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Abstract. We deal with initial-boundary value problems describing ver-
tical vibrations of viscoelastic von Kármán-Donnell shells with a rigid
inner obstacle. The short memory (Kelvin-Voigt) material is considered.
A weak formulation of the problem is in the form of the hyperbolic vari-
ational inequality. We solve the problem using the penalization method.
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1 Introduction

Contact problems represent an important but complex topic of applied math-
ematics. Its complexity profounds if the dynamic character of the problem is
respected. For elastic problems there is only a very limited amount of results
available (cf. [3] and there cited literature). Viscosity makes possible to prove
the existence of solutions for a broader set of problems for membranes, bodies
as well as for linear models of plates. The presented results extend the research
made in [2], where the problem for a viscoelastic short memory von Kármán
plate in a dynamic contact with a rigid obstacle was considered. Our results also
extend the research made for the quasistatic contact problems for viscoelastic
shells (cf. [1]). A thin isotropic shallow shell occupies the domain

G = {(x, z) ∈ R3 : x = (x1, x2) ∈ Ω, |z −Z| < h/2},

where h > 0 is the thickness of the shell, Ω ⊂ R
2 is a bounded simply connected

domain in R with a sufficiently smooth boundary Γ . We set I ≡ (0, T ) a bounded
time interval, Q = I × Ω, S = I × Γ . The unit outer normal vector is denoted
by n = (n1, n2), τ = (−n2, n1) is the unit tangent vector. The displacement is
denoted by u ≡ (ui). The strain tensor is defined as

εij(u) =
1

2
(∂iuj + ∂jui + ∂iu3∂ju3) − kiju3 − x3∂iju3, i, j = 1, 2
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with k12 = k21 = 0 and the curvatures kii > 0, i = 1, 2.
Further, we set

[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v.

In the sequel, we denote by W k
p (M), k ≥ 0, p ∈ [1,∞] the Sobolev spaces defined

on a domain or an appropriate manifold M . By W̊ k
p (M) the spaces with zero

traces are denoted. If p = 2 we use the notation Hk(M), H̊k(M). The duals
to H̊k(M) are denoted by H−k(M). For the anisotropic spaces W k

p (M), k =
(k1, k2) ∈ R

2
+, k1 is related with the time variable while k2 with the space

variables. We shall use also the Bochner-type spaces W k
p (I;X) for a time interval

I and a Banach space X. Let us remark that for k ∈ (0, 1) their norm is defined
by the relation

‖w‖p

W k
p (I;X)

≡

∫

I

‖w(t)‖p
Xdt +

∫

I

∫

I

‖w(t) − w(s)‖p
X

|s − t|1+kp
ds dt.

By C(M) we denote the spaces of continuous functions on a (possibly relatively)
compact manifold M . They are equipped with the max-norm. Analogously the
spaces C(M ;X), are introduced for a Banach space X. The following general-
ization of the Aubin’s compactness lemma verified in [4] Theorem 3.1 will be
essentially used:

Lemma 1 Let B0 →֒→֒ B →֒ B1 be Banach spaces, the first reflexive and sepa-

rable. Let 1 < p < ∞, 1 ≤ r < ∞. Then

W ≡ {v; v ∈ Lp(I;B0), v̇ ∈ Lr(I, B1)} →֒→֒ Lp(I;B).

2 Short memory material

2.1 Problem formulation

Employing the Einstein summation, the constitutional law has the form

σij(u) =
E1

1 − µ2
∂t

(

(1−µ)εij(u)+µδijεkk(u)
)

+
E0

1 − µ2

(

(1−µ)εij(u)+µδijεkk(u)
)

.

The constants E0, E1 > 0 are the Young modulus of elasticity and the modulus
of viscosity, respectively. We shall use the abbreviation b = h2/(12̺(1 − µ2)),
where h > 0 is the shell thickness and ̺ is the density of the material. We
involve the rotation inertia expressed by the term a∆ü in the first equation of

the considered system with a = h2

12 . It will play the crucial role in the deriving a
strong convergence of the sequence of velocities {u̇m} in the appropriate space.
We assume the shell clamped on the boundary. We generalize the dynamic elastic
model due to the von Kármán-Donnell theory mentioned in [6]. The classical
formulation for the deflection u3 ≡ u and the Airy stress function v is then the
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initial-value problem

ü + a∆ü + b(E1∆
2u̇ + E0∆

2u) − [u, v] − ∆k ∗ v = f + g,

u − Ψ ≥ 0, g ≥ 0, (u − Ψ)g = 0,

∆2v + E1∂t(
1
2 [u, u] + k11∂22u + k22∂11u)

+E0(
1
2 [u, u] + ∆ku) = 0



















on Q, (1)

u = ∂nu = v = ∂nv = 0 on S, (2)

u(0, ·) = u0, u̇(0, ·) = u1 on Ω. (3)

