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Abstract. In the paper we derive new necessary optimality conditions

for optimal control of differential equations systems with discontinuous

right hand side. The main attention is paid to a situation when an op-

timal trajectory slides on the discontinuity surface. The new conditions,

derived in the paper, are essential and do not follow from any known

necessary conditions for such systems.
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1 Introduction

Optimal control of systems of differential equations with discontinuous right

hand side are widely used to describe numerous applications in natural sciences

and engineering, where, e.g., there is a necessity to model dynamics with differ-

ent scales or even with jumps. Such models appear e.g. in economics, mechanics

(e.g. optimal control of mechanical systems with Coulomb friction), chemical pro-

cesses, electrical and radio engineering, aerodynamics, automatic control theory,

and theory of hybrid systems [3,5,8,10,19].

There is a row of papers devoted to the numerical solution of such optimal

control problems, see [18] and references therein. However, due to the comple-

xity of these optimal control problems there are few papers devoted to their

theoretical studies.

The aim of this paper is to present new necessary optimality conditions for

optimal control of differential equations systems with discontinuous right hand

side. It is assumed that the discontinuity of the function, which describes the

dynamic system, appears at some surface defined in the state space. This surface

is called the discontinuity or switching surface. Most papers on the topic con-

sider the situation when an optimal trajectory crosses the surface [2,4,17]. In this
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case the optimality conditions are a slight modification of the maximum prin-

ciple of Pontryagin. However, the more interesting and practically non-studied

case is the situation when an optimal trajectory slides on the surface. There

are only very few papers [2,12,15,16], which deal with this case, however, the

maximum conditions presented there are weaker than the conditions presented

in this paper.

Dynamic systems with discontinuous right hand side may be presented as

differential inclusions. Necessary optimality conditions in optimal control prob-

lems for differential inclusions have been intensively studied, see e.g. [6,14,20]

and references therein. However, the results obtained there are based on the

assumption that the differential inclusion is Lipschitz continuous or possesses a

modified one-sided Lipschitz property, which is not the case for the differential

inclusion describing the dynamic system of this paper.

2 Problem Statement and Assumptions

Let us consider the following optimal control problem with discontinuous

right hand side:

min
u(·)

f0(x(t
∗)),

ẋ =

{
f̄−(x, u) if S(x(t)) < 0,

f̄+(x, u) if S(x(t)) > 0,
(1)

x(t∗) = x0, h(x(t
∗)) = 0, |u(t)| ≤ 1, t ∈ T = [t∗, t

∗].

Here f̄±(x, u) = f±(x) + b(x)u, x = x(t) ∈ Rn denotes the state n-vector,

u = u(t) ∈ R is a scalar control, S(x) := dTx−γ = 0 is a surface of discontinuity

(switching surface), the functions f0(x) ∈ R, f±(x), b(x) ∈ Rn, h(x) ∈ Rs∗ are

given sufficiently smooth scalar and vector functions, d, x0 are given vectors, γ,

t∗, t
∗ are given numbers, s∗ = dim(h) is the dimension of the vector-function

h = h(x).

In the general case, even for a fixed control u(·) = (u(t), t ∈ T ) and a given

initial value x(t∗) = x0, the system (1) may not have a classical solution, since

the system is not defined at the switching surface. Therefore, we redefine a

solution of the system (1) at the switching surface following Filippov [8]. Then

the problem may be reformulated as

min
u(·),α(·)

f0(x(t
∗)),

ẋ =







f̄−(x, u), if dTx(t) < γ,

f̄+(x, u), if dTx(t) > γ,

F (x, u, α), if dTx(t) = γ,

(2)
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x(t∗) = x0, h(x(t
∗)) = 0,

|u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ T = [t∗, t
∗].

where F (x, u, α) := α f̄−(x, u) + (1 − α) f̄+(x, u) = f+(x) + a(x)α + b(x)u,

a(x) := f−(x) − f+(x). In this problem the control is u(t), α(t), t ∈ T.

Using classical optimal control theory [13], we may conclude that if the prob-

lem (2) is feasible, it has an optimal solution in the class of measurable functions

u(t), α(t), t ∈ T.

Let u∗(·) = (u∗(t), t ∈ T ), α∗(·) = (α∗(t), t ∈ T ), x∗(·) = (x∗(t), t ∈ T ) be an

optimal control and the corresponding trajectory of the system (2). Here and in

what follows, we formally suppose that

α∗(t) = 1 if dTx∗(t) < γ, α∗(t) = 0 if dTx∗(t) > γ,

0 ≤ α∗(t) ≤ 1 if dTx∗(t) = γ, t ∈ T.

