Exponential stability of the system of transmission of the wave equation with a delay term in the boundary feedback

Salah-Eddine Rebiai
Laboratoire des Techniques Mathématiques, Faculté des Sciences, Université de Batna, 05000 Batna, Algeria
rebiai@hotmai.com

Abstract

We consider a system of transmission of the wave equation with Neumann feedback control that contains a delay term and that acts on the exterior boundary. First, we prove under some assumptions that the closed-loop system generates a C_{0}-semigroup of contractions on an appropriate Hilbert space. Then, under further assumptions, we show that the closed-loop system is exponentially stable. To establish this result, we introduce a suitable energy function and use multiplier method together with an estimate taken from [3] (Lemma 7.2) and compactnessuniqueness arguments.

Keywords: Wave equation, transmission problem, time delays, boundary stabilization, exponential stability.

1 Introduction

It is by now well-known that certain infinite-dimensional second-order systems are not robust with respect to arbitarily small delays in the damping. This lack of stability robustness was first shown to hold for the one-dimensional wave equation ([2]). Later, further examples illustrating this phenomenon were considered in [1]: the two-dimensional wave equation with damping introduced through Neumann-type boundary conditions on one edge of a square boundary and the Euler-Bernoulli beam equation in one dimension with damping introduced through a specific set of boundary conditions on the right end point.

Recently, Xu et al [9] established sufficient conditions that guarantee the exponential stability of the one-dimensional wave equation with a delay term in the boundary feedback. Nicaise and Pignotti [5] extended this result to the multi-dimensional wave equation with a delay term in the boundary or internal feedbacks. The same type of result was obtained by Nicaise and Rebiai [6] for the Schrödinger equation.

Motivated by the references [9], [5] and [6]; we investigate in this paper the problem of exponential stability for the system of transmission of the wave equation with a delay term in the boundary feedback.

Let Ω be an open bounded domain of \mathbb{R}^{n} with a boundary Γ of class C^{2} which consists of two non-empty parts Γ_{1} and Γ_{2} such that $\overline{\Gamma_{1}} \cap \overline{\Gamma_{2}}=\emptyset$. Let Γ_{0}
with $\overline{\Gamma_{0}} \cap \overline{\Gamma_{1}}=\overline{\Gamma_{0}} \cap \overline{\Gamma_{2}}=\emptyset$ be a regular hypersurface of class C^{2} which separates Ω into two domains Ω_{1} and Ω_{2} such that $\Gamma_{1} \subset \partial \Omega_{1}$ and $\Gamma_{2} \subset \partial \Omega_{2}$. Furthermore, we assume that there exists a real vector field $h \in\left(C^{2}(\bar{\Omega})\right)^{n}$ such that:
(H.1) The Jacobian matrix J of h satisfies

$$
\int_{\Omega} J(x) \zeta(x) \cdot \zeta(x) d \Omega \geq \alpha \int_{\Omega}|\zeta(x)|^{2} d \Omega
$$

for some constant $\alpha>0$ and for all $\zeta \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$;
$(H .2) h(x) . \nu(x) \leq 0$ on Γ_{1};
(H.3) $h(x) . \nu(x) \geq 0$ on Γ_{0}.
where ν is the unit normal on Γ or Γ_{0} pointing towrds the exterior of Ω or Ω_{1}.
Let $a_{1}, a_{2}>0$ be given. Consider the system of transmission of the wave equation with a delay term in the boundary conditions:

$$
\begin{array}{lc}
y^{\prime \prime}(x, t)-a(x) \Delta y(x, t)=0 & \text { in } \Omega \times(0,+\infty), \\
y(x, 0)=y^{0}(x), y^{\prime}(x, 0)=y^{1}(x, 0) & \text { in } \Omega, \\
y_{1}(x, t)=0 & \text { on } \Gamma_{1} \times(0,+\infty), \\
\frac{\partial y_{2}(x, t)}{\partial \nu}=-\mu_{1} y_{2}^{\prime}(x, t)-\mu_{2} y_{2}^{\prime}(x, t-\tau) & \text { on } \Gamma_{2} \times(0,+\infty), \\
y_{1}(x, t)=y_{2}(x, t), & \text { on } \Gamma_{0} \times(0,+\infty), \\
a_{1} \frac{\partial y_{1}(x, t)}{\partial \nu}=a_{2} \frac{\partial y_{2}(x, t)}{\partial \nu} & \text { on } \Gamma_{0} \times(0,+\infty), \\
y_{2}^{\prime}(x, t-\tau)=f_{0}(x, t-\tau) & \text { on } \Gamma_{2} \times(0, \tau)
\end{array}
$$

where:
$-a(x)= \begin{cases}a_{1}, & x \in \Omega_{1} \\ a_{2}, & x \in \Omega_{2}\end{cases}$
$-y(x, t)=\left\{\begin{array}{l}y_{1}(x, t),(x, t) \in \Omega_{1} \times(0,+\infty) \\ y_{1}(x, t),(x, t) \in \Omega_{2} \times(0,+\infty)\end{array}\right.$
$-\frac{\partial .}{\partial \nu}$ is the normal derivative.

- μ_{1} and μ_{2} are positive real numbers.
$-\tau$ is the time delay
$-y^{0}, y^{1}, f_{0}$ are the initial data which belong to suitable spaces.
In the absence of delay, that is $\mu_{2}=0$, Liu and Williams [4] have shown that the solution of (1)-(6) decays exponentially to zero in the energy space $H_{\Gamma_{1}}^{1}(\Omega) \times$ $L^{2}(\Omega)$ provided that

$$
\begin{equation*}
a_{1}>a_{2} \tag{8}
\end{equation*}
$$

and $\left\{\Omega, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right\}$ satisfies (H.1), (H.2), (H.3), and (H.4) $h(x) . \nu(x) \geq \gamma>0$.

The purpose of this paper is to investigate the stability of problem (1) - (7) in the case where both μ_{1} and μ_{2} are different from zero. To this end, assume as in [5] that

$$
\begin{equation*}
\mu_{1}>\mu_{2} \tag{9}
\end{equation*}
$$

and define the energy of a solution of $(1)-(7)$ by
$E(t)=\frac{1}{2} \int_{\Omega}\left[\left|y^{\prime}(x, t)\right|^{2}+\left.a(x)\left|\nabla\left(\left.y(x, t)\right|^{2}\right] d x+\frac{\xi}{2} \int_{\Gamma_{2}} \int_{0}^{1}\right| y(x, t-\tau \rho)\right|^{2} d \rho d \sigma(x)\right.$,
where

$$
\begin{equation*}
a_{2} \tau \mu_{2}<\xi<a_{2} \tau\left(2 \mu_{1}-\mu_{2}\right), \tag{10}
\end{equation*}
$$

We show that if $\left\{\Omega, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right\}$ satisfies (H.1), (H.2) and (H.3), then there is an exponential decay rate for $E(t)$. The proof of this result combines multipliers technique and compactness-uniqueness arguments.
The main result of this paper can be stated as follows.
Theorem 1. Assume (H1), (H.2), (H.3), (8) and (9). Then there exist constants $M \geq 1$ and $\omega>0$ such that

$$
E(t) \leq M e^{-\omega t} E(0)
$$

Theorem 1 is proved in Section 3. In Section 2, we investigate the wellposedness of system (1) - (7) using semigroup theory.

