficients relative
to a model of pollutant transport with chemical reaction. The proposed
method solves the nonlinear least squares problem by means of a se-
quence of constrained optimization problems. The algorithm does not
depend on the type of discretization method used to solve the state
equation. The results reported in the numerical tests show the efficiency
of the algorithm in terms of performance and solution quality.

1 Introduction

Parameter estimation is a very important topic in applied sciences and chemical
engineering: an overview of methods and applications can be found in [3]. The
modeling of pollutant transport with (bio)chemical reaction gives raise to partial
differential systems which are usually very complex. Therefore there is a need
for efficient algorithms for solving parameter estimation problems.

In this work we consider the parameter estimation problem for a system of
reaction, diffusion and transport equations:

∂U

∂t
= ∇ · (D∇U)− V∇U +R(U), (1)

where U ≡ (u1, u2, . . . , uNc)
t represents the concentration in the state variable

(x, t), x ∈ [a, b], t ∈ [0, T ]. The coefficients D and V represent the diffusion
coefficient and the fluid velocity, while the reaction term is represented by the
function R which depends on the solution U . Free flow condition is assumed
at outlet boundary and pulse functions are given at inlet boundary. Homoge-
nous initial conditions are assumed. A typical model of pollutant transport and
biodegradation is illustrated by Frascari et al. [8].

The parameter estimation problem can be formalized as a constrained opti-
mization problem:

min
q

J(U, q) s.t. c(U, q) = 0
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where c(U, q) = 0 represents the governing PDEs system (1) or state equation,
the objective function J(U, q) is the distance between the measurements y ∈ Y
and the solution U of the state equation c(U, q) = 0, corresponding to the pa-
rameter q ∈ Q in the measurement points. Introducing the reduced observation
operator F : Q −→ Y , that maps the unique solution of the state equation U(q)
into the measurements space Y , we define the equivalent nonlinear least squares
problem:

min
q

1

2
‖F (q)− y‖ (2)

where ‖ · ‖ is the euclidean norm throughout the paper. The ill posedness of the
problem is well known [6] and different methods are proposed in the literature
to obtain stable solutions in the presence of noisy data.

In this paper we propose an iterative method that solves the nonlinear least
squares problem (2) by computing a sequence of constrained optimization prob-
lems. The proposed algorithm computes the solution q and the proper smoothing
parameters, suitable to overcome the instability problems that arise in the so-
lution of nonlinear least squares problems. The necessary starting values and
tolerance parameters are computed using information obtained by the given
measurements.

The paper is organized as follows. In section 2 we formulate the parameter
estimation problem as an optimization problem and describe the discrete opti-
mization algorithm. In section 3 the described algorithm is tested to evaluate
both efficiency and solution quality.

2 The optimization algorithm

Aim of this section is to describe the discrete optimization algorithm for param-
eter estimation in the contest of transport and chemical reaction.

Given a set of measurements y ∈ R
Nm relative to the concentration of com-

pound ui (i = 1, . . . , Nc) at points (tj , xj) ∈ [0, T ]×[a, b]. The problem consists in
finding the parameters q ∈ R

Np whose image F (q) ∈ R
Nm is the least squares

approximation of the data y. The discrete nonlinear least squares problem is
given by:

min
q

J(q), J(q) ≡
1

2
‖F (q)− y‖ (3)

By applying the first order conditions we obtain the nonlinear system:

J t
F (q)(F (q)− y) = 0, JF (q) ∈ R

Nm×Np, (JF (q))i,j =
∂Fi

∂qj
(q)

This problem is solved iteratively by setting an initial guess q(0) and defining a
direction s(k) s.t. q(k+1) = q(k) + s(k), k ≥ 0, where s(k) is obtained as solution
of the linear system Hks