For the formulation and the proof of the maximum principle we need several

assumptions.

Assumption 1 The functions u∗(·) = (u∗(t), t ∈ T ), α∗(·) = (α∗(t), t ∈ T ) are

piecewise continuous and piecewise smooth.

We denote Ts = {t ∈ T : dTx∗(t) = γ}. In the general case this set contains

points, which correspond to crossing the discontinuity surface by a trajectory,

and segments, which correspond to the case when the trajectory lies on the

surface. As it was mentioned before, the case when the trajectory crosses the

discontinuity surface is well-studied. The aim of this paper is to study the case

when the trajectory may lie on the discontinuity surface. For this purpose we

need the following assumption.

Assumption 2 The set Ts consists of a finite number of segments [τk, τ
k], k =

1, ..., p,

t∗ < τ1 < τ1 < τ2 < τ2 < ... < τp < τp < t∗,

and the following inequalities hold,

dT ẋ∗(τk − 0) 6= 0, dT ẋ∗(τk + 0) 6= 0, k = 1, ..., p. (3)

Here and in what follows, z(t̄− 0) and z(t̄+ 0) for a given function z(t), t ∈ T,

are defined by z(t̄+ 0) := lim
t→t̄,t≥t̄

z(t), z(t̄− 0) := lim
t→t̄,t≤t̄

z(t).

We denote

T 0
s = {t ∈ Ts : α∗(t) = 0}, T 1

s = {t ∈ Ts : α∗(t) = 1}, T ∗
s = Ts \ (T 0

s ∪ T 1
s ).
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Assumption 3 The “active” set T 0
s ∪ T 1

s does not contain isolated points and

the following relations hold true for an optimal control:

∃ ǫ0 > 0, |u∗(t)| ≤ 1 − ǫ0, t ∈ T 0
s ∪ T 1

s ,

|dT b(x∗(t))| ≥ ǫ0, t ∈ T 0
s ∪ T 1

s ; |dT a(x∗(t))| ≥ ǫ0, t ∈ T ∗
s ,

rank
∂h(x∗(t∗))

∂x
= s∗.

3 Necessary Optimality Conditions

The main goal of this section is to formulate and prove new necessary op-

timality conditions in the form of the maximum principle. For this purpose we

will need some auxiliary results.

Without loss of generality, we will suppose for simplicity that the following

relations are satisfied

dTx∗(t) > γ, t ∈ [t∗, τ1), d
Tx∗(t) = γ, t ∈ [τ1, τ

1], dTx∗(t) < γ, t ∈ (τ1, t∗], (4)

α∗(t) = 1, |u∗(t)| < 1, t ∈ (τ1, τ0), 0 < α∗(t) < 1, t ∈ (τ0, τ
1).

Therefore, for the case under consideration we have

p = 1, Ts = [τ1, τ
1], T+

α = (τ1, τ0), T
0
α = ∅, T ∗

α = (τ0, τ
1),

T+ = [t∗, τ1), T
− = (τ1, t∗].

We introduce the set of parameters

µ = (y0, y, λ1, λ
1), (5)

where y0 ≥ 0, λ1, λ
1 are scalars, y ∈ Rs∗ , and denote by ψ(t|µ), t ∈ T, a solution

of the system

ψ̇T (t) = −ψT (t)
∂f̄+(x∗(t), u∗(t))

∂x
, t ∈ [t∗, τ1);

ψ̇T (t) = −ψT (t)
∂f̄−(x∗(t), u∗(t))

∂x
, t ∈ [τ1, t∗];

ψ̇T (t) = −ψT (t)

(
∂F (x∗(t), u∗(t), α∗(t))

∂x
− q∗1(t)dT

)

, t ∈ [τ1, τ0),

ψ̇T (t) = −ψT (t)

(
∂F (x∗(t), u∗(t), α∗(t))

∂x
− q∗2(t)dT

)

, t ∈ [τ0, τ
1), (6)

ψ(t∗) = −y0
∂f0(x

∗(t∗))

∂x
−
∂hT (x∗(t∗))

