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Abstract. The solution of chance constrained optimization problems by
means of empirical approximation of the underlying multivariate distri-
bution has recently become a popular alternative to conventional meth-
ods due to the efficient application of appropriate mixed integer program-
ming techniques. As the complexity of required computations depends
on the sample size used for approximation, exponential estimates for
the precision of optimal solutions or optimal values have become a key
argument for controlling the sample size. However, these exponential es-
timates may involve unknown constants such that the required sample
size to approximate the solution of a problem may become arbitrarily
large. We will illustrate this effect for Gaussian distributions.
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1 Introduction

A chance constrained optimization problem has the general form

min{g(x)|P(h(x, ξ) ≥ 0) ≥ p, x ∈ C}, (1)

where x ∈ R
n is a decision vector, g : Rn → R is an objective function, ξ is

an s-dimensional random vector defined on some probability space (Ω,A,P),
h : Rn × R

s → R
m is a Borel measurable with respect to the second argument

mapping, C ⊆ R
n represents some abstract deterministic constraint and p ∈

[0, 1] is a fixed probability level. The random inequality system h(x, ξ) ≥ 0 may
reflect some technological constraints in engineering problems which are affected
by uncertainty. Since usually a decision x has to be taken before the uncertain
parameter ξ is observed, it has become a standard approach of robust modeling to
define x as feasible, whenever the probability of satisfying the random inequality
is at least p. This is expressed in the so-called chance constraint P(h(x, ξ) ≥ 0) ≥
p. For a standard introduction to chance constrained programming we refer to
the classical monograph [6] and to the more recent treatise in [7].

⋆ This work was supported by the DFG Research Center Matheon “Mathematics for
key technologies” in Berlin
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Recent progress in mixed integer programming techniques tailored to chance
constraints has led to the idea of solving (1) by empirical approximation (or
sample average approximation) of the original random vector ξ (e.g., [4, 5]). This
means that an i.i.d. sample ξ1, . . . , ξN of size N is drawn from the distribution
of ξ and that the law P◦ξ−1 of ξ in (1) is replaced by the empirical measure

N−1
N
∑

i=1

δ(ξi),

where δ(z) is the Dirac measure centered on z. Doing so, the original chance
constraint P(h(x, ξ) ≥ 0) ≥ p turns into its empirical counterpart

#
{

i|h(x, ξi) ≥ 0
}

≥ pN.

Of course this change of constraint leads to another optimization problem whose
solution deviates from the solution of (1) and one has to answer two questions: do
the approximating solutions converge with N → ∞ and if so, how large should
N be chosen in order to guarantee a given precision of the solution obtained?
The first question is answered by the stability theory of chance constrained pro-
gramming mainly developed in [1, 2] which applies to arbitrary approximations
of the original distribution and, in particular, to empirical ones. Under some ex-
plicitly verifiable conditions, not only qualitative convergence of approximating
solutions can be guaranteed but also rates for this convergence can be derived.
The latter allow us to obtain exponential bounds (in terms of sample size) for
the precision of solutions in case of empirical approximations. However, one has
to take into account that the exponential term involves apart from the sample
size N also some other constants which may depend on the conditioning of the
problem and may be hard to estimate. Thus, exponential estimates of solutions
do not exclude the need for a large sample size even in small dimension in or-
der to arrive at a reasonable precision of the solution. This situation occurs in
particuar if the law of the original random vector ξ has unbounded support.
We will illustrate and explain this effect for a multivariate Gaussian distribution
(but similar observations could be made for other classes of multivariate distri-
butions such as log-normal or t-). In order to keep the presentation as simple as
possible we restrict ourselves to the simplest yet meaningful instance of problem
(1):

min{cTx | P(ξ ≤ x) ≥ p}.

This means that we consider just linear objective functions, we forget about ad-
ditional abstract deterministic constraints and we assume the chance constraint
being in elementary separated form. Recalling the definition of the distribution
function Fξ(x) := P(ξ ≤ x) of a random vector ξ, we may rewrite this problem
as

min{cTx | Fξ(x) ≥ p} (Pc,ξ,p). (2)

In order to emphasize the dependence on the problem data c, ξ and p, we label
problem (2) as (Pc,ξ,p). Before coming back to the issue of empirical distributions
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discussed above, we derive in the next section our main result demonstrating
the difficulty of approximating a chance constrained program with unbounded
support of the underlying distribution by means of distributions with bounded
support. Note that, in particular, empirical measures have bounded support.