(k) = −Gt
krk where

Gk ≡ JF (q
(k)), rk ≡ F (q(k))− y
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and Hk is the Hessian of the objective function J(q(k)) in (3). Although the
dimensions of the linear system are small (Np ×Np), the computation of second
order information is very expensive. In this work we use first order approxima-
tion given by the Gauss Newton method which is equivalent to defining s(k) as
solution of the linearized problem:

min
s

1

2
‖Gks+ rk‖, k ≥ 0. (4)

It is well known that instabilities often occur in the solution of this unconstrained
linear least squares problem and it is necessary to introduce some smoothing
technique to obtain stable solutions in the presence of data noise. A possible
strategy is to add a constraint to the problem and compute the direction s(k) as
solution of the following constrained optimization problem:

min
s

1

2
‖Gks+ rk‖, s.t. ‖s‖ ≤ ∆k (5)

where ∆k represents the smoothness level required in the solution s. The algo-
rithm that we propose here allows us to solve problem (5) iteratively by com-
puting the approximate solution of the equivalent dual lagrangian problem. The
smoothed solution s(k) is obtained by applying a few steps of Constrained Least
Squares Regularization CLSRit algorithm [1] . Furthermore we define a suitable
size of the initial trust region ∆0, by using the problem data and we update it
to compute ∆k > 0 by means of the trust region update method [4].

This algorithm can be viewed as an implementation of the Levemberg Mar-
quardt Trust Region method, widely used both in constrained optimization and
in the contest of parameter estimation [5], [4]. The Trust Region Constrained
Least Squares Regularization TRCLSR, reported in table 1, can be split in the
following steps:

– Computation of the initial trust region size ∆0 (paragraph 2.1).
– Computation of the direction s(k) (paragraph 2.2).
– Update of the trust region size ∆k (paragraph 2.1).
– Solution update and stopping rules (paragraph 2.3).

The following input parameters are required: the starting value for the unknown
parameters q(0), the relative tolerance τJ of the objective function J , the absolute
tolerance τs of the step size ‖s(k)‖, the problem data y and the function F that
maps the parameters into the data space.

2.1 Update of ∆k

An initial estimate of the size of Trust Region parameter ∆0 can be obtained by
computing a Tikhonov [7] regularized solution of problem (4) with regularization
parameter α = 10−6 i.e.:

∆0 = ‖s̄(0)‖, s̄(0) s.t. (Gt
0G0 + αI)s̄(0) = Gt

0(F (q(0))− y)
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Algorithm 1 (TRCLSR(F , y, q(0), τJ , τs))

Compute U (0) solving the PDE state equation c(U (0),q(0)) = 0;
Compute Jacobian G0 as in subsection 2.4

Compute s̄(0) s.t. (Gt
0G0 + 1.e− 6I)s̄(0) = Gt

0(F (q(0))− y);

Set ∆0 = ‖s̄(0)‖;
k = 0
repeat

Compute direction s(k) as in subsection 2.2
Compute ∆k+1 as in subsection 2.1

Compute q(k+1) as in subsection 2.3;

Solve PDE state equation c(U (k+1),q(k+1)) = 0;
Compute Gk+1 (subsection 2.4)
k = k + 1

until
(

|J(q(k+1)) − J(q(k))| < τJ |J(q
(k))| or ‖s(k)‖ < τs

)

Table 1. Algorithm TRCLSR

the value of the parameter α should be small enough to avoid the instability of
the linear system without smoothing too much the solution. At each step k the
update ∆k+1 is performed following the Trust Region algorithm (see algorithm
4.1 in [4]).

2.2 Computation of the direction s(k)

The direction s(k) is computed by solving problem (5) in its equivalent lagrangian
dual form [2]:

max
λ

Φ(λ), Φ(λ) ≡ min
q

L(s, λ). (6)

where L is the lagrangian function: L(s, λ) ≡ 1
2‖Gks+rk‖+λ (‖s‖ −∆k). Solving

the dual problem (6) requires to find λ̂ s.t. ‖s(λ̂)‖ = ∆k where s(λ̂) is the
solution of the following linear system

(Gt
kGk + λ̂I)s(λ̂) = −Gt

krk

The nonlinear equation ‖s(λ)‖−∆k = 0 is solved by the hybrid method proposed
in [1]. Given a starting value λ0 > 0 s.t. s(λ0) ≤ ∆k and a value ks > 2 s. t.