∂x
y,

ψ(τ1 − 0) = ψ(τ1 + 0) + dλ1, ψ(τ1 − 0) = ψ(τ1 + 0) + dλ1.
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Further we pick up anym ∈ N, m ≥ 2, and consider a set of points t̄1, t̄2, ..., t̄2m,

such that

τ1 = t̄1 < t̄2 < ... < t̄2m−1 = τ0 < t̄2m = τ1. (7)

This set of points satisfies the following lemma:

Lemma 1. Let u∗(·), α∗(·), x∗(·) be an optimal control and the trajectory in

the problem (2), for which Assumptions 1-3 are fulfilled. For any choice of the

points (7) there exists a vector of parameters µ, ‖µ‖ = 1, (5), such that along

the corresponding solution ψ(t) = ψ(t|µ), t ∈ T, of the system (6) the following

relations hold true,

ψT (t)b(x∗(t))u∗(t) = max
|u|≤1

ψT (t)b(x∗(t))u, a.e. t ∈ T ; (8)

ψT (t)a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t)a(x∗(t))α, (9)

a.e. t ∈ [t̄2i−1, t̄2i], i = 1, 2, ...,m,

ψT (t)q∗1(t) ≥ 0, a.e. t ∈ [t̄2i, t̄2i+1], i = 1, 2, ...,m− 1. (10)

The proof of the lemma can be found in [11] and its main idea is sketched

here. For a fixed m ≥ 2 we consider a set of parameters θ = (t1, t2, ..., t2m) and

formulate the optimal control problem of a hybrid system:

min
u(·),α(·),θ

f0(x(t
∗)),

ẋ = f̄+(x, u), dTx(t) ≥ γ, t ∈ [t∗, t1[

ẋ = F (x, u, α), dTx(t) = γ, t ∈ [t2i−1, t2i[,

ẋ = f̄−(x, u), dTx(t) ≤ γ, t ∈ [t2i, t2i+1[, i = 1, ...,m, (11)

x(t∗) = x0, h(x(t∗)) = 0,

t∗ = t0 ≤ t1 ≤ ... ≤ t2m ≤ t2m+1 = t∗,

|u(t)| ≤ 1, t ∈ T ; 0 ≤ α(t) ≤ 1, t ∈
m⋃

i=1

[t2i−1, t2i].

Let us note that in the problem (11), the decision variables are the control

u(·), α(·) and a vector θ.

With the notations

zi(τ) = x(ti−1 + τ(ti − ti−1)), i = 1, 2, ..., 2m+ 1,

vi(τ) = u(ti−1 + τ(ti − ti−1)), i = 1, 2, ..., 2m+ 1, (12)

βi(τ) = α(ti−1 + τ(ti − ti−1)), i = 2, 4, ..., 2m,

we form the extended state vector

Z(τ) = (zi(τ), i = 1, ..., 2m+ 1; ti(τ), i = 1, ..., 2m) ∈ Rn×(2m+1)+2m, (13)

τ ∈ [0, 1],
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and the extended control vector

V (τ) = (vi(τ), i = 1, ..., 2m+ 1, βi(τ), i = 2, 4, ..., 2m) ∈ R3m+1, (14)

τ ∈ [0, 1].

Using the introduced notations we may rewrite the problem (11) as follows,

min
V (·)

f0(z2m+1(1)),

Ż(τ) = F(Z(τ), V (τ)), Φ(Z(0), Z(1)) = 0, (15)

GT
1 Z(τ) ≥ γ, GT

2iZ(τ) = γ, GT
2i+1Z(τ) ≤ γ, i = 1, 2, ...,m;

|vi(τ)| ≤ 1, i = 1, ..., 2m+ 1,

0 ≤ βi(τ) ≤ 1, i = 2, 4, ..., 2m,

ti(τ) ≤ ti+1(τ), i = 0, ..., 2m, τ ∈ [0, 1]. (16)

Here V (τ) is the control vector (14), Z(τ) is the state vector (13),

FT (Z, V ) =
(

(t1 − t0)f̄
+(z1, v1),

(t2i − t2i−1)F (z2i, v2i, β2i), (t2i+1 − t2i)f̄
−(z2i+1, v2i+1),

i = 1, ...,m, 0, ..., 0
︸ ︷︷ ︸

2m

)

,

Φ(Z(0), Z(1)) =







z1(0) − x0

zi(1) − zi+1(0), i = 1, ..., 2m

h(z2m+1(1))

dT zi(1) − γ, i = 1, ..., 2m






,

GT
i = (OT , ...,OT ,

︸ ︷︷ ︸

i−1

dT ,OT , ...,OT ,
︸ ︷︷ ︸

2m+1−i

0, ..., 0
︸ ︷︷ ︸

2m

), i = 1, ..., 2m+ 1,

O ∈ R
n is a vector of zeros,

t0(τ) ≡ t̄0 = t∗, t2m+1(τ) ≡ t̄2m+1 = t∗.