2 Main Result

We start by recalling the following well-known representation for partial deriva-
tives of Gaussian distribution functions. We make use of the familiar notation
ξ ∼ N (µ,Σ) to designate a Gaussian random vector with expectation µ and
covariance matrix Σ.

Theorem 1 ([6], p. 204). Let ξ ∼ N (µ,Σ) with some positive definite co-
variance matrix Σ = (σij) of order (s, s). Then, the distribution function Fξ is
continuously differentiable at any z ∈ R

s and

∂Fξ

∂zj
(z) = fξj (zj) · Fξ̃(zj)

(z1, . . . , zj−1, zj+1 . . . , zs) (j = 1, . . . , s) .

Here, fξj denotes the one-dimensional Gaussian density of the component ξj,

ξ̃(zj) is an (s-1)-dimensional Gaussian random vector distributed according to

ξ̃(zj) ∼ N (µ̂, Σ̂), µ̂ results from the vector µ+σ−1
jj (zj − µj)σj by deleting com-

ponent j and Σ̂ results from the matrix Σ − σ−1
jj σjσ

T
j by deleting row j and

column j, where σj refers to column j of Σ.

Corollary 1. In the context of the previous Theorem, one has that

∂Fξ

∂zj
(z) > 0 ∀z ∈ R

s, ∀j ∈ {1, . . . , s} .

Proof. This follows immediately from the formula in Theorem 1 and the fact that
both the density and the distribution function of a regular Gaussian distribution
are strictly positive.

With each problem (Pc,ξ,p) in (2) we associate its (possibly empty) solution set

Ψc,ξ,p := argmin{cTx | P(ξ ≤ x) ≥ p}.

Lemma 1. For problem (Pc,ξ,p) in (2) assume that ci > 0 for i = 1, . . . , s.
Then,

Ψc,ξ,p ⊆ [a, b] := {x ∈ R
s | ai ≤ xi ≤ bi (i = 1, . . . , s)},

where, with ’supp’ denoting the support of a random vector,

ai := inf{zi|z ∈ supp ξ} bi := sup{zi|z ∈ supp ξ} (i = 1, . . . , s).
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Proof. Assume that there is some x∗ ∈ Ψc,ξ,p and some i such that x∗

i > bi.
Then, bi < ∞ and we may define x̄ by

x̄i := (x∗

i + bi) /2, x̄j := x∗

j (j 6= i) .

From x∗ being feasible for problem (Pc,ξ,p), we conclude that

p ≤ P(ξ ≤ x∗) = P(ξ ≤ x̄) + P(x̄i ≤ ξi ≤ x∗

i , ξj ≤ x̄j (j 6= i)).

Now, since x̄i > bi, it follows that {x ∈ R
n | x̄i ≤ xi ≤ x∗

i }∩ supp ξ = ∅ , whence

P(x̄i ≤ ξi ≤ x∗

i , ξj ≤ x̄j (j 6= i)) = 0

and P(ξ ≤ x̄) ≥ p. Therefore, x̄ too is feasible for problem (Pc,ξ,p). On the other
hand, cT x̄ < cTx∗ due to ci > 0, x̄i < x∗

i and x̄j = x∗

j for j 6= i. This contradicts
the assumption x∗ ∈ Ψc,ξ,p. Consequently, x

∗ ≤ b for any x∗ ∈ Ψc,ξ,p. Similarly
one shows that x∗ ≥ a for any x∗ ∈ Ψc,ξ,p. It follows that Ψc,ξ,p ⊆ [a, b].

