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1 Introduction

In this article, we investigate regularization schemes for the following class of
optimization problems:

Minimize
1

2
‖Su− z‖2Y + β‖u‖L1(Ω)

such that u ∈ L2(Ω) and ua ≤ u ≤ ub a.e. on Ω.
(P)

Here, Ω is a measurable subset of Rn, n ≥ 1, Y is a Hilbert space, S : L2(Ω) → Y
a bounded linear operator, and the function z ∈ Y is given. The parameter β
is assumed to be non-negative. The control constraints ua, ub ∈ L∞(Ω) satisfy
ua ≤ 0 ≤ ub.
This model problem can be interpreted as an optimal control problem as well as
an inverse problem. In the point of view of inverse problems, the unknown u has
to be constructed in order to reproduce given measurements z. The inequality
constraints on u reflect certain a-priori knowledge about the solution u† of the
linear ill-posed equation Su = z. If the problem at hand is seen as an optimal
control problem, then u is the control, Su the state of the system, which has
to be close to a desired state z, the inequality constraints restrict the feasible
set and may hinder the state Su to reach the target z. If the parameter β is
positive, then the resulting optimal control will be sparse, that is, its support is
a possibly small subset of Ω.
The resulting optimization problem (P) is nevertheless ill-posed if S is not con-
tinuously invertible. Due to the control constraints, problem (P) still possesses
a solution, which is even unique if S is injective. However, the solution may be
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unstable with respect to perturbations in the problem data, for instance in the
given state z. Here small perturbations due to measurement errors may lead to
large changes in the solution. Consequently, any numerical approximation of (P)
is challenging to solve and numerical approximations of solutions may converge
arbitrarily slow. Let us note, that a positive value of β does not make the prob-
lem well-posed. This is due to the fact, that L1(Ω) is not a dual space and hence
bounded sets in L1(Ω) are not compact w.r.t. the weak(-star) topology, see also
the discussions in [7,8].

In order to overcome this difficulty, we apply common ideas from inverse problem
theory. We will study a regularization of the type

Minimize
1

2
‖Su− z‖2Y + β‖u‖L1(Ω) +

α

2
‖u‖2L2(Ω)

such that u ∈ L2(Ω) and ua ≤ u ≤ ub a.e. on Ω,
(Pα)

where α > 0 is given. Clearly, the problems (Pα) are uniquely solvable for α >
0. Now, the question arises, whether their solutions uα converge (weakly or
strongly) to a solution u0 of (P) for α → 0. Moreover, in the case of convergence,
one is interested in proving convergence rates of ‖uα−u0‖L2(Ω) and ‖Suα−Su0‖Y
under suitable assumptions.

In this work, we will prove necessary conditions for convergence rates. In some
parts, the necessary conditions are similar to sufficient conditions found in earlier
works [7,8]. Moreover, the result of Theorem 3 leads to a weakened sufficient
condition for convergence rates.

1.1 Standing assumptions and notation

Let us fix the standing assumptions on the problem (P). We assume that S :
L2(Ω) → Y is linear and continuous. In many applications this operator S is
compact. Furthermore, we assume that the Hilbert space adjoint operator S⋆

maps into L∞(Ω), i.e., S⋆ ∈ L(Y, L∞(Ω)). These assumptions imply that the
range of S is closed in Y if and only if the range of S is finite-dimensional, see
[8, Prop. 2.1]. Hence, up to trivial cases, (P) is ill-posed. A typical example for
S is the solution operator of the Poisson problem with homogeneous Dirichlet
boundary conditions.

The set of feasible functions u is given by

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. on Ω}.

