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Abstract. An algorithm for solving quadratic, two-stage stochastic prob-
lems is developed. The algorithm is based on the framework of the Branch
and Fix Coordination (BFC) method. These problems have continuous
and binary variables in the first stage and only continuous variables in
the second one. The objective function is quadratic and the constraints
are linear. The nonanticipativity constraints are fulfilled by means of the
twin node family strategy. On the basis of the BFC method for two-stage
stochastic linear problems with binary variables in the first stage, an al-
gorithm to solve these stochastic quadratic problems is designed. In order
to gain computational efficiency, we use scenario clusters and propose to
use either outer linear approximations or (if possible) perspective cuts.
This algorithm is implemented in C++ with the help of the Cplex library
to solve the quadratic subproblems. Numerical results are reported.

Keywords: Stochastic Programming, Mixed-Integer Quadratic Problems,
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1 Introduction

Two-stage stochastic mixed integer programs are among the most interesting
problems since the complexity generated by the integrality of variables and the
high dimensionality. Stochastic parameters can exist anywhere in the problem.
In order to model the uncertainty a finite set of scenarios, Ω, is used, where
each ω ∈ Ω has an associated probability of ocurrence pω. In a two-stage pro-
gram decisions on the first and second stage variables must be taken. First-stage
variables are chosen before knowing the realization of the uncertain parameters.
After having decided on first stage and having known each realization of the
uncertain parameters, the second stage decision must be taken. The first-stage
variables take the same value in each scenario, which yields nonanticipativity

constraints. If we consider a finite number of scenarios, a general two-stage pro-
gram can be expressed regarding the first-stage variables being equivalent to a
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large programming problem suggested in citeWets66 and known as deterministic

equivalent model (DEM). A general two-stage problem can include binary first-
stage variables. The simplest form of two-stage stochastic integer problems have
first-stage binary and second-stage continuous variables. In [7] a branch-and-cut
method is used for those problems, which is based on the Benders decomposition
method. An efficient branch-and-fix coordination (BFC) method for solving two-
stage programs is provided in [1], where the first-stage has only binary variables,
and where the uncertainty only appears in the coefficients of the objective func-
tion and in the right-hand-side of the constraints. If the first stage involves pure
binary variables, finite termination is justified by using branching over the 0-1
first-stage variables, see among others [8] and [9]. Escudero et al. [3] study gen-
eral two-stage stochastic mixed 0-1 problems, where the first stage only involves
binary variables and continuous variables and the second stage continuous vari-
ables. They use a specialization of the BFC scheme and the twin-node-family
(TNF) concept, which was introduced in [1]. Their scheme is specifically de-
signed for coordinating the node branching selection and pruning and the 0-1
variable branching selection and fixing at each branch-and-fix (BF) tree. Also,
they suggest to decompose the set of scenarios in clusters.

On the other hand, real problems with this structure exist and have a high
dimensionality. They often need to be solved and it is important to find the
procedure that will solve them with the highest efficiency. An example of this
type is the Iberian Electricity Market (MIBEL), which comprises Spanish and
Portuguese electricity systems, see [6].

In this paper we consider the two-stage mixed 0-1 quadratic problem

minimize ctδ + q(x, y)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lt ≤ T



δ
x
y


 ≤ ut,

x ≥ 0, y ≤ y ≤ y, δ ∈ {0, 1}nδ ,

where δ are first-stage-binary variables, x ∈ Rnx are first-stage continuous vari-
ables, y ∈ Rny are second-stage continuous variables, c is the coefficient vector
for δ, and q is the quadratic function defined as follows

q(x, y) = bt
[
x
y

]
+ [xt yt]Q

[
x
y

]
,

where Q is a positive-definite matrix and b and Q are partitioned as

[
x
y

]
; i.e.,

b =

[
bx
by

]
and Q =

[
Qxx Qxy

Qyx Qyy

]
.