Now, we are in a position to state our main result:

Theorem 2. Let s > 1. Assume that ξ has a regular normal distribution accord-
ing to ξ ∼ N (µ,Σ) and that η is a random vector with compact support. Then,

for any p ∈ (0, 1) there exists a sequence c(n) ∈ R
n with c

(n)
i > 0 for i = 1, . . . , s

such that Ψc(n),ξ,p 6= ∅ and

inf{‖x− y‖ | x ∈ Ψc(n),ξ,p, y ∈ Ψc(n),η,p} > n ∀n ∈ N. (3)

Proof. Fix an arbitrary p ∈ (0, 1) and an arbitrary n ∈ N. Since supp η is
compact, we may apply Lemma 1 to η in order to derive the existence of some
compact(!) rectangle [a, b] such that

Ψc,η,p ⊆ [a, b] ∀c ∈ R
s : ci > 0 (i = 1, . . . , s). (4)

With [a, b] being compact, we may choose Ln > 0 such that

‖y − z‖ ≥ n ∀y ∈ [a, b], ∀z : ‖z‖ ≥ Ln. (5)

Since s > 1 by assumption, we may define the ratio

κ(z) :=
∂Fξ

∂z1
(z)

/

∂Fξ

∂z2
(z) (z ∈ R

s) . (6)

Note that the partial derivatives of Fξ are continuous (see Theorem 1) and
strictly positive (see Corollary 1), hence κ is correctly defined and continuous.
Consequently the quantity

κ̄ := sup {κ(z)|z ∈ B (0, Ln)} (7)
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is finite. Next, let qp be the p-quantile of the first marginal distribution of ξ,
i.e., of the distribution of the first component ξ1. Since ξ1 has a one-dimensional
normal distribution and p ∈ (0, 1), qp ∈ R is uniquely defined by P (ξ1 ≤ qp) = p.
We claim that for each k ∈ N there exists some tk ∈ R such that

Fξ

(

qp + k−1, tk, . . . , tk
)

= p. (8)

Indeed, for arbitrarily fixed k one has that

lim
τ→−∞

Fξ

(

qp + k−1, τ, . . . , τ
)

= 0

as a general property of distribution functions and that

p = P (ξ1 ≤ qp) < P
(

ξ1 ≤ qp + k−1
)

= lim
τ→∞

Fξ

(

qp + k−1, τ, . . . , τ
)

.

Now, the existence of tk with the desired property (8) follows from continuity
of Fξ and from p > 0. Next we claim that tk →k ∞. If there existed some
subsequence tkl

and some r ∈ R such that tkl
≤ r for all l ∈ N, then

Fξ

(

qp + k−1
l , r, . . . , r

)

≥ Fξ

(

qp + k−1
l , tkl

, . . . , tkl

)

= p ∀l ∈ N

which again by continuity of Fξ as a function of each of its components yields
the contradiction

p ≤ Fξ (qp, r, . . . , r) = P (ξ1 ≤ qp, ξ2 ≤ r, . . . , ξs ≤ r) < P (ξ1 ≤ qp) = p.

Here, the strict inequality relies on the fact that a regular Gaussian distribution
has a density which is strictly positive everywhere. Hence, we have shown that
tk →k ∞. Consider the sequence

z(k) :=
(

qp + k−1, tk, . . . , tk
)

(k ∈ N) .

Then, by (8),

Fξ

(

z(k)
)

= p (k ∈ N) . (9)

Moreover, Theorem 1 yields that

∂Fξ

∂z1
(z(k)) = fξ1(qp + k−1) · F

ξ̃
(

z
(k)
1

) (tk, . . . , tk) , (10)

where fξ1 denotes the one-dimensional Gaussian density of the component ξ1 and

ξ̃
(

z
(k)
1

)

is an (s-1)-dimensional Gaussian random vector distributed according

to ξ̃
(

z
(k)
1

)

∼ N (µ̂(k), Σ̂) where µ̂(k) and Σ̂ result from the original parameters

µ and Σ, respectively, of ξ as detailed in Theorem 1. In particular,

µ̂(k) = (µ2, . . . , µs) + σ−1
11

(

qp + k−1 − µ1

)

(σ21, . . . , σs1)
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and we observe that

µ̂(k) →k µ̂ := (µ2, . . . , µs) + σ−1
11 (qp − µ1) (σ21, . . . , σs1) . (11)

Note also that in contrast to µ̂(k), the covariance matrix Σ̂ does not depend on
the index k. Now we define the centered random vector

ξ̂ := ξ̃
(

z
(k)
1

)