The problem (Pα) is uniquely solvable for α > 0. We will denote its solution by
uα, with the corresponding state yα := Suα and adjoint state pα := S⋆(z − yα).
There is a unique solution of (P) with minimal L2(Ω) norm, see [8, Thm. 2.3,
Lem. 2.7]. This solution and the associated state and adjoint state will be denoted
by u0, y0 and p0, respectively. Note that the weak convergence uα ⇀ u⋆ in L2(Ω),
where u⋆ is a solution of (P) already implies u⋆ = u0, see [8, Rem. 3.3].
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1.2 Optimality conditions

As both problems (P) and (Pα) are convex, their solutions can be characterized
by the following necessary and sufficient optimality conditions:

Theorem 1 ([7, Lemma 2.2]). Let α ≥ 0 be given, and let uα be a solution
of (Pα) (or (P) in the case α = 0).
Then, there exists a subgradient λα ∈ ∂‖uα‖L1(Ω), such that the variational
inequality

(αuα − pα + β λα, u− uα) ≥ 0 ∀u ∈ Uad, (1)

is satisfied, where pα = S⋆(z − Suα) is the associated adjoint state.

Here, (·, ·) refers to the scalar product in L2(Ω).
Standard arguments (see [6, Section 2.8]) lead to a pointwise a.e. interpretation
of the variational inequality, which in turn implies the following relation between
uα and pα in the case α > 0:

uα(x) =































ua(x) if pα(x) < αua(x)− β
1
α (pα(x) + β) if αua(x)− β ≤ pα(x) ≤ −β

0 if |pα(x)| < β
1
α (pα(x)− β) if β ≤ pα(x) ≤ αub(x) + β

ub(x) if αub(x) + β < pα(x)

a.e. on Ω. (2)

In the case α = 0, we have

u0(x)































= ua(x) if p0(x) < −β

∈ [ua(x), 0] if p0(x) = −β

= 0 if |p0(x)| < β

∈ [0, ub(x)] if p0(x) = β

= ub(x) if β < p0(x)

a.e. on Ω. (3)

Note that if β = 0, one obtains u0(x) ∈ [ua(x), ub(x)] where p0(x) = 0 in (3).
This implies that u0(x) is uniquely determined by p0(x) on the set, where it
holds |p0(x)| 6= β.

2 Sufficient conditions for convergence rates

Let us first recall the sufficient conditions for convergence rates as obtained in
[8]. We will work with the following assumption. There we denote by proj[a,b](v)
the projection of the real number v onto the interval [a, b].

Assumption 2 Let u0 be a solution of (P). Let us assume that there exist a
measurable set I ⊂ Ω, a function w ∈ Y , and positive constants κ, c such that it
holds:
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1. (source condition) I ⊃ {x ∈ Ω : |p0(x)| = β}, and for almost all x ∈ I

u0(x) =











proj[ua(x),0]

(

(S⋆w)(x)
)

if β > 0, p0(x) ≤ −β
2 ,

proj[0,ub(x)]

(

(S⋆w)(x)
)

if β > 0, p0(x) ≥
β
2 ,

proj[ua(x),ub(x)]

(

(S⋆w)(x)
)

if β = 0.

(4)

2. (structure of active set) A = Ω \ I and for all ǫ > 0

meas
(

{x ∈ A : 0 <
∣

∣|p0(x)| − β
∣

∣ < ǫ}
)

≤ c ǫκ if w 6= 0,

meas
(

{x ∈ A : 0 < |p0(x)| − β < ǫ}
)

≤ c ǫκ if w = 0.
(5)

Some remarks are in order. The first part of the assumption is analogous to
source conditions in inverse problems: we assume that on the set I ⊂ Ω the
solution u0 is the restriction to I of a certain pointwise projection of an el-
ement in the range of S⋆. This part of the condition is different from other
conditions in the literature: in our earlier work [8] we used the assumption
u0(x) = proj[ua(x),ub(x)]

(

(S⋆w)(x)
)

on I. However, in the light of the deriva-
tion of necessary conditions it turns out that such a condition can be weakened
without losing anything with respect to convergence rates. In works on inverse
problems [3,5], the source condition u0 = projUad

(S⋆w) is used, which is retained
as the special case I = Ω in Assumption 2.
The assumption (5) (without the second alternative) on the active sets was al-
ready employed to obtain regularization error estimates [7,8], error estimates for
finite-element discretizations of (P) [2], as well as stability results of bang-bang
controls [4]. Note that in the case β = 0, both conditions in (5) are equivalent.
However, if β > 0 and w = 0 (in particular, if I has measure zero), the second
alternative provides a weaker condition than the first one. Hence, condition (5)
is weaker than the condition used in our earlier work [8].