2 Well-poseness of problem (1) - (7)

Inspired from [5] and [6], we introduce the auxilliary variable $z(x, \rho, t)=y(x, t-$ $\tau \rho)$. With this new unknown, problem (1) $-(7)$ is equivalent to

$$
\begin{array}{lc}
y^{\prime \prime}(x, t)-a(x) \Delta y(x, t)=0 & \text { in } \Omega \times(0,+\infty), \\
y(x, 0)=y^{0}(x), y^{\prime}(x, 0)=y^{1}(x) & \text { in } \Omega, \\
y(x, t)=0 & \text { on } \Gamma_{1} \times(0,+\infty), \\
\frac{\partial z(x, \rho, t)}{\partial t}+\frac{1}{\tau} \frac{\partial z(x, \rho, t)}{\partial \rho}=0 & \text { on } \Gamma_{2} \times(0,+\infty) \\
\frac{\partial y_{2}(x, t)}{\partial \nu}=-\mu_{1} y_{2}^{\prime}(x, t)-\mu_{2} z(x, 1, t) & \text { on } \Gamma_{2} \times(0,+\infty), \\
y_{1}(x, t)=y_{2}(x, t) & \text { on } \Gamma_{0} \times(0,+\infty), \\
a_{1} \frac{\partial y_{1}(x, t)}{\partial \nu}=a_{2} \frac{\partial y_{2}(x, t)}{\partial \nu} & \text { on } \Gamma_{0} \times(0,+\infty) \\
z(x, 0, t)=y^{\prime}(x, t) & \text { on } \Gamma_{2} \times(0,+\infty) \\
z(x, \rho, 0)=f_{0}(x,-\tau \rho) & \text { on } \Gamma_{2} \times(0,1)
\end{array}
$$

Now, we endow the Hilbert space

$$
\mathcal{H}=H_{\Gamma_{1}}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}\left(\Gamma_{2} ; L^{2}(0,1)\right)
$$

with the inner product
$\left\langle\left(\begin{array}{l}u \\ v \\ z\end{array}\right) ;\left(\begin{array}{l}\bar{u} \\ \bar{v} \\ \bar{z}\end{array}\right)\right\rangle=\int_{\Omega}(a(x) \nabla u(x) \nabla \bar{u}(x)+v(x) \bar{v}(x)) d x+\xi \int_{\Gamma_{2}} \int_{0}^{1} z(x, \rho) \bar{z}(x, \rho) d \rho d \sigma(x)$
and define a linear operator in \mathcal{H} by

$$
\begin{align*}
D(A)= & \left\{(u, v, z)^{T} \in H^{2}\left(\Omega_{1}, \Omega_{2}, \Gamma_{1}\right) \times H_{\Gamma_{1}}^{1}(\Omega) \times L^{2}\left(\Gamma_{2} ; H^{1}(0,1)\right.\right. \\
\frac{\partial u}{\partial \nu}= & \left.-\mu_{1} v-\mu_{2} z(., 1), v=z(., 0) \text { on } \Gamma_{2}\right\} \tag{21}\\
& A\left(\begin{array}{l}
u \\
v \\
z
\end{array}\right)=\left(\begin{array}{c}
v \\
a(x) \Delta u \\
-\tau^{-1} \frac{\partial z}{\partial \rho}
\end{array}\right) \tag{22}
\end{align*}
$$

The spaces used for the definition of \mathcal{H} and $D(A)$ are

$$
\begin{aligned}
& H_{\Gamma_{1}}^{1}(\Omega)=\left\{u \in H^{1}(\Omega): u=0 \text { on } \Gamma_{1}\right\} \\
& H^{2}\left(\Omega_{1}, \Omega_{2}, \Gamma_{1}\right)=\left\{u_{i} \in H^{2}\left(\Omega_{i}\right): u=0 \text { on } \Gamma_{1}, u_{1}=u_{2} \text { and } a_{1} \frac{\partial u_{1}}{\partial \nu}=a_{2} \frac{\partial u_{2}}{\partial \nu} \text { on } \Gamma_{0}\right\}
\end{aligned}
$$

Then we can rewrite (12) - (20) as an abstract Cauchy problem in \mathcal{H}

$$
\left\{\begin{array}{l}
\frac{d}{d t} Y(t)=A Y(t) \tag{23}\\
Y(0)=Y_{0}
\end{array}\right.
$$

where

$$
Y(t)=\left(y, y^{\prime}, z\right)^{T} \text { and } Y_{0}=\left(y_{0}, y_{1}, f_{0}(.,-. \tau)\right)^{T}
$$