In addition, la and ua are the bounds for the first-stage constraints and lt and
ut are the bounds for the second-stage constraints.
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Let us suppose that some of the coefficient in by, Qxy, Qyx, Qyy, lt, ut and T
are uncertain. The uncertainty is given by the scenarios ω in the finite set Ω and
pω is the probability of that occurs ω ∈ Ω. Therefore, the initial problem given in
a stochastic way can be written as the so-called Deterministic Equivalent Model
(DEM)

minimize ctδ +
∑

ω∈Ω

pωqω(x, yω) (1)

subject to : la ≤ A

[
δ
x

]
≤ ua, (2)

lωt ≤ Tω



δ
x
yω


 ≤ uω

t , ω ∈ Ω, (3)

x ≥ 0, y ≤ yω ≤ y, ω ∈ Ω, (4)

δ ∈ {0, 1}nδ , (5)

As is shown by [3] the compact representation DEM can be written as a splitting

variable representation; i.e., δ and x are respectively replaced by δω and xω, for
ω ∈ Ω. So, we have

(MIQP) minimize
∑

ω∈Ω

pω(ctδω + qω(xω, yω))

subject to : la ≤ A

[
δω

xω

]
≤ ua, ω ∈ Ω,

lωt ≤ Tω



δω

xω

yω


 ≤ uω

t , ω ∈ Ω,

xω ≥ 0, y ≤ yω ≤ y, δω ∈ {0, 1}nδ , ω ∈ Ω,

(NACδ) δω − δω
′

= 0, ∀ω, ω′ ∈ Ω : ω 6= ω′,

(NACx) xω − xω′

= 0, ∀ω, ω′ ∈ Ω : ω 6= ω′,

where NACδ and NACx are the nonanticipativity constraints.
Note that the relaxation of the NACs in the model MIQP gives rise to |Ω|

independent MIQPω submodels

minimize pω(ctδω + qω(xω, yω)), (6)

subject to : la ≤ A

[
δω

xω

]
≤ ua, (7)

lωt ≤ Tω



δω

xω

yω


 ≤ uω

t , (8)

xω ≥ 0, y ≤ yω ≤ y, (9)

δω ∈ {0, 1}nδ , (10)
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and these models are linked by the NACs, which force the equality of the first-
stage variables.

In this work to solve the original quadratic problem DEM a Branch-and-
Fix-Coordination scheme (BFC) is used for each scenario ω ∈ Ω to fulfill the
integrality condition (IC) given by (10), so that the NACδ are also satisfied when
selecting branching nodes and branching variables by the Twin-Node-Families
concept (TNF), which was introduced by [1]. A similar approach to that sug-
gested in [3] is used in this work to coordinate the selection of the branching
node and branching variable for each scenario-related BF tree, such that the
NACδ are satisfied when fixing δω, ∀ω ∈ Ω, either to 1 or to 0. A TNF integer

set is a set of integer BF nodes (i.e. they verify IC), one per BF tree, in which
the NACδ are verified.

For each TNF integer set we use two quadratic submodels. The quadratic
model QPTNF obtained after fixing in DEM δ = δ ∈ {0, 1}nδ for a TNF
integer set

(QPTNF ) ZTNF = ctδ+ min
∑

ω∈Ω

pωqω(x, yω)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lωt ≤ Tω



δ
x
yω


 ≤ uω

t , ω ∈ Ω,

x ≥ 0, y ≤ yω ≤ y, ω ∈ Ω,

It gives a feasible solution and a possible incumbent solution.
The second quadratic submodel to solve at a TNF integer set corresponds

to the case where not all the δ variables have been branched on in the current
TNF, but all of them hold the integrality condition. Then, the other quadratic

submodel (QPf) is obtained from problem DEM with δ =

(
δ
δf

)
, where δj ,

for j ∈ {1, . . . , k}, are fixed to 0-1 values and the componentes of δfj are in the
interval [0, 1].

(QPf) Zf = min ctδ +
∑

ω∈Ω

pωqω(x, yω)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lωt ≤ Tω



δ
x
yω


 ≤ uω

t , ω ∈ Ω,

x ≥ 0, y ≤ yω ≤ y, ω ∈ Ω,

δj = δj fixed to 0-1, for j ∈ {1, . . . , k}

δj = δfj ∈ [0, 1], for j ∈ {k + 1, . . . , nδ}
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This model contributes strong lower bounds of the solution value of the descen-
dent nodes from a given node, by satisfying the NACx.

1.1 Outline of BFC

This method branches on the δ-variables, obtaining the solution of the quadratic
submodels MIQPω and coordinating the selection of the branching node and
branching variable for the BF trees, such that the NACδ constraints are fulfilled
once fixed the suitable variables δ to 1 or to 0. .