Now consider the set of points t̄1, t̄2, ..., t̄2m satisfying (7) and denote by

Z∗(τ), V ∗(τ), τ ∈ [0, 1], the functions (12) - (14), constructed using this set,

the optimal control u∗(·), α∗(·) and the trajectory x∗(·) of the problem (2).

Since the control u∗(·), α∗(·) and the trajectory x∗(·) are optimal in the

problem (2), it is obvious that V ∗(τ), Z∗(τ), τ ∈ [0, 1], are an optimal control

and the corresponding trajectory of the problem (15), (16). By the assumptions

(see (3) and (4)) we have

GT
1 Z

∗(τ) > γ, τ ∈ [0, 1), GT
1 Z

∗(1) = γ, GT
1 Ż

∗(1 − 0) 6= 0,

GT
2m+1Z

∗(τ) < γ, τ ∈ (0, 1], GT
2m+1Z

∗(0) = γ, GT
2m+1Ż

∗(+0) 6= 0.
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Hence, V ∗(τ), Z∗(τ), τ ∈ [0, 1], is also a strong local extremal in the problem that

results from the problem (15), (16) by removing the state constraints GT
1 Z(τ) ≥

γ, GT
2m+1Z(τ) ≤ γ, τ ∈ [0, 1], and the constraints (16), namely in the problem

min
V (·)

f0(z2m+1(1)),

Ż(τ) = F(Z(τ), V (τ)), Φ(Z(0), Z(1)) = 0, (17)

GT
i Z(τ) ≤ γ, i = 3, 5, ..., 2m− 1; GT

i Z(τ) = γ, i = 2, 4, ..., 2m;

|vi(τ)| ≤ 1, i = 1, ..., 2m+ 1, 0 ≤ βi(τ) ≤ 1, i = 2, 4, ..., 2m;

τ ∈ [0, 1],

with the control V (τ) (see (14)) and the state vector Z(τ) (see (13)).

The problem (17) is an optimal control problem with inequality and equality

state constraints and boundary constraints Φ(Z(0), Z(1)) = 0. Due to Assump-

tions 1-3 and the specific structure of this problem, regularity conditions (see

[1]) are satisfied for the control V ∗(τ) and the trajectory Z∗(τ), τ ∈ [0, 1]. Thus

we can apply Theorems 4.1 and 12.1 from [1] and results from [7], according

to which the control V ∗(τ) and the trajectory Z∗(τ), τ ∈ [0, 1], satisfy certain

relations. Analyzing these relations and taking into account the structure of the

vectors V ∗(τ) and Z∗(τ) allow us to get the assertions of the lemma. ⋄

Let us note that it follows from Lemma 1 that the continuity of the function

ψ(t|µ), t ∈ (τ1, τ
1), the relations (9), (10) and the assumption α∗(t) = 1, t ∈

(τ1, τ0), imply the inequalities

ψT (t̄i|µ)a(x∗(t̄i)) ≥ 0, ψT (t̄i|µ)q∗1(t̄i) ≥ 0, i = 2, 3, ..., 2m− 1, (18)

for each point set t̄1, t̄2, ..., t̄2m satisfying (7).

Now we are ready to formulate and prove new necessary optimality conditions

for problem (2) in the form of the maximum principle.

Theorem 1. Let u∗(·), α∗(·), x∗(·) be an optimal control and the corresponding

trajectory of the problem (2), which satisfy Assumptions 1-3. Then there exist

numbers λk, λ
k, k = 1, ..., p, y0 ≥ 0, and a vector y ∈ Rs∗ , not all trivial,

p
∑

k=1

(|λk| + |λk|) + y0 + ||y|| > 0,
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such that along a solution of the adjoint system

ψ̇T (t) =







−ψT (t)∂(f±(x∗(t))+b(x∗(t))u∗(t))
∂x

, t ∈ {t ∈ T :

±(dTx∗(t) − γ) > 0},

−ψT (t)
(

∂F (x∗(t),u∗(t),α∗(t))
∂x

− q∗1(t)dT
)

