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Abstract. Markov localization has been successfully deployed in robotics us-
ing highly precise distance sensors to determine the location and pose of mobile
robots. In this setting the scheme has shown to be robust and highly accurate.
This paper shows how this approach has been adapted to the problem of locat-
ing wireless LAN clients in indoor environments using highly fluctuating radio
signal strength measurements. A radio propagation model is used to determine
the expected signal strength at a given position in order to avoid tedious offline
measurements. Some of the issues that had to be addressed include expressing the
calculated signal strengths in terms of probability density functions and detecting
movement of the mobile terminal solely on the basis of radio measurements. The
conducted experiments show that the proposed technique provides a median error
of less than 2m even when there is no line-of-sight to an access point.

1 Introduction

Geolocation systems in general can be based on a dedicated infrastructure or on an
infrastructure designed for other purposes. The most popular approach to the latter is
to use a wireless communication network. The spread of wireless LANs (WLAN) fol-
lowing the IEEE 802.11 standard [1] has consequently induced research on using the
installed equipment for indoor geolocation purposes, as presented e.g. in [2], [3], [4] and
[5]. Without modifications to the hardware of commercially available WLAN products
such location systems must rely on radio signal strength (RSS) measurements to deter-
mine a mobile terminal’s (MT) position. The measured RSS is commonly compared to
reference values of a so-called radio map determined in the offline phase, i.e. before
MT’s are actually localized.

The WLAN location determination scheme proposed in this paper is based on the
concept of Markov localization by Dieter Fox et al. presented in [6]. The idea behind
this approach is to use discrete probability distributions to represent the MT’s state
space. To avoid time-consuming reference measurements the system presented in this
paper uses a propagation model to create a radio map. The Markov localization scheme
proves to be sufficiently robust to compensate for the errors introduced by the noisy
wireless channel and by the propagation model. For real-world experiments its imple-
mentation has been integrated into the WhereMops location service introduced in [11].

* The work presented in this paper is supported by the German Federal Ministry of Education
and Research under Grant 08NM211.



The remainder of this paper is organized as follows. Section 2 describes the theo-
retical background to the proposed scheme, leaving some important — implementation
specific — aspects open. These open issues will be tackled in Sect. 3, which introduces a
new probabilistic radio propagation model, and Sect. 4, which presents the implemen-
tation details of the location determination system. Section 5 describes the evaluation
process and the obtained results. Section 6 concludes the paper and gives a preview of
possible future work.

2 Markov Localization

2.1 Moaotivation and Basic |dea

In recent years probabilistic localization schemes such as Markov and Monte-Carlo
localization have gained increasing interest in the context of mobile robot systems de-
signed for dynamic environments. Despite the fact that most mobile robots are equipped
with rather precise distance sensor equipment deterministic approaches did not cope
well in dynamic settings, e.g. with moving people or other objects not incorporated
into the world model. Probabilistic approaches inherently model the uncertainties of
real-world scenarios and can thus potentially achieve a higher robustness and accuracy.

The problem of dynamic environments also affects WLAN-based location determi-
nation systems, however such systems additionally suffer from highly inaccurate "dis-
tance sensors”, meaning the measured received signal strength. Radio waves propagate
in a very complex manner, the result being that even in a static environment one can
observe so-called short term fading, i.e. fluctuations in the received signal strength.
Furthermore even small displacements of the MT can significantly alter even the mean
of the signal strength readings. The assumption at the outset of the work described in
this paper, was that the Markov localization technique would prove sufficiently robust
to cope with these adverse conditions, i.e. the dynamic office environment, the inaccu-
rate sensor readings and the inaccurate world model provided by a propagation model,
and yet deliver highly precise terminal locations.

Instead of maintaining a single hypothesis as to the MT’s position, Markov local-
ization maintains a probability distribution over the space of all such hypotheses. In the
following this probability distribution is called belief. The belief about the MT’s loca-
tion is only updated when new perceptions are made (i.e. new RSS-measurements have
been received) or after the MT has moved. The probabilistic representation allows the
scheme to weigh these different hypotheses in a mathematically sound way.