A sequence of lower bounds Zi is computed, where Zi =
∑

ω∈Ω

zωi and zωi is

the solution to the quadratic relaxation (QPω) of MIQPω once the previous
variables δ have been fixed to 0 or to 1.

If the optimal solution obtained in each node of the TNF satisfies the IC
(integrality constraints) and the NACδ, two cases can happen with respect to
the NACx. If NACx are satisfied, the incumbent solution is updated and the
TNF’s branch is pruned; if the set of active nodes is empty, that solution is
the optimum. Otherwise, to satisfy NACx we solve the TNF quadratic problem
obtained by fixing the δ-variables that verified IC and NACδ; if this problem is
feasible, the incumbent solution is updated, and if the TNF cannot be pruned,
we continue with the tree examination. For more details about the BFC method
for two-stage stochastic problems see [3].

1.2 Scenario clusters

When the number of scenarios is very large, in order to gain computational
efficiency we can take scenario clusters; see in [4] an information structuring for
scenario cluster partitioning of nonsymmetric scenario trees.

Let p̂ be the number of clusters and Ω1, . . . , Ωp̂, where Ωp ∩ Ωp′

= ∅ for
p, p′ = 1, . . . , p̂, such that p 6= p′, and ∪p̂

p=1
Ωp = Ω. So, instead of the submodel

MIQPω for ω ∈ Ω we can consider the following submodel for the scenario
cluster p = 1, . . . , p̂

(MIQPp) minimize
∑

ω∈Ωp

pω(ctδp + qω(xp, yω))

subject to : la ≤ A

[
δp

xp

]
≤ ua,

lωt ≤ Tω



δp

xp

yω


 ≤ uω

t , ω ∈ Ωp

xp ≥ 0, y ≤ yω ≤ y, ω ∈ Ωp, δp ∈ {0, 1}nδ

These models are linked by the NACs δp − δp
′

= 0 and xp − xp′

= 0, for all
p, p′ ∈ {1, . . . , p̂} such that p 6= p′.
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However, since the number of branches to test can be huge, the BFC method
has some troubles: the number of feasible solutions can be too high, a high num-
ber of quadratic problems QPp, QPTNF , and QPf can exist to solve, and QPTNF

and QPf can have very high dimensions. Hence, in order to gain computational
efficiency, we propose to use either outer linear approximations or (if possible)
perspective cuts to solve QPp in each TNF (i.e., MIQPp where the previous
branching variables have been fixed and the rest is relaxed in [0, 1])

2 Outer linear approximations (OLA)

Let the problem miny∈Y g(y), where g is convex and Y is a polyhedral set. The
optimal value of that problem is not smaller than that of

minimize η

subject to : η ≥ g(yi) +∇g(yi)
t(y − yi),

y ∈ Y.

Therefore, the value of η∗ gives us an underestimate of g(y∗) and, so, we can use
it instead of g(y∗) in the comparison with the current upper bound, in order to
prune (or not) the current branch.

In our problem, we use as yi the solution in the previous node.

3 Perspective cuts

When Qxy and Qyx are zero matrices, the quadratic function q is defined as
follows

q(x, y) = btxx+ btyy + xtQxxx+ ytQyyy.

This kind of model can be found in liberalized electricity markets [6] and [2].
For each scenario ω ∈ Ω we can write the objective function of the submodel

MIQPω as follows

pω(ctδω + btxx+ (bωy )
tyω + xtQxxx+ (yω)tQω

yyy
ω) =

pω
{(

btxx+ xtQxxx
)
+
(
(yω)tQω

yyy
ω + (bωy )

tyω + ctδω
)}

and, if n := nδ = ny and Qyy is diagonal (as in [6]), we can write the last bracket
as

∑n
i=1

qωii(y
ω
i )

2 + bωi y
ω
i + ciδ

ω
i .

For notational simplicity in this paragraph we drop the indices. The issue
is then how to best represent the quadratic function f(y, δ) = qy2 + by + cδ
by means of a piecewise-linear one. There is an effective way based on ideas
developed by Frangioni and Gentile [5]. The function f(y, δ) is only relevant at

points (y, δ) of its (disconnected) domain D = [0, 0] ∪
[
[y, y] × {1}

]
. Standard

branch-and-cut approaches typically solve the continuous relaxation of the mixed
problem, where δ ∈ [0, 1] instead of {0, 1}, in order to obtain lower bounds on



An Algorithm for Stochastic Quadratic Problems 7

the optimal value. This makes sense to use the convex envelope of f(y, δ) over D,
that is, the convex function with the smallest (in set-inclusion sense) epigraph
containing that of f(y, δ). As is showed in [5] the convex envelope is

h(y, δ) =





0, if (y, δ) = (0, 0)
qy2

δ
+ by + cδ,

{
if δy ≤ y ≤ δy,

for δ ∈ (0, 1]

}

+∞, otherwise.