Proposition 1. The operator A defined by (21) and (22) generates a strongly continuous semigroup on \mathcal{H}. Thus, for every $Y_{0} \in \mathcal{H}$, problem (23) has a unique solution Y whose regularity depends on the the initial datum Y_{0} as follows:

$$
\begin{aligned}
& Y(.) \in C([0,+\infty) ; \mathcal{H}) \text { if } Y_{0} \in \mathcal{H}, \\
& Y(.) \in C([0,+\infty) ; D(A)) \cap C^{1}([0,+\infty) ; \mathcal{H}) \text { if } Y_{0} \in D(A) .
\end{aligned}
$$

Proof. Let $Y=\left(\begin{array}{l}u \\ v \\ z\end{array}\right) \in D(A)$. Then

$$
\begin{align*}
\langle A Y, Y\rangle= & \int_{\Omega} a(x) \nabla u(x) \cdot \nabla v(x) d x+\int_{\Omega}(a(x) \Delta u(x)) v(x) d x- \\
& \frac{\xi}{\tau} \int_{\Gamma_{2}} \int_{0}^{1} z_{\rho}(x, \rho) z(x, \rho) d \rho d \Gamma \tag{24}
\end{align*}
$$

Applying Green's first theorem, we obtain

$$
\begin{align*}
& \int_{\Omega}(a(x) \Delta u(x)) v(x) d x=a_{1} \int_{\Gamma_{1}} v(x) \frac{\partial u(x)}{\partial \nu} d \Gamma-a_{1} \int_{\Omega_{1}} \nabla u(x) . \nabla v(x) d x+ \\
& a_{2} \int_{\Gamma_{2}} v(x) \frac{\partial u(x)}{\partial \nu} d \Gamma-a_{2} \int_{\Omega_{2}} \nabla u(x) . \nabla v(x) d x \\
= & a_{2} \int_{\Gamma_{2}} v(x)\left\{-\mu_{1} v(x)-\mu_{2} z(x, 1)\right\} d \Gamma-\int_{\Omega} a(x) \nabla u(x) . \nabla v(x) d x \tag{25}
\end{align*}
$$

Integrating by parts in ρ, we get

$$
\begin{equation*}
\int_{\Gamma_{2}} \int_{0}^{1} z_{\rho}(x, \rho) z(x, \rho) d \rho d \Gamma=\frac{1}{2} \int_{\Gamma_{2}}\left\{z^{2}(x, 1)-z^{2}(x, 0)\right\} d \Gamma \tag{26}
\end{equation*}
$$

Inserting (25) and (26) into (24) results in

$$
\begin{aligned}
& \langle A Y, Y\rangle=-a_{2} \mu_{1} \int_{\Gamma_{2}} v^{2}(x) d \Gamma-a_{2} \mu_{2} \int_{\Gamma_{2}} v(x) z(x, 1) d \Gamma- \\
& \frac{\xi}{2 \tau} \int_{\Gamma_{2}} z^{2}(x, 1) d \Gamma+\frac{\xi}{2 \tau} \int_{\Gamma_{2}} v^{2}(x) d \Gamma
\end{aligned}
$$

from which follows using the Cauchy-Schwarz inequality

$$
\begin{equation*}
\langle A Y, Y\rangle \leq-\left(a_{2} \mu_{1}-\frac{a_{2} \mu_{2}}{2}+\frac{\xi}{2 \tau}\right) \int_{\Gamma_{2}} v^{2}(x) d \Gamma-\left(\frac{\xi}{2 \tau}-\frac{a_{2} \mu_{2}}{2}\right) \int_{\Gamma_{2}} z^{2}(x, 1) d \Gamma \tag{27}
\end{equation*}
$$