Theorem 3. Let Assumption 2 be satisfied.
Let d be defined as

d =











1
2−κ if κ ≤ 1,

1 if κ > 1 and w 6= 0,
κ+1
2 if κ > 1 and w = 0.

Then there is αmax > 0 and a constant c > 0, such that

‖y0 − yα‖Y ≤ c αd

‖p0 − pα‖L∞(Ω) ≤ c αd

‖u0 − uα‖L2(Ω) ≤ c αd−1/2

holds for all α ∈ (0, αmax].

Under the assumptions of the theorem, one can prove also convergence rates for
‖uα − u0‖L1(A) [8].
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Proof. The proof is analogous to the proof of [8, Thm. 3.14]. We have to take
into account the modification of the source condition (4) in the case β > 0 and
the modification of (5) in the case w = 0. By [8, Lemma 2.12], we have

‖y0 − yα‖
2
Y + α ‖u0 − uα‖

2
L2(Ω) ≤ α (u0, u0 − uα). (6)

Since Uad is bounded, we obtain ‖p0 − pα‖L∞(Ω) ≤ c α1/2 for some c > 0 inde-
pendent of α.
Let now α be small enough such that ‖p0 − pα‖L∞(Ω) < β/2. This implies that
p0 and pα have the same sign on the set {x ∈ I : |p0(x)| ≥ β/2}. Consequently,
u0 and uα have the same sign on this set, too. Moreover, on the set {x ∈ I :
|p0(x)| < β/2} it holds |pα| < β, and hence uα = 0 = u0 on this set. This yields

(χIu0, u0 − uα) ≤ (χIS
⋆w, u0 − uα)

for α > 0 small enough. Note that in case of w = 0, the right-hand side in the
previous estimate vanishes and it remains to estimate (χA u0, u0 − uα). Taking
into account that u0(x) = 0 whenever |p0(x)| < β, the weakend estimate (5)
is sufficient in this case. Arguing as in the proof of [8, Thm. 3.14] proves the
claim. ⊓⊔

3 Necessary conditions for convergence rates

3.1 Necessity of the source condition (4)

Theorem 4. Let us suppose that ‖yα−y0‖Y = O(α) with y0 = Su0. Then there
exists w ∈ Y such that

u0(x) =











proj[ua(x),0]

(

(S⋆w)(x)
)

if β > 0, p0(x) = −β,

proj[0,ub(x)]

(

(S⋆w)(x)
)

if β > 0, p0(x) = +β,

proj[ua(x),ub(x)]

(

(S⋆w)(x)
)

if β = 0, p0(x) = 0.

If moreover ‖yα − y0‖Y = o(α), then u0 = 0 on {x ∈ Ω : |p0(x)| = β}, i.e.
w = 0.

This result shows that the source condition (4) is necessary on the set {x ∈ Ω :
|p0(x)| = β}.

Proof. Let us prove the claim in the case β > 0. The result in the case β = 0
can be proved with obvious modifications. Let us take a test function u ∈ Uad

defined as

u(x)































= ua(x) if p0(x) < −β,

∈ [ua(x), 0] if p0(x) = −β,

= 0 if |p0(x)| < β,

∈ [0, ub(x)] if p0(x) = β,

= ub(x) if p0(x) > β.
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Due to the relation

λ0 = proj[−1,1]

( 1

β
p0

)

, (7)

which is a consequence of the necessary optimality condition, see [1] for a proof,
we obtain λ0 = ±1 where p0 = ±β. Hence it holds

(−p0, u− u0) = (−β λ0, u− u0) = β ‖u0‖L1(Ω) − β ‖u‖L1(Ω) (8)

for u as above.