, t ∈ T 0
s ∪ T 1

s ,

−ψT (t)
(

∂F (x∗(t),u∗(t),α∗(t))
∂x

− q∗2(t)dT
)

, t ∈ T ∗
s ,

ψ(t∗) = −y0
∂f0(x

∗(t∗))

∂x
−
∂hT (x∗(t∗))

∂x
y,

ψ(τk − 0) = ψ(τk + 0) + dλk,

ψ(τk − 0) = ψ(τk + 0) + dλk, k = 1, ..., p,

the following relations hold true:

ψT (t)b(x∗(t))u∗(t) = max
|u|≤1

ψT (t)b(x∗(t))u, a.e. t ∈ T ;

ψT (t)a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t)a(x∗(t))α, a.e. t ∈ Ts; (19)

ψT (t− 0)ẋ∗(t− 0) = ψT (t+ 0)ẋ∗(t+ 0), t = τk, t = τk, k = 1, ..., p,

ψT (t)q∗1(t) ≤ 0, t ∈ int T 0
s , ψT (t)q∗1(t) ≥ 0, t ∈ int T 1

s . (20)

Here

q∗i (t) := qi(x
∗(t), u∗(t), α∗(t)); i = 1, 2;

q1(x, u, α) :=

(
∂F (x, u, α)

∂x
b(x) −

∂b(x)

∂x
F (x, u, α)

)

/dT b(x),

q2(x, u, α) :=

(
∂F (x, u, α)

∂x
a(x) −

∂a(x)

∂x
F (x, u, α)

)

/dTa(x).

Proof. Again we will suppose for simplicity that relations (4) are satisfied. For

an arbitrary m ∈ N, m ≥ 2, we consider the set of points

t
(m)
i = τ1 + (i− 1)

(τ0 − τ1)

2m− 2
, i = 1, ..., 2m− 1, t

(m)
2m = τ1. (21)

For any m ≥ 2 the set (21) satisfies relations (7). Hence Lemma 1 and the

relation (18) imply that for a set (21) there exists a vector

µ(m) = (y0(m), y(m), λ1(m), λ1(m)), ||µ(m)|| = 1,
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such that the following relations hold true,

ψT (t|µ(m))b(x∗(t))u∗(t) = max
|u|≤1

ψT (t|µ(m))b(x∗(t))u, a.e. t ∈ T,

ψT (t|µ(m))a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t|µ(m))a(x∗(t))α (22)

a.e. t ∈ [τ0, τ
1],

ψT (t− 0|µ(m))ẋ∗(t− 0) = ψT (t+ 0|µ(m))ẋ∗(t+ 0), t = τ1, t = τ1;

ψT (t
(m)
i |µ(m))a(x∗(t

(m)
i )) ≥ 0, ψT (t

(m)
i |µ(m))q∗1(t

(m)
i ) ≥ 0, (23)

i = 2, 3, ..., 2m− 1.

Consider the sequence of the vectors µ(m), m = 2, 3, .... Since ||µ(m)|| = 1,

m = 2, 3, ..., there exists a converging subsequence. Without loss of generality,

we assume that the sequence µ(m), m = 2, 3, ... converges itself,

µ∗ = lim
m→∞

µ(m).

Obviously, ||µ∗|| = 1.

It follows from (21) that for any point t ∈ [τ1, τ0] there exists a sequence of

indices

i(m) = i(m|t) ∈ {2, 3, ..., 2m− 1},m = 2, 3, 4, ...,

such that

t
(m)
i(m) → t as m→ ∞.

By construction (see (23)),

ψT (t
(m)
i(m)|µ(m))a(x∗(t

(m)
i(m))) ≥ 0, ψT (t

(m)
i(m)|µ(m))q∗1(t

(m)
i(m)) ≥ 0, (24)

m = 2, 3, 4, ....

For m→ ∞ in the last inequalities we get

ψT (t|µ∗)a(x∗(t)) ≥ 0, ψT (t|µ∗)q∗1(t) ≥ 0, t ∈ [τ1, τ0]. (25)

Similarly, for m→ ∞ in (22) we obtain

ψT (t|µ∗)b(x∗(t))u∗(t) = max
|u|≤1

ψT (t|µ∗)b(x∗(t))u, a.e. t ∈ T ;

ψT (t|µ∗)a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t|µ∗)a(x∗(t))α a.e. t ∈ [τ0, τ
1]; (26)

ψT (t− 0|µ∗)ẋ∗(t− 0) = ψT (t+ 0|µ∗)ẋ∗(t+ 0), t = τ1, t = τ1.