The obstacle function Ψ ∈ L∞(Ω) is fulfilling 0 < U0 ≤ u0 − Ψ in Ω and

∆ku ≡ ∂11(k22u) + ∂22(k11u), (4)

∆∗

kv ≡ k22∂11v + k11∂22v. (5)

We define the operators L : H2(Ω) → H̊2(Ω), Φ : H2(Ω)×H2(Ω) → H̊2(Ω)
by uniquely solved equations

(∆Lu, ∆w) ≡ (∆ku, w)∀w ∈ H̊2(Ω), (6)

(∆Φ(u, v), ∆w) ≡ ([u, v], w)∀w ∈ H̊2(Ω). (7)

with the inner product (·, ·) in the space L2(Ω). The operator L is linear and
compact. The bilinear operator Φ is symmetric and compact. Moreover due to
Lemma 1 from [5] Φ : H2(Ω)2 → W 2

p (Ω), 2 < p < ∞ and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈ W 1
p (Ω). (8)

We have also L : H2(Ω) 7→ W 2
p (Ω), 2 < p < ∞ and

‖Lu‖W 2
p (Ω) ≤ c‖u‖H2(Ω) ∀u ∈ H2(Ω). (9)

For u, y ∈ L2(I;H2(Ω)) we define the bilinear form A by

A(u, y) := b
(

∂kku∂kky + µ(∂11u∂22y + ∂22u∂11y) + 2(1 − µ)∂12u∂12y
)

.

We introduce shifted cone K by

K := {y ∈ H1,2(Q); ẏ ∈ L2(I, H̊1(Ω); y ≥ Ψ}. (10)

Then the variational formulation of the problem (1-3) has the form of

Problem P. Find u ∈ K such that u̇ ∈ L2(I; H̊2(Ω)) and
∫

Q
(E1A(u̇, y − u) + E0A(u, y − u)) dx dt

+
∫

Q
[u, E1∂t(

1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)](y − u) dx dt

+
∫

Q
∆k

(

E1∂t(
1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)

)

(y − u) dx dt

−
∫

Q
(a∇u̇ · ∇(ẏ − u̇) + u̇(ẏ − u̇)) dx dt

+
∫

Ω
(a∇u̇ · ∇(y − u) + u̇(y − u)) (T, ·) dx

≥
∫

Ω
(a∇u1 · ∇(y(0, ·) − u0) + u1(y(0, ·) − u0)) dx

+
∫

Q
f(y1 − u) dx dt ∀y ∈ K.

(11)
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2.2 The penalization

For any η > 0 we define the penalized problem

Problem Pη. Find u ∈ H1,2(Q) such that u̇ ∈ L2(I; H̊2(Ω)), ü ∈ L2(I; H̊1(Ω)),

∫

Q

(

üz + a∇ü · ∇z + E1A(u̇, z) + E0A(u, z)
)

dx dt

+
∫

Q
[u, E1∂t(

1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)]z dx dt

+
∫

Q
∆k

(

E1∂t(
1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)

)

z dx dt

=
∫

Q
(f + η−1(u − Ψ)−)z dx dt ∀z ∈ L2(I;H2(Ω))

(12)

and the conditions (3) remain valid.

Lemma 2 Let f ∈ L2(Q), u0 ∈ H̊2(Ω), and u1 ∈ H̊1(Ω). Then there exists a

solution u of the problem Pη.

Proof. Let us denote by {wi ∈ H̊2(Ω); i = 1, 2, ...} a basis of H̊2(Ω) orthonormal
in H1(Ω) with respect to the inner product

(u, v)a =

∫

Ω

(uv + a∇u · ∇v) dx, u, v ∈ H1(Ω).

We construct the Galerkin approximation um of a solution in a form

um(t) =

m
∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N, (13)

(üm(t), wi)a +
∫

Ω

(

E1A(u̇m(t), wi) + E0A(um(t), wi)
)

dx+
∫

Ω
∆

(

E1∂t(
1
2Φ(um, um) + Lum) + E0(

1
2Φ(um, um) + Lum)

)

×∆(Φ(um, wi) + Lwi) dx
=

∫

Ω

(

f(t) + η−1(um(t) − Ψ)−
)

wi dx, i = 1, ...,m,

(14)

um(0) = u0m, u̇m(0) = u1m, u0m → u0 in H̊2(Ω), u1m → u1 in H̊1(Ω). (15)

After multiplying the equation (14) by α̇i(t), summing up with respect to i ,
taking in mind the definitions of the operators Φ, L and integrating we obtain
the a priori estimates not depending on m:

‖u̇m‖2
L2(I;H̊2(Ω))

+ ‖u̇m‖2
L∞(I;H̊1(Ω))

+ ‖um‖2
L∞(I;H̊2(Ω))

+‖∂tΦ(um, um)‖2
L2(I;H̊2(Ω))

+ ‖∂tLum‖2
L2(I;H̊2(Ω))

+η−1‖(um − Ψ)−‖L∞(I;L2(Ω)) ≤ c ≡ c(f, u0, u1).