(27) implies that

$$
\langle A Y, Y\rangle \leq 0
$$

Thus A is dissipative.
Now we show that for a fixed $\lambda>0$ and $(g, h, k)^{T} \in \mathcal{H}$, there exists $Y=$ $(u, v, z)^{T} \in D(A)$ such that

$$
(\lambda I-A) Y=(g, h, k)^{T}
$$

or equivalently

$$
\begin{align*}
& \lambda u-v=g \tag{28}\\
& \lambda v-a(x) \Delta u=h \tag{29}\\
& \lambda z+\frac{1}{\tau} z_{\rho}=k \tag{30}
\end{align*}
$$

Suppose that we have found u with the appropriate regularity, then we can determine z. Indeed, from (21) and (30) we have

$$
\left\{\begin{array}{l}
z_{\rho}(x, \rho)=-\lambda \tau z(x, \rho)+\tau k(x, \rho) \\
z(x, 0)=v(x)
\end{array}\right.
$$

The unique solution of the above initial value problem is

$$
z(x, \rho)=e^{-\lambda \tau \rho} v(x)+\tau e^{-\lambda \tau \rho} \int_{0}^{\rho} e^{\lambda \tau s} k(x, s) d s
$$

and in particular

$$
z(x, 1)=\lambda e^{-\lambda \tau} u(x)+z_{0}(x), \quad x \in \Gamma_{2}
$$

where

$$
z_{0}(x)=-e^{-\lambda \tau} g(x)+\tau e^{-\lambda \tau} \int_{0}^{1} e^{\lambda \tau s} k(x, s) d s
$$

By (28) and (29), the function u satisfies

$$
\begin{equation*}
\lambda^{2} u-a(x) \Delta u=h+\lambda g \tag{31}
\end{equation*}
$$

Problem (31) can be reformulated as

$$
\begin{equation*}
\int_{\Omega}\left(\lambda^{2} u-a(x) \Delta u\right) w d x=\int_{\Omega}(h+\lambda g) w d x, \quad w \in H_{\Gamma_{1}}^{1}(\Omega) \tag{32}
\end{equation*}
$$

Using Green's first theorem and recalling (21), we express the right-hand side of (32) as follows

$$
\begin{aligned}
& \int_{\Omega}\left(\lambda^{2} u-a(x) \Delta u\right) w d x=\int_{\Omega}\left(\lambda^{2} u w+a(x) \nabla u \cdot \nabla w\right) d x+a_{2} \int_{\Gamma_{2}}\left\{\mu_{1}(\lambda u-g) w\right. \\
& \left.+\mu_{2}\left(\lambda e^{-\lambda \tau} u(x)+z_{0}(x)\right) w\right\} d \Gamma
\end{aligned}
$$

Therefore (32), can be rewritten as

$$
\begin{align*}
& \int_{\Omega}\left(\lambda^{2} u w+a(x) \nabla u \cdot \nabla w\right) d x+a_{2} \int_{\Gamma_{2}}\left(\mu_{1}+\mu_{2} e^{-\lambda \tau}\right) \lambda u w d \Gamma=\int_{\Omega}(h+\lambda g) w d \Gamma \\
& +a_{2} \mu_{1} \int_{\Gamma_{2}} g w d \Gamma-a_{2} \mu_{2} \int_{\Gamma_{2}} z_{0} w d \Gamma, \quad \forall w \in H_{\Gamma_{1}}^{1}(\Omega) . \tag{33}
\end{align*}
$$

Since the left-hand side of (33) is coercive on $H_{\Gamma_{1}}^{1}(\Omega)$, the Lax-Milgram Theorem guarantees the existence and uniqueness of a solution $y \in H_{\Gamma_{1}}^{1}(\Omega)$ of (31). If we consider $w \in \mathcal{D}(\Omega)$ in (28), then y is a solution in $\mathcal{D}^{\prime}(\Omega)$ of

$$
\begin{equation*}
\lambda^{2} u-a(x) \Delta u=h+\lambda g \tag{34}
\end{equation*}
$$