Since λ0 ∈ ∂‖u0‖L1(Ω), we obtain

(λ0, uα − u0) ≤ ‖uα‖L1(Ω) − ‖u0‖L1(Ω). (9)

Using the optimality of uα and the relation −pα = −p0 + S⋆S(uα − u0) we get

(−p0 + S⋆S(uα − u0) + αuα, u− uα) + β ‖u‖L1(Ω) − β ‖uα‖L1(Ω) ≥ 0.

Adding (−p0 + β λ0, uα − u0) ≥ 0 to the left-hand side yields

(S⋆S(uα − u0) + αuα, u− uα) + (−p0, u− u0) + (β λ0, uα − u0)

+β ‖u‖L1(Ω) − β ‖uα‖L1(Ω) ≥ 0.

Using (8) and (9) we obtain

(S⋆S(uα − u0) + αuα, u− uα) ≥ 0.

Due to the assumptions of the theorem, the functions 1
α (S(uα−u0)) =

1
α (yα−y0)

are uniformly bounded for α ց 0. As a consequence, α ց 0 implies

(S⋆ẏ0 + u0, u− u0) ≥ 0

for any weak subsequential limit ẏ0 of 1
α (yα − y0). Due to the construction of

the test function u, we obtain

u0 =

{

proj[ua,0](S
⋆ẏ0) where p0 = −β,

proj[0,ub]
(S⋆ẏ0) where p0 = +β.

If ‖yα−y0‖Y = o(α) then 1
α (yα−y0) → 0 strongly in Y for α → 0, hence ẏ0 = 0,

and u0 = 0 on the set {|p0| = β}. ⊓⊔

As can be seen from the proof, the element that realizes the source condition
can be interpreted as the (weak) directional derivate of α 7→ yα at α = 0.

The result of the theorem resembles known results of necessity of the source
condition in linear inverse problems, see e.g. [3,5].
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3.2 Necessity of the condition (5) on the active set

In this section, we want to prove the necessity of (5) in the case of high conver-
gence rates d > 1. In this case, we have w = 0, see Theorem 4. It remains to
show that the second condition in (5) is necessary to obtain convergence rates
d > 1. Hence, we derive a bound on

µ(ǫ) := |{x ∈ Ω : 0 < |p0(x)| − β < ǫ}| ,

which is the measure of a subset of

A := {x ∈ Ω : β < |p0(x)|}.

For α > 0 let ũα denote the unique solution of

min
u∈Uad

−(u, p0) +
α

2
‖u‖2L2(Ω) + β‖u‖L1(Ω). (Paux

α )

Analogous to (2), we have the representation

ũα(x) =































ua(x) if p0(x) < αua(x)− β
1
α (p0(x) + β) if αua(x)− β ≤ p0(x) ≤ −β

0 if |p0(x)| < β
1
α (p0(x)− β) if β ≤ p0(x) ≤ αub(x) + β

ub(x) if αub(x) + β < p0(x)

a.e. on Ω. (10)

Let us first prove a relation between the convergence rates of ‖u0− ũα‖L2(A) and
µ(ǫ) for α → 0 and ǫ → 0, respectively.

Lemma 5. Let us assume that there is σ > 0 such that ua ≤ −σ < 0 < σ ≤ ub

a.e. on Ω. Then it holds: If ‖u0 − ũα‖L2(A) = O(αd), d > 0, for α → 0, then

µ(ǫ) = O(ǫ2d) for ǫ → 0.

Proof. Due to the pointwise representations of ũα and u0 in (10) and (3), re-
spectively, it holds

‖u0 − ũα‖
2
L2(A) =

∫

{β<p0<αub+β}

(ub − α−1(p0 − β))2

+

∫

{αua−β<p0<−β}

(ua − α−1(p0 + β))2.

Due to the assumption on the control constraints we have
∫

{β<p0<αub+β}

(ub − α−1(p0 − β))2 ≥

∫

{β<p0<ασ/2+β}

(ub − α−1(p0 − β))2

≥

∫

{β<p0<ασ/2+β}

(σ/2)2

≥ (σ/2)2
∣

∣{x ∈ Ω : 0 < p0(x)− β < ασ/2}
∣

∣.
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Similarly, we obtain
∫

{αua−β<p0<−β}

(ua−α−1(p0+β))2 ≥ (σ/2)2
∣

∣{x ∈ Ω : 0 < −p0(x)−β < ασ/2}
∣

∣.