0 < λ0 < λks
< λ̂, compute (sℓ, λℓ) where λ0 = ‖rk‖ and

λℓ = λℓ−1 + Sℓ−1, ℓ ≥ 1

where

Sℓ−1 =















sign(‖s(λℓ−1)‖ −∆k)
λ0

2ℓ−1
ℓ ≤ ks + 1

‖s(λℓ−1)‖ −∆k

‖s(λℓ−1)‖ − ‖s(λℓ−2)‖
(λℓ−2 − λℓ−1) ℓ > ks + 1

(7)
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where s(λℓ) satisfies: (G
t
kGk + λℓI)s(λℓ) = −Gt

krk Under the given hypotheses

it is proven that λℓ converges to the solution λ̂ of the dual problem (6) and the

sequence {sℓ} converges to ŝ ≡ s(λ̂) which is the solution of the problem (5) [1].

2.3 Solution update q(k+1) and stopping conditions

After the computation of each direction s(k), the solution q(k+1) is updated as
follows:

q(k+1) =

{

q(k) + s(k) ρk > η, 0 ≤ η ≤ 0.25
q(k) otherwise

where the parameter ρk is given by

ρk =
J(q(k))− J(q(k) + s(k))

mk(0)−mk(s(k))

and it represents the ratio between the actual reduction J(q(k))− J(q(k) + s(k))
and the reduction predicted in J by the model function mk:

mk(s) ≡ J(q(k)) + stGt
k(F (q(k))− y) + stGt

kGks.

The iterations are stopped when the relative reduction of the objective func-
tion J is below a given tolerance τJ or when the increase of the step size ‖s(k)‖
is less than a given threshold τs.

2.4 Computation of the Jacobian Matrix Gk

In our tests we used central finite difference approximation (FD). The i-th row
of the Jacobian matrix (Gk)i is obtained as:

(Gk)i =
F (U(q(k) + εei))− F (U(q(k) − εei))

2ε
, i = 1, . . . , Np

where ei is the i − th canonical basis vector, and ε = 1.e − 4. Each row (Gk)i
requires the solution of two state equations to compute U(q(k)+εei) and U(q(k)−
εei). Therefore the number of PDE solutions for each iteration k is 2 ·Np + 1.

3 Numerical results

In this section we test the proposed algorithm for the estimation of selected pa-
rameters in the time evolution model of Butane (CB), Oxygen (CO) and Chlo-
roform (CCF ) concentrations in a column bioreactor. Taking advantage of sym-
metry, the problem is solved along one section of the spatial domain. The model
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is given by the following system of diffusion transport and reaction equations
representing the concentrations in time t ∈ [0, T ] and space variable x ∈ [a, b]:































δB
∂CB

∂t
= −V

∂CB

∂x
+ (DB + αLV )

∂2CB

∂x2

δO
∂CO

∂t
= −V

∂CO

∂x
+ (DO + αLV )

∂2CO

∂x2
+KOCO

δCF
∂CCF

∂t
= −V

∂CCF

∂x
+ (DCF + αLV )

∂2CCF

∂x2

. (8)

The parameter αL represents the longitudinal dispersivity, V is the water veloc-
ity, δB and δCF are the Butane and Chloroform retardation factors and KO is
the abiotic oxygen consumption rate. The parameters DB , DO and DCF repre-
sent the molecular diffusivities in water (DB = 1.03e− 9 m2s−1, DO = 2.5e− 9
m2s−1,DCF = 1.e−9m2s−1). Inlet boundary conditions are given by CB(t, a) =
B1p(t, 0.625, 1.875), CO(t, a) = C1p(t, 4, 5.625), CCF (t, a) = CF1p(t, 7.125, 8.125)

where p(t, τ1, τ2) represents the unit smoothed pulse function:

p(t, τ1, τ2) =















1/(1 + e−(t−τ1)/τ ) t ∈ [τ1 −∆τ , τ1 +∆τ ], ∆τ = 0.321
1 t ∈ (τ1 +∆τ , τ2 −∆τ )
1− 1/(1 + e−(t−τ2)/τ ) t ∈ [τ2 −∆τ , τ2 +∆τ ]
0 otherwise