and thus $\Delta u \in L^{2}(\Omega)$.
Combining (33) together with (34), we obtain after using Green's first theorem $a_{2} \int_{\Gamma_{2}}\left(\mu_{1}+\mu_{2} e^{-\lambda \tau}\right) \lambda u w d \Gamma+a_{2} \int_{\Omega} \frac{\partial u}{\partial \nu} w d \Gamma=a_{2} \mu_{1} \int_{\Gamma_{2}} g w d \Gamma-a_{2} \mu_{2} \int_{\Gamma_{2}} z_{0} w d \Gamma$ which implies that

$$
\frac{\partial u(x)}{\partial \nu}=-\mu_{1} v(x)-\mu_{2} z(x, 1)
$$

So, we have found $(u, v, z)^{T} \in D(A)$ which satisfies (28) - (30). Thus, by the Lumer-Phillips Theorem (see for instance [8], Theorem 1.4.3), generates a strongly continuous semigroup of contractions on \mathcal{H}.

3 Proof of Theorem 1

We prove Theorem 1 for smooth initial data. The general case follows by a standard density argument.
We proceed in several steps.
Step 1.
Since

$$
E(t)=\frac{1}{2}\left\|\left(y, y^{\prime}, z\right)\right\|_{\mathcal{H}}^{2}
$$

Then, we deduce from the proof of Proposition 1 that $E(t)$ is non-increasing and

$$
\begin{equation*}
\frac{d}{d t} E(t) \leq-C \int_{\Gamma_{2}}\left\{y^{2}(x, t)+y^{\prime 2}(x, t)\right\} d \Gamma \tag{35}
\end{equation*}
$$

where

$$
C=\min \left\{a_{2} \mu_{1}-\frac{a_{2} \mu_{2}}{2}+\frac{\xi}{2 \tau}, \frac{\xi}{2 \tau}-\frac{a_{2} \mu_{2}}{2}\right\}
$$

Step 2.
Set

$$
E(t)=\mathcal{E}(t)+E_{d}(t)
$$

where

$$
\mathcal{E}(t)=\frac{1}{2} \int_{\Omega}\left\{a(x)|\nabla y(x, t)|^{2}+\left|y^{\prime}(x, t)\right|^{2}\right\} d x
$$

and

$$
E_{d}(t)=\frac{\xi}{2 \tau} \int_{\Gamma_{2}} \int_{0}^{1}\left|y^{\prime}(x, t-\tau \rho)\right|^{2} d \rho d \Gamma
$$

$E_{d}(t)$ can be rewritten via a change of variable as

$$
\begin{equation*}
E_{d}(t)=\frac{\xi}{2 \tau^{2}} \int_{t}^{t+\tau} \int_{\Gamma_{2}} y^{\prime 2}(x, s-\tau) d \Gamma d s \tag{36}
\end{equation*}
$$

From (36), we obtain

$$
\begin{equation*}
E_{d}(t) \leq C_{1} \int_{0}^{T} \int_{\Gamma_{2}} y^{\prime 2}(x, s-\tau) d \Gamma d s \tag{37}
\end{equation*}
$$

for $0 \leq t \leq T$ and T large enough.

Step 3.

By applying energy methods (multiplier $2 h . \nabla y+(\operatorname{divh}-\alpha) y)$ (see the appendix) to problem (1) - (7), we obtain for all $T>0$.

$$
\begin{align*}
& \int_{0}^{T} \mathcal{E}(t) d t \leq C_{2}(\mathcal{E}(0)+\mathcal{E}(T))+C_{3} \int_{0}^{T} \int_{\Gamma_{2}}\left\{\left(\frac{\partial y(x, t)}{\partial \nu}\right)^{2}+y^{\prime 2}(x, t)\right\} d \Gamma d t+ \\
& C_{4} \int_{0}^{T} \int_{\Gamma_{2}}\left|\nabla_{\sigma} y(x, t)\right|^{2} d \Gamma d t+C_{5} \int_{0}^{T} \int_{\Omega}|y(x, t)|^{2} d \Omega d t \tag{38}
\end{align*}
$$

where $\nabla_{\sigma} y$ is the tangential gradient of y.

Step 4.