This implies
‖u0 − ũα‖

2
L2(A) ≥ (σ/2)2µ(ασ/2).

Hence if ‖u0 − ũα‖L2(A) = O(αd) holds, then

µ(ασ/2) ≤ O(α2d),

for α → 0, which proves the claim. ⊓⊔

Using the same arguments, we can prove the following result.

Corollary 6. Let the requirements of Lemma 5 be satisfied. Let p ∈ [1,∞) be
given. Then it holds

(σ

2

)p

µ
(σ

2
α
)

≤ ‖u0 − ũα‖
p
Lp(A) ≤ Mp µ(Mα)

with M = max(‖ua‖L∞(Ω), ‖ub‖L∞(Ω)).

Lemma 7. Let ũα be defined as above. Then it holds

α‖ũα − uα‖
2
L2(Ω) + ‖y0 − yα‖

2
Y ≤ (p0 − pα, ũα − u0).

Proof. Since uα and ũα solve (Pα) and (Paux

α ), respectively, we have

(αuα − pα + βλα, ũα − uα) ≥ 0,

(αũα − p0 + βλ̃α, uα − ũα) ≥ 0,

with some λ̃α ∈ ∂‖ũα‖L1(Ω). Due to the monotonicity of the subdifferential we

have (λα − λ̃α, uα − ũα) ≥ 0. This gives

α‖ũα − uα‖
2
L2(Ω) ≤ (p0 − pα, ũα − uα).

The identity

(p0 − pα, ũα − uα) = (p0 − pα, ũα − u0 + u0 − uα)

= (p0 − pα, ũα − u0)− ‖y0 − yα‖
2
Y

finishes the proof. ⊓⊔

Theorem 8. Let us assume that there is σ > 0 such that ua ≤ −σ < 0 < σ ≤ ub

a.e. on Ω. The we have the following implication: If

‖u0 − uα‖L2(Ω) = O(αd−1/2), ‖y0 − yα‖Y = O(αd) for α → 0

holds with d > 1, then it follows

µ(ǫ) ≤ O(ǫ2d−1) for ǫ → 0.
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Proof. Let us begin with

‖u0 − ũα‖
2
L2(Ω) ≤ 2(‖u0 − uα‖

2
L2(Ω) + ‖uα − ũα‖

2
L2(Ω))

≤ O(α2d−1) + α−1(p0 − pα, ũα − u0)

≤ O(α2d−1) +O(αd−1)‖u0 − ũα‖L2(Ω),

which gives ‖u0 − ũα‖L2(Ω) = O(αd−1). Hence by Lemma 5, we obtain µ(ǫ) =

O(ǫ2d−2). Let us note that the convergence rates imply u0(x) = 0 if |p0(x)| = β
by Theorem 4. Moreover, we have u0 = ũα = 0 on {x ∈ Ω : |p0(x)| ≤ β} by (3)
and (10). This implies u0 = ũα = 0 on the set {x ∈ Ω : |p0(x)| ≤ β} = Ω \ A,
cf. (10). Using the convergence rate ‖p0 − pα‖L∞(Ω) = O(αd) and Corollary 6,
we find

α−1|(p0 − pα, ũα − u0)| = O(αd−1)‖ũα − u0‖L1(Ω)

= O(αd−1)‖ũα − u0‖L1(A)

≤ O(αd−1)µ(M α).

Since by the above considerations we already got µ(ǫ) = O(ǫ2d−2) this gives

‖u0 − ũα‖
2
L2(Ω) = O(α2d−1) +O(α3(d−1)).