Free flow boundary conditions are assumed at the outlet:

∂

∂x
CB(t, b) = 0,

∂

∂x
CO(t, b) = 0,

∂

∂x
CCF (t, b) = 0

and homogeneous initial conditions are assumed (CB(0, x) = 0, CO(0, x) =
0, CCF (0, x) = 0).

The test problem is obtained by solving the state equation (8) in the domain
[a, b] × [0, T ] with a = 0, b = 2 and T = 15, using the Crank Nicolson method
on a mesh of M = Xs × Ts uniformly spaced points. The measurements y are
obtained by sampling on a uniform grid, with N = Tm×Nm points, each compo-
nent (CB , CO, CCF ) of the solution of (8), computed with the parameter vector
q = [V, αL, δB , δCF ,KO, B1, O1, CF1], reported in table 2. In the following para-

Parameter Units Value Parameter Units Value

V md−1 0.75 KO d−1 0.035
αL m 0.12 B1 molm−3 0.26
δB – 1.14 O1 molm−3 0.47
δCF – 1.01 CF1 molm−3 3.4e-3

Table 2. Value of the parameters used to obtain measurement data y.

graphs we report the results of experiments to test the algorithm with respect

6 IFIP_TC7_CSMO2011, 017, v1 (final): ’Numerical param...’



Numerical parameters estimation 7

δ0 k ℓ ‖rk‖ ‖q∗ − qk‖/‖q∗‖

8.e-2 5 95 5.607516e-3 4.647818e-4
1.e-1 5 92 5.607516e-3 4.647818e-4
5.e-1 7 107 5.607516e-3 4.647814e-4
6.e-1 8 123 5.607516e-3 4.647789e-4
7.e-1 12 182 5.607516e-3 4.647818e-4
8.e-1 3 71 4.603204e-1 8.000000e-1
9.e-1 3 71 5.018664e-1 9.000000e-1
1.2 4 89 3.544192e-1 1.304530

Table 3. Results obtained with 40× 12 measurements by changing the starting guess
q0 as in (9). The state equation is solved using a mesh size M = 257× 128.

to initial value q0, mesh size M and data noise. All the experiments were per-
formed using MATLAB (R2010a) on a workstation with 6 Intel(R) Core(TM)
i7 processors and 24 GByte ram. In all the tests reported in the following para-
graphs, algorithm TRCLSR in table 1 has the following tolerance parameters:
η = 0, τJ = 10−7 and τs = 10−8.

3.1 Starting guess q0

In this experiment we apply the algorithm TRCLSR to estimate the parameters
q∗ = [V, αL, δB , δCF ,KO] by changing the starting guess q0 in order to get an
assigned relative error δ0, i.e. ‖q

0 − q∗‖/‖q∗‖ = δ0.
Table 3 shows the relative error (fifth column) and the residual norm (fourth

column) obtained with 8% ≤ δ0 ≤ 120% and mesh size M = 32896. The mea-
surements are obtained by uniformly sampling CB , CO, CCF on N = Tm ×Nm

points with Tm = 40 and Nm = 4. Computing the starting vector as follows

q0 = q∗ + δ0‖q
∗‖η, (9)

where η is a uniform random vector s.t. ‖η‖ = 1, we observe that, in order to
have an accurate solution, the maximum allowed δ0 is 70% and this value does
not depend on the mesh size used to solve the state equation (8). Figure 1(a)
shows the results of the same experiment carried out using meshes of increasing
size 8256 ≤ M ≤ 424571: it is clear a significant error increase when δ0 is beyond
the percentage allowed. When δ0 ≤ 70% the algorithm converges to the optimal
solution with residual norm and relative error independent on q0.