We eliminate the tangential gradient from (38) by using the following estimate due to Lasiecka and Triggiani (Lemma 7.2 in [3])

$$
\begin{gathered}
\int_{\epsilon}^{T-\epsilon} \int_{\Gamma_{2}}\left|\nabla_{\sigma} y(x, t)\right|^{2} d \Gamma d t \leq C_{6}\left\{\int_{0}^{T} \int_{\Gamma_{2}}\left\{\left(\frac{\partial y(x, t)}{\partial \nu}\right)^{2}+y^{\prime 2}(x, t)\right\} d \Gamma d t+\right. \\
\left.\|y\|_{L^{2}\left(0, T ; H^{1 / 2+\delta}(\Omega)\right)}^{2}\right\}
\end{gathered}
$$

where ϵ and δ are arbitrary positive constants. We obtain

$$
\begin{align*}
\int_{0}^{T} \mathcal{E}(t) d t \leq & C_{2}(\mathcal{E}(0)+\mathcal{E}(T))+C_{7} \int_{0}^{T} \int_{\Gamma_{2}}\left\{\left(\frac{\partial y(x, t)}{\partial \nu}\right)^{2}+y^{\prime 2}(x, t)\right\} d \Gamma d t+ \\
& C_{8}\|y\|_{L^{2}\left(0, T ; H^{1 / 2+\delta}(\Omega)\right)}^{2} \tag{39}
\end{align*}
$$

Step 5.

We differentiate $\mathcal{E}(t)$ with respect to t and apply Green's first theorem. We obtain

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}(t)=a_{2} \int_{\Gamma_{2}} y^{\prime}(x, t) \frac{\partial y(x, t)}{\partial \nu} d \Gamma d t \tag{40}
\end{equation*}
$$

From (40), we get via the Cauchy-Schwarz inequality

$$
\begin{equation*}
\mathcal{E}(0) \leq \mathcal{E}(T)+\frac{a_{2}}{2} \int_{0}^{T} \int_{\Gamma_{2}}\left\{y^{\prime 2}(x, t)+\left(\frac{\partial y(x, t)}{\partial \nu}\right)^{2}\right\} d \Gamma d t \tag{41}
\end{equation*}
$$

Insertion of (41) into (39) yields

$$
\begin{align*}
& \int_{0}^{T} \mathcal{E}(t) d t \leq 2 C_{2} \mathcal{E}(T)+C_{9} \int_{0}^{T} \int_{\Gamma_{2}}\left\{\left(\frac{\partial y(x, t)}{\partial \nu}\right)^{2}+y^{\prime 2}(x, t)\right\} d \Gamma d t+ \\
& C_{8}\|y\|_{L^{2}\left(0, T ; H^{1 / 2+\delta}(\Omega)\right)}^{2} \tag{42}
\end{align*}
$$

Step 6.

Since $E(t)$ is non-increasing and $E(t)=\mathcal{E}(t)+E_{d}(t)$, then (42) together with (37) implies that

$$
\begin{align*}
T E(T) \leq & 2 C_{2} \mathcal{E}(T)+C_{9} \int_{0}^{T} \int_{\Gamma_{2}}\left\{\left(\frac{\partial y(x, t)}{\partial \nu}\right)^{2}+y^{\prime 2}(x, t)\right\} d \Gamma d t+ \\
& C_{8}\|y\|_{L^{2}\left(0, T ; H^{1 / 2+\delta}(\Omega)\right)}^{2}+T C_{1} \int_{0}^{T} \int_{\Gamma_{2}} y^{\prime 2}(x, t-\tau) d \Gamma d t \tag{43}
\end{align*}
$$

Thus invoking again the identity $E(t)=\mathcal{E}(t)+E_{d}(t)$ and recalling the boundary condition (4), we obtain from (43)

$$
\begin{equation*}
E(T) \leq C_{10} \int_{0}^{T} \int_{\Gamma_{2}}\left\{y^{\prime 2}(x, t)+y^{\prime 2}(x, t-\tau)\right\} d \Gamma d t+C_{11}\|y\|_{L^{2}\left(0, T ; H^{1 / 2+\delta}(\Omega)\right)}^{2} \tag{44}
\end{equation*}
$$

for T large enough.