Repeating this process k times until k(d− 1) ≥ 2d− 1 yields

‖u0 − ũα‖
2
L2(Ω) = O(α2d−1),

which finishes the proof. ⊓⊔

Together with Theorem 4, this result shows that the requirements of Theorem 3
for convergence rates d > 1 are sharp. It is an open question, whether the
requirement (5) on the active set is also necessary for convergence rates d ≤ 1.
In our opinion, this condition is too strong and has to be relaxed in order to
obtain a characterization for convergence rates d ≤ 1.

3.3 Necessary conditions for exact reconstruction with α > 0

Let us now investigate the case of exact reconstruction. That is, the solutions of
the regularized problem uα coincide with the (minimal L2-norm) solution u0 of
the original problem.

Lemma 9. Let us assume that uα∗ = u0 a.e. on Ω for some α∗ > 0. Then
uα = u0 a.e. on Ω for all α ∈ (0, α∗).

Proof. The claim follows from known monotonicity results: The mapping α 7→
‖uα‖L2 is monotonically decreasing, while α 7→ 1

2‖yα−yd‖
2
Y +β‖uα‖L1 is mono-

tonically increasing from (0,+∞) to R, see e.g. [8, Lemma 2.8]. ⊓⊔
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Theorem 10. Let us assume that there is σ > 0 such that ua ≤ −σ < 0 < σ ≤
ub a.e. on Ω. Then the exact recovery uα∗ = u0 a.e. on Ω for some α∗ > 0 is
equivalent to

u0 = 0 on {x ∈ Ω : |p0(x)| = β} and

µ(ǫ) =
∣

∣{x ∈ Ω : 0 < |p0(x)| − β < ǫ}
∣

∣ = 0

}

(11)

for some ǫ > 0.

Proof. Let us assume uα∗ = u0 for some α∗ > 0. Lemma 9 and Theorem 4 imply
u0(x) = 0 for x ∈ {x ∈ Ω : |p0(x)| = β}. Moreover, due to p0 = pα∗ we infer
u0 = uα∗ = ũα∗ from Lemma 7, where ũα∗ is defined by (10). Hence, Corollary 6
implies µ(σ α∗/2) = 0.
To prove the converse, let (11) be satisfied for some ǫ > 0. Using (6) we obtain

α ‖u0 − uα‖
2
L2(Ω) ≤ α (u0, u0 − uα) = α (χA u0, u0 − uα) ≤ C α |Aα|,

where A = {x ∈ Ω : |p0(x)| > β} and Aα = {x ∈ A : u0(x) 6= uα(x)}. Arguing
similarly as in [8, Corollary 3.13], we have |Aα| = 0, and hence ‖u0−uα‖L2(A) = 0
holds for α > 0 small enough. ⊓⊔

In many applications, the adjoint state p0 belongs to C(Ω). In this case, the result
of Theorem 10 shows that an exact reconstruction is only possible if |p0(x)| 6= β
for all x ∈ Ω. This in turn implies either u0 ≡ ua or u0 ≡ 0 or u0 ≡ ub on every
connected component of Ω.

References

1. Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of
semilinear elliptic control problems with L

1 cost functional. SIAM J. Optim. (2012),
to appear

2. Deckelnick, K., Hinze, M.: A note on the approximation of elliptic control problems
with bang-bang controls. Comput. Optim. Appl. 51(2), 931–939 (2012)

3. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems, Mathe-
matics and its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht
(1996)

4. Felgenhauer, U.: On stability of bang-bang type controls. SIAM J. Control Optim.
41(6), 1843–1867 (2003)

5. Neubauer, A.: Tikhonov-regularization of ill-posed linear operator equations on
closed convex sets. J. Approx. Theory 53(3), 304–320 (1988)

6. Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in
Mathematics, vol. 112. American Mathematical Society, Providence (2010), theory,
methods and applications, Translated from the 2005 German original by J. Sprekels

7. Wachsmuth, D., Wachsmuth, G.: Convergence and regularization results for optimal
control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3),
858–886 (2011)

8. Wachsmuth, D., Wachsmuth, G.: On the regularization of optimization problems
with inequality constraints. Control and Cybernetics (2011), to appear


	Necessary conditions for convergence rates of regularizations of optimal control problems