This function is strongly related with the perspective-function f̆(y, δ) = δf(y/δ)
of f(y) = qy2 + by + c, which is convex if f(y) is convex.

h(y, δ) ≥ f(y, δ) for 0 < δ ≤ 1, i.e. h is a tighter objective function than
f for the continuous relaxation. As is well-known, every convex function is the
point-wise supremum of affine functions. In fact, the epigraph of h is composed
of all and only triples (v, y, δ) satisfying δy ≤ y ≤ δy, 0 ≤ δ ≤ 1 and the
infinite system of linear inequalities

v ≥ (2qŷ + b)y + (c− qŷ2)δ

taking ŷ ∈ [y, y]. For each ŷ we have an inequality so-called a perspective

cut (PC), which is the unique supporting hyperplane to the function passing by
(0, 0) and (ŷ, 1).

3.1 PC formulation (PCF)

PC formulation (PCF) lies in choosing these supporting hyperplanes and using
as an objective function the polyhedral function that is the point-wise maximum
of the corresponding linear functions. A small set of initial PCs is chosen to solve
the problem with the continuous relaxation. When δ∗ > 0, check whether the
solution (v∗, y∗, δ∗) satisfies the PC for ŷ = y∗/δ∗; if not, the obtained cut can
be added to PCF.

PCF starts with only two pieces, the ones corresponding with y and y; ad-
ditional cuts are then dynamically generated when needed as described in the
previous paragraph.

Therefore, the objective function of MIQPω for PCF becomes

pω

{
(
btxx+ xtQxxx

)
+
( n∑

i=1

vωi
)
}
,

and the initial PCs added to the constraints of MIQPω for each i ∈ {1, . . . , n}

vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2

i
)δωi

vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2

i )δ
ω
i
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We can extend this formulation to scenario clusters obtaining the MIQPp

submodels for p = 1, . . . , p̂ in this way

min
∑

ω∈Ωp

pω

{(
btxx+ xtQxxx

)
+
( n∑

i=1

vωi

)}

s.t.: vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2

i
)δωi , i ∈ {1, . . . , n}, ω ∈ Ωp

vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2

i )δ
ω
i , i ∈ {1, . . . , n}, ω ∈ Ωp

la ≤ A

[
δp

xp

]
≤ ua,

lωt ≤ Tω



δp

xp

yω


 ≤ uω

t , ω ∈ Ωp

xp ≥ 0, yω ∈ [y, y], ω ∈ Ωp, and δp ∈ {0, 1}nδ

4 Implementation

These methods have been implemented in C++ with the help of Cplex 12.1
to solve only the quadratic subproblems QPp in each node of the BF tree, for
each p ∈ {1, . . . , p̂}, and the QPTNF and QPf subproblems. These algorithmic
alternatives have been considered:

⊲ QBFC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} without using neither OLAs nor PCs, i.e. solving the quadratic
subproblems QPp.

⊲ QBFC-PC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} using PCs.

⊲ QBFC-OLA: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} using OLAs.

For our instances the number of scenarios in each cluster is the same, |Ωp| =
|Ω|/p̂. Each cluster contains |Ωp| consecutive scenarios, starting from the first
one and following in natural order.

5 Numerical tests

In order to obtain a computational comparison of the performance of the al-
gorithmic alternatives QBFC, QBFC-PC, and QBFC-OLA some computational
tests are carried out, which consist in solving two-stage stochastic problems,
where the objective function is convex quadratic with linear constraints using
QBFC code with those algorithmic choices. Therefore, these problems have a
unique primal solution and the duality gap is zero. The tests have been per-
formed on HP Compact with Intel Core 2 Quad Q9550 2.83GHz 4 CPU under
Linux 2.6.38-8-generic-pae (x86 64).
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The test problems have been randomly generated by using a C++ code
developed by this author. This generator provides the scenarios set together
with the associated probability of occurrence for two-stage stochastic mixed
quadratic problems where Qxy = 1l, Qxy = 00, and Qyx = 00. Moreover, as can be
seen in Table 1, in some problems Qxx = 00 and in the rest of problems Qxx = 1l.
Also, “# var” means the number of continuous variables, “# bin” the number
of binary variables, “# constr” the number of constraints for DEM, see (1)-(5),
and “dens” constraint matrix density %.