Step 7.

We drop the lower order term on the right-hand side of (44) by a compactnessuniqueness argument to obtain

$$
\begin{equation*}
E(T) \leq C_{12} \int_{0}^{T} \int_{\Gamma_{2}}\left\{y^{\prime 2}(x, t)+y^{\prime 2}(x, t-\tau)\right\} d \Gamma d t \tag{45}
\end{equation*}
$$

Step 8.

The estimate (45) together with (35) yields

$$
\begin{equation*}
E(T) \leq \frac{C_{13}}{1+C_{13}} E(0) \tag{46}
\end{equation*}
$$

The desired conclusion follows now from (46) since the system (1) - (7) is invariant by translation.

References

1. Datko, D.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26, 697-713 (1988)
2. Datko, R., Lagnese, J., Polis, M.P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152-156 (1986)
3. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25, 189-244 (1992)
4. Liu, W., Williams, G.H.: The exponential stability of the problem of transmission of the wave equation. Bull. Austra. Math. Soc. 97, 305-327 (1998)
5. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561-1585 (2006)
6. Nicaise, N., Rebiai, S.E.: Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback. Portugal. Math. 68, 19-39 (2011).
7. Nicaise, S., Valein, J.: Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM Control Optim. Calc. Var. 16, 420-456 (2010)
8. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983)
9. Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12, 770-785 (2006)

Appendix: Sketch of Proof of (38)

We multiply both sides of (1) by $2 h . \nabla y+(\operatorname{divh}-\alpha) y$ and integrate over $(0, T) \times \Omega$. We obtain

$$
\begin{align*}
& 2 \int_{0}^{T} \int_{\Omega} a(x) J \nabla y . \nabla y d \Omega d t+\alpha \int_{0}^{T} \int_{\Omega}\left\{y^{\prime 2}-a(x)|\nabla y|^{2}\right\} d \Omega d t= \\
& -\int_{\Omega}\left\{2 y^{\prime} h . \nabla y+(d i v h-\alpha) y^{\prime} y\right\}_{0}^{T} d \Omega-\int_{0}^{T} \int_{\Omega} a(x) y \nabla y . \nabla(d i v h-\alpha) d \Omega d t+ \\
& a_{1} \int_{0}^{T} \int_{\Gamma_{1}}\left|\frac{\partial y_{1}}{\partial \nu}\right|^{2} h . \nu d \Gamma d t-\left(a_{1}-a_{2}\right) \int_{0}^{T} \int_{\Gamma_{0}}\left|\nabla y_{1}\right|^{2} h . \nu d \Gamma d t- \\
& \frac{\left(a_{1}-a_{2}\right)^{2}}{a_{2}} \int_{0}^{T} \int_{\Gamma_{0}}^{T}\left|\frac{\partial y_{1}}{\partial \nu}\right|^{2} h . \nu d \Gamma d t+\int_{0}^{T} \int_{\Gamma_{2}}\left|y_{2}^{\prime}\right|^{2} h . \nu d \Gamma d t+ \\
& 2 a_{2} \int_{0}^{T} \int_{\Gamma_{2}}\left|\frac{\partial y_{2}}{\partial \nu}\right|^{2} h . \nabla y_{2} d \Gamma d t-a_{2} \int_{0}^{T} \int_{\Gamma_{2}}\left|\nabla y_{2}\right|^{2} h . \nu d \Gamma d t+ \\
& a_{2} \int_{0}^{T} \int_{\Gamma_{2}}\left|\frac{\partial y_{2}}{\partial \nu}\right|^{2}(\text { divh }-\alpha) d \Gamma d t \tag{47}
\end{align*}
$$

after using the boundary conditions (3) and (5). Identity (47) is used together with $(H .1),(H .2),(H .3)$ and (8) to obtain estimate (38).