− µ̂(k) ∼ N (0, Σ̂),

whose distribution does no longer depend on the index k. Exploiting the relation

F
ξ̃
(

z
(k)
1

) (tk, . . . , tk) = F
ξ̂

(

tk − µ̂
(k)
1 , . . . , tk − µ̂

(k)
s−1

)

and noting that all components of the argument
(

tk − µ̂
(k)
1 , . . . , tk − µ̂

(k)
s−1

)

tend

to infinity due to (11) and tk →k ∞, we conclude that

F
ξ̂

(

tk − µ̂
(k)
1 , . . . , tk − µ̂

(k)
s−1

)

→k 1

because the values of the (fixed) distribution function F
ξ̂
tend to one if all its

components tend to infinity. This implies

F
ξ̃
(

z
(k)
1

) (tk, . . . , tk) →k 1,

whence (10) leads to
∂Fξ

∂z1
(z(k)) →k fξ1(qp) > 0 (12)

by continuity and positivity of the density fξ1 . Similarly, the second partial
derivative of Fξ calculates from Theorem 1 as

∂Fξ

∂z2
(z(k)) = fξ2(tk) · Fξ̃

(

z
(k)
2

)

(

qp + k−1, tk, . . . , tk
)

, (13)

where fξ2 denotes the one-dimensional Gaussian density of the component ξ2 and

ξ̃
(

z
(k)
2

)

is a certain (s-1)-dimensional Gaussian random vector. From fξ2(tk) →k

0 (due to tk →k ∞) and from the fact that distribution functions are bounded
between zero and one, we infer that

∂Fξ

∂z2
(z(k)) →k 0,

which along with (12) and (6) provides that κ(z(k)) →k ∞. Therefore, with our
arbitrarily fixed number n ∈ N we may associate an index kn ∈ N such that
κ(z(kn)) > κ̄ where κ̄ is defined in (7). Now, we assign to n the cost vector
c(n) := ∇Fξ

(

z(kn)
)

for the linear objective function in problem (Pc(n),ξ,p) in (2).

Then, by Corollary 1, we have that c
(n)
i > 0 for i = 1, . . . , s as required in the
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statement of our theorem. Knowing that logFξ is a concave function (see [6]), the
problem (Pc(n),ξ,p) in (2) may be written equivalently as a convex optimization
problem

min{c(n)Tx | − logFξ(x) ≤ − log p}. (Pc(n),ξ,p) (14)

With c(n) 6= 0, a solution x∗ to this problem is equivalently characterized by the
conditions

− logFξ(x
∗) = − log p and c(n) + λ∇ (− logFξ) (x

∗) = 0 for some λ > 0.

Simplifying these leads to the equivalent conditions

Fξ(x
∗) = p and c(n) = λ∇ (Fξ) (x

∗) for some λ > 0. (15)

Now, since c(n) = ∇Fξ

(

z(kn)
)

and Fξ(z
(kn)) = p by (9), we conclude that z(kn) is

a solution to (Pc(n),ξ,p). This shows that Ψc(n),ξ,p 6= ∅ as asserted in our theorem.
Finally, we show that Ψc(n),ξ,p ∩ B (0, Ln) = ∅ with Ln defined in (5). Assume
the contrary and choose some x∗ ∈ Ψc(n),ξ,p with ‖x∗‖ ≤ Ln. From (6) and (15)
we derive

κ (x∗) =
∂Fξ

∂z1
(x∗)

/

∂Fξ

∂z2
(x∗) = c

(n)
1

/

c
(n)
2 =

∂Fξ

∂z1
(z(kn))

/

∂Fξ

∂z2
(z(kn))

= κ(z(kn)) > κ̄.

which is a contradiction with (7). Consequently, Ψc(n),ξ,p ∩ B (0, Ln) = ∅. Now,
select arbitrary x ∈ Ψc(n),ξ,p and y ∈ Ψc(n),η,p. Then, ‖x‖ > Ln. Since also
Ψc(n),η,p ⊆ [a, b] by (4), it follows from (5) that ‖x− y‖ ≥ n. Since x and y were
arbitrarily chosen, we end up at the final assertion (3) of our theorem.

Theorem 2 can be interpreted as follows in the context of empirical approxi-
mation upon observing that the support of empirical measures is finite, hence
compact: no matter how large the sample size N for the empirical approxima-
tion of the original random vector ξ is chosen, there is always an instance of
problem (2) (by choosing an appropriate cost vector c) such that the solutions
between the original problem and its empirical approximation are arbitrarily far
from each other. Note that relation (3) implies (and actually is much stronger
than) the Hausdorff distance between both solution sets being larger than any
prescribed n. Moreover, this effect of ill-conditioning is not caused by letting the
probability level tend to one, because the result of the theorem holds true for
any fixed p. In the following section we look at the same phenomenon from a
slightly different viewpoint.