The relations (25) and (26) are nothing but the assertions of Theorem 1 for the

considered structure of the solution of the problem (2) (see the assumption (4)).

Analogously we may prove the Theorem for other types of solution structure. ⋄
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4 Discussion of the New Necessary Optimality Conditions

Because of the problem complexity, there are only few papers, e.g. [2,12,16,15],

where necessary optimality conditions for optimal control problems with discon-

tinuous dynamics are presented. The theorem formulated in this paper contains

new crucial conditions (20) and (19).

Let us briefly discuss differences between our maximum principle and maxi-

mum principles known from the literature.

The necessary conditions in [2] are proved under the very strong assumption

T 0
s = T 1

s = ∅, which is not needed in our theorem.

As in [12], the optimality conditions derived here are based on the so-called

direct approach (see [9]). However, the necessary conditions in [12] contain the

conditions (20) but not the condition (19).

The optimality conditions in [2,16] are formulated based on an so-called in-

direct approach (see [9]), which a priori leads to weaker results compared with

the direct approach.

In [16], conditions (19), (20) are not considered. However, the conditions

(19), (20) are essential and they are not a consequence of any other conditions

mentioned in [12], [16].

The maximum principle in [15] is weaker than the Theorem 1. Indeed, one

can easily show that for the problems of the form (2) the maximum principle

from [15] is satisfied trivially for any feasible control. Furthermore, one can

construct examples (one of them is presented below) where a non-optimal control

satisfies the conditions of maximum principle from [15], but not the conditions

of Theorem 1.

To finish the discussion of the new necessary conditions, we would like to

stress the importance of the conditions (19).

Let us consider an optimal control problem with state constraints in the form

min f0(x(t
∗)),

ẋ = f−(x) + b(x)u, x(t∗) = x0, h(x(t
∗)) = 0,

dTx(t) ≤ γ, |u(t)| ≤ 1, t ∈ T = [t∗, t
∗].

Suppose that this problem has an optimal control u∗(t), t ∈ T, and the corre-

sponding trajectory x∗(t), t ∈ T, such that mes Ts > 0, Ts := {t ∈ T : dTx∗(t) =

γ}. Then the control u∗(t), t ∈ T, and the function α∗(t) = 1, t ∈ T , are feasi-

ble in the original problem (2) for any function f+(x) and satisfy the necessary

optimality conditions from [12], [16]. However, one can easily construct func-

tions f+(x) (and corresponding optimal control problems (2)), which together

with the functions u∗(t), α∗(t) = 1, t ∈ T, violate the maximum condition (19).

Hence, the control u∗(t), α∗(t), t ∈ T, is not optimal in (2) according to Theorem

1.
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5 Illustrative examples

In order to demonstrate differences of our maximum principle from maximum

principles known from the literature we have constructed several examples. The

aim of the examples is to show that the necessary conditions presented in this

paper are stronger than known necessary conditions. Namely, we want to show

that the new conditions (20) and (19) may be violated for controls that satisfy

other necessary optimality conditions known from the literature, and hence our

maximum principle guarantees that such controls are not optimal. Furthermore,

we want to show that the new conditions are essential and does not follow from

other known optimality conditions.

Example 1. Consider the optimal control problem depending on a parame-

ter c,

P(c) : min x1(t
∗) − 2.5x2(t

∗),

x(t∗) = x0, x3(t
∗) = 1,

|u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [t∗, t
∗],

ẋ1 = x2,

ẋ2 = x3 + 5,

ẋ3 = u+ 1/2,






if x3 < 0,

ẋ1 = x2 + c,

ẋ2 = x3,

ẋ3 = u,






if x3 > 0,

ẋ1 = x2 + c(1 − α),

ẋ2 = x3 + 5α,

ẋ3 = u+ 1/2α,






if x3 = 0,

with xT
0 = (19/32,−37/16,−3/4), t∗ = −0.5, t∗ = 2

and the control u∗(·), α∗(·):

u∗(t) =







1, t ∈ [−0.5, 0],

−0.5, t ∈ [0, 1],

1, t ∈ [1, 2],

α∗(t) =







1, t ∈ [−0.5, 0],

1, t ∈ [0, 1],

0, t ∈ [1, 2].

For the control u∗(·), α∗(·) we have Ts = [0, 1], T 1
s = [0, 1], T 0

s = ∅, T ⋆
s = ∅.