(16)

Moreover the estimates (8), (9) imply

‖∂tΦ(um, um)‖L2(I;W 2
p (Ω)) + ‖∂tLum‖L2(I;W 2

p (Ω)) ≤ cp ∀ p > 2. (17)

After multiplying the equation (14) by α̈i(t), summing up and integrating we
obtain the estimate of üm

‖üm‖L2(I;H1(Ω)) ≤ cη, m ∈ N. (18)
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Applying the estimates (16)-(18), the compact imbedding theorem and the in-
terpolation, we obtain for any p ∈ [1,∞), a subsequence of {um} (denoted again
by {um}), a function u and the convergences

üm ⇀ ü in L2(I;H1(Ω)),

u̇m ⇀∗ u̇ in L∞(I; H̊1(Ω)),

u̇m ⇀ u̇ in L2(I; H̊2(Ω)),

u̇m → u̇ in Lp(I; H̊(Ω)) ∩ L∞(I;H2−ε(Ω)) ∀ε > 0,
um → u in C(Ī;W 1

p (Ω),
∂t

(

1
2Φ(um, um) + Lum

)

→ ∂t

(

1
2Φ(u, u) + Lu

)

in L2(I;W 2
p (Ω))

(19)

implying that a function u fulfils the identity (12). The initial conditions (3)
follow due to (15) and the proof of the existence of a solution is complete.

2.3 Solving the original problem

We verify the existence theorem

Theorem 1 Let f ∈ L2(Q), ui ∈ H̊2(Ω), i = 0, 1, 0 < U0 ≤ u0 − Ψ. Then

there exists a solution of the Problem P.

Proof. We perform the limit process for η → 0. We write uη for the solution of
the problem P1,η. The a priori estimates (16) imply the estimates

‖u̇η‖
2
L2(I;H̊2(Ω))

+ ‖u̇η‖
2
L∞(I;H̊1(Ω))

+ ‖uη‖
2
L∞(I;H̊2(Ω))

+‖∂tΦ(uη, uη)‖2
L2(I;W 2

p (Ω)) + ‖∂tLuη‖
2
L2(I;W 2

p (Ω))

+η−1‖(uη − Ψ)−‖L∞(I;L2(Ω)) ≤ cp, p > 2.

(20)

To get the crucial estimate for the penalty, we put z = u0 − uη(t, ·) in (12) and
obtain the estimate

0 ≤ U0

∫

Q
η−1(uη − Ψ)−dx dt ≤

∫

Q
‖η−1(uη − Ψ)−(u0 − Ψ)dx dt

≤
∫

Q
‖η−1(uη − Ψ)−(u0 − uη)dx dt

=
∫

Q

(

u̇2
η + a|∇u̇η|

2 + A( (E1∂tuη + E0uη), u0 − uη)

+E1∂t(∆(Luη + 1
2Φ(uη, uη)))∆(L(u0 − uη) + Φ(uη, u0 − uη))

+E0∆(Luη + 1
2Φ(uη, uη))∆(L(u0 − uη) + Φ(uη, u0 − uη))

)

dx dt

−
∫

Q
f(u0 − uη) dx dt +

∫

Ω

((

u̇η(u0 − uη) + a∇u̇η · ∇(u0 − uη)
)

(T, ·)
)

dx.

Applying the a priori estimates (20) we obtain

‖η−1u−

η ‖L1(Q) ≤ c(f, u0, u1, Ψ). (21)

With respect to Dirichlet conditions we obtain from (12) and (21) the dual
estimate

‖ − a∆üη + üη‖L1(I;H−2(Ω)) ≤ c. (22)
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We take the sequence {uk} ≡ {uηk
}, ηk → 0+.

After applying the Lemma 1 with the spaces

B0 = L2(Ω), B = H−1(Ω), B1 = H−2(Ω)

we obtain the relative compactness of the sequence {−a∆u̇k + u̇k} in
L2(I;H−1(Ω) and with the help of the test function u̇k − u̇ the crucial strong
convergence

u̇k → u̇ in L2(I; H̊1(Ω)). (23)

Simultaneously we have the convergences

u̇k ⇀ u̇ in L2(I; H̊2(Ω)),
u̇k → u̇ in L2(I;W 1

p (Ω)),
1
2∂tΦ(uk, uk) + ∂tLuk ⇀ 1

2∂tΦ(u, u) + ∂tLu in L2(I;W 2
p (Ω)).

(24)

It can be verified after inserting the test function z = y − uk in (12) for y ∈ K,
performing the integration by parts in the terms containing ü, applying the
convergences (23), (24), using the definitions of the operators L, Φ in (6), (7)
and the weak lower semicontinuity that the limit function u is a solution of the
original problem P.

Remark 1. The existence Theorem 1 can be after some modification verified also
for another types of boundary conditions.
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