3 Exponential estimates with ill-conditioned constants

The recent literature on empirical or sample average approximation on chance
constraints [4, 5] compiles several convergence results for feasible sets, optimal
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values and solutions, most of them of qualitative nature (continuity, upper semi-
continuity), some of them providing exponential estimates (convergence of fea-
sible sets, lower bounds for optimal values). For the general stability theory of
chance constrained programming with arbitrary approximations (not just em-
pirical ones) and quantitative convergence results even for solution sets, we refer
to [1, 2]. In this section we will appy these results to the special case of empirical
approximations in order to obtain an exponential bound for the convergence (in
the sense of Hausdorff distance!) of solution sets. Despite this positive result
we will show then, that the existence of exponential estimates does not exclude
the need for a possibly excessive sample size in the empirical approximation.
We start by citing the following stability result for chance constraints whch we
present here in a simplified form sufficient for our purposes

Theorem 3 ([2], Corollary 3). In problem (Pc,ξ,p) in (2) let p ∈ (0, 1) and
the following assumptions be satisfied:

1. logFξ is a strongly concave function.
2. Ψc,ξ,p is nonempty and compact.

Then, there exist L, δ > 0 such that

dH (Ψc,ξ,p, Ψc,η,p) ≤ L
√

sup
z∈Rs

|Fξ(z)− Fη(z)| ∀η : sup
z∈Rs

|Fξ(z)− Fη(z)| < δ.

(16)
Here, dH refers to the Hausdorff distance.

A prototype example for a problem (2) which automatically satisfies all assump-
tions of Theorem 3 is given by a random vector ξ having a standard Gaussian
distribution. As a preparation we show the following property which is of inde-
pendent interest:

Proposition 1. In problem (Pc,ξ,p) in (2) let p ∈ (0, 1), ci > 0 for i = 1, . . . , s
and ξ ∼ N (0, Is). Then, the problem has a solution.

Proof. Referring back to the proof of Theorem 2, a solution of problem (Pc,ξ,p)
is equivalently characterized by the conditions (15) applied to c rather than c(n).
The distribution assumption implies that for all z ∈ R

s and all i = 1, . . . , s,

Fξ (z) = Φ (z1) · · ·Φ (zs) ;
∂Fξ

∂zi
(z) = f (zi)Φ (z1) · · ·Φ (zi−1)Φ (zi+1) · · ·Φ (zs) ,

where f and Φ denote the one-dimensional standard normal density and distri-
bution function, respectively. From (15) we derive that x∗ is a solution to (Pc,ξ,p)
if there exists some λ > 0 such that

Φ(x∗

1) · · ·Φ(x
∗

s) = p; λ
f(x∗

i )

Φ(x∗

i )
= ci (i = 1, . . . , s) . (17)
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(recall that Φ is strictly positive). Defining α := f/Φ, we observe that due to
ci > 0 the second relation of (17) amounts to the fact that α(x∗

i )/ci is constant
for all i. We may assume, without loss of generality, that c1 is the largest of
the coefficients ci. Then, x

∗ is a solution to (Pc,ξ,p) if there exist coefficients
ρ1, . . . , ρs−1 ≥ 1 such that

Φ(x∗

1) · · ·Φ(x
∗

s) = p; α(x∗

1) = ρ1α(x
∗

2) = · · · = ρs−1α(x
∗

s). (18)

We recall from the properties of the one-dimensional standard normal density
and distribution function that α(t) → 0 for t → ∞. Consequently, given any
t ∈ R, there exist values βi(t) for i = 1, . . . , s− 1 such that βi(t) ≥ t and

α(t) = ρ1α(β1(t)) = · · · = ρs−1α(βs−1(t)). (19)

Taking into account that limt→−∞ Φ (t) = 0 and Φ (βi(t)) ≤ 1 on the one hand
and

lim
t→∞

Φ (t) = lim
t→∞

Φ (βi(t)) = 1

due to βi(t) ≥ t, on the other hand, we conclude that

lim
t→−∞(+∞)

Φ (t)Φ (β1(t)) · · ·Φ (βs−1(t)) = 0(1).