Table 1. Test problems

Prob. |Ω| # var # bin # constr Qxx dens.

P1 20 420 20 840 00 38
P2 30 620 20 1240 00 37
P3 40 820 20 1640 00 42
P4 50 1020 20 2040 00 43
P5 60 1220 20 2440 00 39
P6 70 1420 20 2840 00 37

P7 30 930 30 1860 00 2
P8 40 1230 30 2460 00 2
P9 50 1530 30 3060 00 1
P10 60 1830 30 3660 00 1
P11 70 2130 30 4260 00 1
P12 100 3030 30 6060 00 1

P13 30 930 30 1550 1l 13
P14 40 1230 30 2050 1l 10
P15 50 1530 30 2550 1l 10
P16 60 1830 30 3050 1l 9
P17 70 2130 30 3550 1l 9

Table 2 presents the main results of the computational experimentation for
given values of the number of scenario clusters. Below the heading QBFC-1 are
the times in CPU-seconds used for solving problems with 1 only scenario cluster
(i.e. p̂ = 1) and by solving the quadratic subproblem QPp for each node using
Cplex; the heading QBFC-5OLA indicates the CPU-times for 5 scenario cluster
(i.e. p̂ = 5) and by solving the quadratic subproblem QPp for each node using
outer linear approximations (OLA). Finally, PC means perspective cuts are used.

As can be observed in Table 2, the best efficiency is mainly obtained when
the problems are solved with 5 clusters, except in the case of QBFC-5 because
of the computational cost of solving a quadratic problem in each node of the BF
tree for the different clusters. In addition, the outer linear approximations give
us a higher efficiency than the perspective cuts.
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Table 2. Computational results: CPU-times

Prob. QBFC-1 QBFC-1PC QBFC-1OLA QBFC-5 QBFC-5PC QBFC-5OLA

P1 4.4 11.8 4.9 17.8 3.8 2.0
P2 9.7 14.2 6.7 6.6 8.0 3.0
P3 17.0 26.3 7.8 24.5 22.8 4.4
P4 21.4 43.3 16.3 14.5 18.6 6.3
P5 56.4 22.3 18.8 28.9 45.0 19.6
P6 33.9 96.0 28.7 10.6 20.0 9.7

P7 51.1 10.6 5.1 - 5.2 3.8
P8 5.2 9.3 3.9 - 5.0 2.3
P9 - 2.18 10.2 - 5.2 3.3
P10 135.4 28.5 14.2 - 18.8 10.5
P11 1052.7 39.1 14.5 - 17.2 3.7
P12 915.1 30.2 11.0 - 16.3 20.1

P13 10.5 7.1 7.8 - 5.3 6.8
P14 5.8 149.1 37.5 - 15.2 20.4
P15 94.4 69.5 58.4 - 33.2 16.1
P16 46.3 143.5 109.1 - 16.7 44.6
P17 1260.4 250.8 87.3 - 13.3 7.6

6 Conclusions

An algorithm to solve two-stage stochastic quadratic problems based on the
Twin Node Family concept involved in the Branch-and-Fix Coordination has
been implemented in C++ with the help of Cplex library to solve only the
quadratic subproblems. When the problem’s structure makes it possible, the
algorithm uses perspective cuts or OLA to linearize the MIQ subproblems in
each BF tree. The preliminary numerical results show a bit better efficiency
with OLA than with PCF.

The path started from this work has the aim of solving nonlinear (non-
quadratic) stochastic problems with nonlinear constraints and for two stage or
more.

References

1. Alonso-Ayuso A., Escudero L.F., Ortuño M.T. (2003). BFC, a branch-and-fix coor-
dination algorithm framework for solving some types of stochasticpure and mixed
0-1 programs. European Journal of Operational Research 2003;151:503–519.

2. Corchero C., Mijangos E., Heredia F.J. (2012). A new optimal electricity mar-
ket bid model solved through perspective cuts. Top, published online 2011, DOI
10.1007/s11750-011-0240-6.
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