3.2 Estimate accuracy

The quality of parameters estimate improves by increasing the accuracy of the
solution of the state equation (8). In table 4 are reported the residual norm
(fifth column) and relative error (sixth column) obtained by increasing the size
of the mesh Ts × Xs (first and second columns) used to solve (8). We can not
get the same conclusion by increasing the number of measurements N . As it can
be observed in figure 1(b), more than N = 100 measurement points do not lead
to a sharp decrease of the relative error.
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Ts Xs k ℓ ‖rk‖ ‖q∗ − qk‖/‖q∗‖

257 128 7 107 5.607516e-3 4.647814e-4
513 256 7 100 9.653799e-4 9.616222e-5
917 463 8 104 1.030716e-4 1.055537e-5
1013 617 7 93 1.394869e-4 8.879562e-6

Table 4. Results obtained with 40 × 12 measurements by changing the mesh size
M = Ts ×Xs in the state equation solution.

3.3 Noisy Data

In this paragraph we analyze the solution in the presence of noise on the mea-
sured data. The noisy data yδ are computed so as to achieve a predetermined
level of noise δ: yδ = y + δ‖y‖η, where η is a random vector with ‖η‖ = 1. In
table 5 we report the results obtained by solving the state equation with mesh
size M = 424571 (Xs = 917, Ts = 463) and measurements obtained by sampling
CB , CO, CCF on a uniform grid with Tm = 40 and Nm = 4 points. The noise δ,
reported in column 1, is increased from 0.01% to 10% and we observe the same
behavior in the residual norm (column fourth). The quality of the result is still
good, as can be observed from the relative error (fourth column table 5) and
the graph in figure 3. The plots in figure 2 show the relative error and residual

δ k ℓ ‖rk‖ ‖q∗ − qk‖/‖q∗‖

1.e-4 7 98 4.984954e-4 3.761874e-5
1.e-3 7 103 2.404441e-3 1.147139e-4
1.e-2 7 114 2.159983e-2 1.841462e-3
1.e-1 6 111 2.363836e-1 5.460248e-3

Table 5. Results obtained with noise added to 40× 12 measurements and solving (8)
with M = 424571.

convergence history relative to the case M = 424571 with noise δ = 1.e− 3.

3.4 Algorithm efficiency

The efficiency of the algorithm can be measured by outer iteration numbers (k)
and by the inner iterations ℓ, reported in tables 3, 4 and 5 (columns k and ℓ).
We observe a small number of outer iterations (k) with respect to the inner
iterations ℓ. The outer iterations (k) are computationally expensive since each
step requires 2 ·Np+1 solutions of the state equation (8), as shown in paragraph
2.4. Although the number of internal iterations is quite large it is relative to the
the solution of a small size linear system Np × Np (Np = 5), so it’s generally
inexpensive.
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Fig. 1. (a) Relative errors obtained by changing δ0 and using meshes of incresing size
M . (b) Relative Errors obtained by increasing the measurements N (state equation
solved with M = 474571).

1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

k

(a)

1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

(b)

Fig. 2. Algorithm convergence in the case M = 424571 with noise δ = 1.e − 3: (a)
Relative Error: ‖q∗ − qk‖/‖q∗‖ (b) Residual norm: ‖rk‖
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Fig. 3. Results for oxygen concentration at x = 1.1313. The computed data are relative
to qk parameters, the noisy Data are obtained by yδ with δ = 10% and true data

are computed using q∗.

4 Conclusions

We can conclude that the algorithm TRCLSR computes accurate estimates of the
parameters of the model (8), with up to 70% relative error on the initial guess.
Furthermore, studies with data affected by noise show that the algorithm can
determine accurate solutions with residual norm related to the level of added
noise.

Future work will focus on the use of experimental data and more complex
nonlinear models. The proposed optimization algorithm is independent of the
type of discretization used to solve the state equation, therefore different PDE
solutors will be tested.
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