For continuity reasons, there exists some t∗ such that

Φ (t∗)Φ (β1(t
∗)) · · ·Φ (βs−1(t

∗)) = p.

Setting x∗

1 := t∗and x∗

i := βi−1(t
∗) for i = 2, . . . , s, one verifies via (19) that (18)

is satisfied and, hence, x∗ is a solution to (Pc,ξ,p).

Corollary 2. Under the assumptions of Proposition 1 the estimate (16) holds
true.

Proof. We have to check that the assumptions of Theorem 3 are satisfied. The
strong concavity of the log of Gaussian distribution functions with independent
components is easy to verify (see [2, Prop. 14]). As shown in Proposition 1, the
solution set Ψc,ξ,p is nonempty. On the other hand, there may not exist more
than one solution to problem (Pc,ξ,p) because in its equivalent description

min{cTx | − logFξ(x) ≤ − log p} (Pc,ξ,p)

the inequality constraint is strongly convex according to what we have mentioned
in the begining of this proof.

We emphasize that in the result of Theorem 3 the approximating random vector
η can be arbitrary. In the special case that η is an empirical approximation,
one may exploit exponential bounds from empirical process theory (e.g., [8]) to
further interpret the obtained stability result. In order to keep the presentation
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simple, we refer here to a classical inequality by Kiefer [3] stating in any di-
mension s the existence of constants k1 and k2 < 2 (where k2 may be chosen
arbitrarily close to 2) such that for all ε̃ > 0 and all ηN having an empirical
distribution of an i.i.d. sample of ξ with size N the following estimate applies:

P

(

sup
z∈Rs

|Fξ(z)− FηN (z)| ≥ ε̃

)

≤ k1 exp
(

−k2ε̃
2N

)

. (20)

Since by (16) one has for all ε > 0 the implication

sup
z∈Rs

|Fξ(z)− Fη(z)| < min{δ, (ε/L)2} =⇒ dH (Ψc,ξ,p, Ψc,η,p) < ε,

it follows from (20) with ε̃ := min{δ, (ε/L)2} that

P
(

dH
(

Ψc,ξ,p, Ψc,ηN ,p

)

≥ ε
)

≤ k1 exp

(

−k2

(

min{δ, (ε/L)2}
)2

N

)

. (21)

This last relation establishes an exponential bound for the convergence of Haus-
dorff distance between the solution sets of the original problem and the problem
approximated by a sample of size N . Obviously, the quantity

k2

(

min{δ, (ε/L)2}
)2

determines the exponential decay of the required sample size. However, for prac-
tical use, one would have to know the values or at least estimates for δ and L
which is difficult or impossible in general. Then, the availability of an exponen-
tial convergence result does not exclude excessive sample sizes even in order to
give a sense to (21), i.e., to ensure that the right-hand side is smaller than one
as an upper probability estimate. Revisiting Theorem 3, one observes that the
couple (δ, L) in (16) is not uniquely determined. Therefore, let us define the best
possible coefficient of exponential decay by

ϑ (c, ξ, p, ε) := sup

{

k2

(

min{δ, (ε/L)2}
)2

∣

∣

∣

∣

(δ, L) satisfy (16) for (Pc,ξ,p)

}

.

Then, (21) can be formally improved to

P
(

dH
(

Ψc,ξ,p, Ψc,ηN ,p

)

≥ ε
)

≤ k1 exp (−ϑ (c, ξ, p, ε) ·N) .

The following result demonstrates that for a given significant problem class, this
coefficient of exponential decay may be arbitrarily close to zero, thus driving the
required sample size to infinity.

Theorem 4. In (2), let s > 1, ξ ∼ N (0, Is) and p ∈ (0, 1) be arbitrarily given.
Then, for any ε > 0 one has that

inf {ϑ (c, ξ, p, ε) |c ≻ 0} = 0,

where ’c ≻ 0’ means ci > 0 for i = 1, . . . , s.
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Proof. Denote by τ the infimum above and assume that τ > 0. Then, ϑ (c, ξ, p, ε) ≥
τ for all c ≻ 0. By definition of ϑ (c, ξ, p, ε), we infer that

∀c ≻ 0 ∃ (δ, L) : (δ, L) satisfy (16) for (Pc,ξ,p) and k2

(

min{δ, (ε/L)2}
)2

≥ τ/2.