If we choose c = c0 = 0, then in the problem P (c0) the control u∗(·), α∗(·)

is feasible, locally optimal and satisfies all necessary optimality conditions from

Theorem 1.

If we choose c = c∗ = −5.5, then in the problem P (c∗) the control u∗(·),

α∗(·) is feasible and not optimal but it satisfies all necessary conditions from

[12,16], and it satisfies all necessary conditions from Theorem 1 except for the

condition (19). Hence, according to [12,16], this control may be locally optimal

in the problem P (c∗). On the other hand, following Theorem 1, it cannot be

locally optimal in the problem P (c∗).
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Example 2. Consider the optimal control problem

min 2x1(t
∗) − 2x2(t

∗),

x(t∗) = x0, x3(t
∗) = −1, |u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [t∗ = −0.5, t∗ = 2],

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = u,






if x3 < 0,

ẋ1 = x2 + 1,

ẋ2 = x3,

ẋ3 = u,






if x3 > 0, (27)

ẋ1 = x2 + (1 − α),

ẋ2 = x3,

ẋ3 = u,






if x3 = 0,

with xT
0 = (−23/48,−1/8, 1/2),

and the control u∗(·), α∗(·)

u∗(t) = −1, α∗(t) = 0; t ∈ [−0.5, 0],

u∗(t) = 0, α∗(t) = 1; t ∈ [0, 1],

u∗(t) = −1, α∗(t) = 1; t ∈ [1, 2].

For the control u∗(·), α∗(·) we have Ts = [0, 1], T 1
s = [0, 1], T 0

s = T ∗
s = ∅.

The control u∗(·), α∗(·) satisfies all necessary optimality conditions from

[16], satisfies all necessary optimality conditions from Theorem 1, except for the

condition (20), and is not locally optimal.

Note that results from [15] can not be applied to this example because As-

sumption 3) from [15] (namely the condition dT (f̄−(x, u∗(t))− f̄+(x, u∗(t))) > 0,

∀ x ∈ S0(t), t ∈ Ts) is not satisfied.

Example 3. Consider the following problem,

P* : min cTx(t∗),

x(t∗) = x0, d
Tx(t∗) = 1, |u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [t∗, t

∗],

ẋ = Ax+ bu+ g−, if dTx < 0,

ẋ = Ax+ bu+ g+, if dTx > 0,

ẋ = Ax+ bu+ αg− + (1 − α)g+, if dTx = 0,

with x ∈ Rn, n = 4, t∗ = −0.5, t∗ = 2,

c =







− 32
7

48
7

−5

0






, d =







0

0

0

1






,

g+ =







−2

1

0

0






, g− =







0

0

5

1/2






, b =







0

0

0

1






, A =







0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0






.
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The vector x0 is uniquely defined by the condition that the trajectory x(t), t ∈

[−0.5, 0], of the system ẋ = Ax + b + g−, x(−0.5) = x0, should satisfy the

equality x(0) = 0 ∈ Rn. Hence dTx0 = −3/4.

Consider the control u∗(t), α∗(t), t ∈ [−0.5, 2],

u∗(t) = 1, α∗(t) = 1, t ∈ [−0.5, 0], (28)

u∗(t) = −1/2, α∗(t) = 1, t ∈ [0, 1],

u∗(t) = 1, α∗(t) = 0, t ∈ [1, 2],

and the corresponding trajectory x∗(t) = (x∗1(t), x
∗
2(t), x

∗
3(t), x

∗
4(t)), t ∈ [t∗, t

∗],

with the function dTx∗(t) = x∗4(t) satisfying

x∗4(t) < 0, t ∈ [−0.5, 0); x∗4(t) = 0, t ∈ [0, 1]; x∗4(t) > 0, t ∈ (1, 2].

For the control (28) we have Ts = [0, 1], T 1
s = [0, 1], T 0

s = ∅.

We can show that the control (28) is not locally optimal in the problem P∗,

satisfies all assumptions and all necessary optimality conditions from [15] and

satisfies all conditions from Theorem 1 except for the condition (20).

6 Conclusions

We have presented a new maximum principle for optimal control problems in

discontinuous systems, which takes into account a situation when a solution of

the dynamic system lies on the switching surface. We have shown that the new

maximum principle is stronger than known optimality conditions and contains

new conditions which are essential and do not follow from other known optimality

conditions.
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