The last relation entails that

δ ≥

√

τ

2k2
=: δ̄, L ≤ ε

4

√

2k2
τ

=: L̄.

Note that δ̄ and L̄ do not depend on c. Consequently, we have shown that there
exist δ̄ > 0 and L̄ such that

∀c ≻ 0 ∃δ ≥ δ̄, L ≤ L̄ : (16) holds true for (Pc,ξ,p).

This statement can be evidently reduced to:

∀c ≻ 0 : dH (Ψc,ξ,p, Ψc,η,p) ≤ L̄
√

sup
z∈Rs

|Fξ(z)− Fη(z)| (22)

∀η : sup
z∈Rs

|Fξ(z)− Fη(z)| < δ̄.

From (20) we infer that, for any N ,

P

(

sup
z∈Rs

|Fξ(z)− FηN (z)| < δ̄/2

)

≥ 1− k1 exp
(

−k2δ̄
2N/4

)

,

where ηN has an empirical distribution of an i.i.d. sample of ξ with size N . For
N → ∞, the right-hand side tends to one such that the probability on the left-
hand side is at least strictly positive. As a consequence, for some fixed N large
enough, there exists a discrete random vector ηN with N atoms such that

sup
z∈Rs

|Fξ(z)− FηN (z)| < δ̄/2.

Then, (22) implies that

∀c ≻ 0 : dH
(

Ψc,ξ,p, Ψc,ηN ,p

)

≤ L̄
√

δ̄/2. (23)

Now, since supp ηN is compact, Theorem 2 yields the existence of some c̃ ≻ 0
such that

inf{‖x− y‖ | x ∈ Ψc̃,ξ,p, y ∈ Ψc̃,ηN ,p} > L̄
√

δ̄/2.

This, however, is a contradiction with (23) because

dH (A,B) ≥ inf{‖x− y‖ | x ∈ A, y ∈ B}

for any closed sets A,B. Hence, τ = 0, as was to be shown.
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The effect of the previous theorem can already be illustrated in two dimensions:

Example 1. Consider the following 2-dimensional problem:

min{x1 + 10−4x2 | P(ξ1 ≤ x1, ξ2 ≤ x2) ≥ 0.99}, ξ ∼ N

(

(0, 0),

(

1 0
0 1

))

By independence of components, we may rewrite the chance constraint as

Φ(x1)Φ(x2) ≥ 0.99,

where Φ denotes the one-dimensional standard normal distribution function.
Referring to the optimality conditions as in (15), the solution of this problem
is equivalently characterized by the following three nonlinear equations in the
three variables x1, x2, λ:

Φ(x1)Φ(x2) = 0.99, ϕ(x)Φ(y) = λ, ϕ(y)Φ(x) = 10−4λ.

Here, ϕ is the density of the one-dimensional standard normal distribution. This
system is easily solved numerically, providing a unique optimal solution x∗

1 =
2.33, x∗

2 = 4.88.
Now, suppose that we want to approximate this solution empirically up to a

precision of ε = 0.1. Then, in particular, the second component of the solution to
the problem with empirical approximation has to exceed the value 4.78. Now, the
second components ξ12 , . . . , ξ

N
2 of an i.i.d. sample of ξ are i.i.d. standard normal.

Hence,
P( max

i=1,...,N
ξi2 ≤ t) = ΦN (t).

For instance, for N = 106 and t = 4.78, one has ΦN (t) ≈ 0.42. This means that
the probability of obtaining a one-digit precise solution by empirical approxima-
tion with a huge sample size like one million is less than 1− 0.42 = 0.58.

Certainly, the effect of the example relies on the highly unbalanced cost vector
c =

(

1, 10−4
)

. Making it more reasonably balanced like c = (1, 0.1), one would
still need a sample size of N ≈ 6.300 for estimating the solution of the problem
with a precision of 0.1 at a reasonably high probability of 0.99. Taking into
account that N corresponds to the number of binary variables required in the
discrete optimization problem, this is already a considerable quantity given the
trivial dimension s = 2 of the problem. Of course, things may be expected to
become much worse in larger dimension.
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