2.2 Notation

Let L denote the random variable representing the location of the MT at timet =T
and | = (x,y)T € L a specific position of the MT within the state space. Following the
notation used in [6] let Bel (L =1) denote the probability, that at time t = T the MT
is located at a position | € L. In the following the continuous probability distribution
is approximated by a discrete, grid-based representation. Positions | that are located
outside the grid have a probability of Bel (L =1) = 0. As Bel (L =1) represents a
probability distribution the sum over all grid cell valuesis 3, ., Bel (Ly =1) = 1.



Finally let S; = (s;,s;,.-.,Sr ) denote the temporally ordered list of all RSS-meas-
urements and A; = (ao,al, .- ,aT> the temporally ordered list of all movements con-
ducted by the MT up to timet =T.

2.3 Independence Assumptions

This section describes two essential independence assumptions which allow for an effi-
cient recursive implementation of the Markov-Localization algorithm.

Independence of Actions The state L at time t = T solely depends on L _, and the
last conducted action — i.e. movement — a;_;. In other words, all previously reached
locations, all sensory input and all previously conducted actions become irrelevant once
the current state L _, is known. This is known as Markov-assumption and is summa-
rized in the following equation:

P(LT =1{Ly_q, AT—17SI'—1) = P(LT =1] I‘T—l’aT—l) )

Independence of Sensor Input A sensor reading s; attimet =T solely depends on the
state of the environmentatt = T. Once an MT’s state space L+ is known, all previously
recorded measurements, states and actions provide no additional information for the
calculation of . Equation 2 summarizes this predication.

P(srILyeeosby_, Ar_1,Sr_q) =P(sy [ Ly =1) )

2.4 The Sensor Model

The sensor model describes how to update the belief about an MT’s position | € L at
timet =T given all previously recorded sensor readings S;. This can be formulated as
follows:

P(LT=||Sr):P(LT=||Sovslv"'>ST)' 3
Using Bayes rule and Eq. 2 this can be transformed to

_ PGl Lr=D-P(lr=11S)
P(sr|Sr_y)

Obviously the denominator of Eq. 4 is independent of L and therefore constant. Fur-
thermore it is assumed that the probability P(s; | Ly =) for a sensor reading given a
certain position is time-invariant. Hence, using %o, = P(s; | S;_;) and the notation
for Bel (L =1) introduced at the outset, Eq. 4 can be rewritten as:

(4)

Bel (Ly =1) = oy -P(s; | 1)-Bel (Ly_, =1). 5)

This states that the updated belief about the location of an MT upon new sensory
input, depends on the probability of the sensory input at a given position weighted by
the assumed likelihood of being at this position.



2.5 TheAction Model

The belief about the MT’s position is not only influenced by the current sensor readings,
but also by actions (i.e. movements) of the terminal. Thus there is a need to calculate the
probability P(A) =P (L; =1 | A;_,) thatan MT attimet =T is located at position | €
L, given all previously conducted movements A _,. Using the law of total probability
this can be written as:

P(ly =11Ar_;) = IZP(A| By)-P(By)- (6)

with P (B,) =P (Ly_y=1"[Ar_;) and P(A[By) =P (Ly =1 Ar_y,Ly_y =T').

Considering the assumption about independence of actions (Eg. 1) P (A | Bu) can be
simplified such that the probability is only dependent on the last conducted movement
a;_4. The term can be further simplified if it is assumed that the probability of reaching
a location | given a location I” and an action a;_, is time invariant.

P(A] BI') =P(l|ar_q,Ly_1=1") (7)

Resubstituting Eq. 7 in Eq. 6 and using the definition of Bel (L =1) the influence
of movements on the belief about the MT’s location can thus be expressed as:

Bel (Ly =1) = lZP(I la_p, Ly, =1")-Bel (Ly_; =1') ®)

This states that the probability of being at location | after an action has been per-
formed, can be calculated by summing up the probabilities of reaching | from |’ given
action a;_,. Each addend is weighted by the likelihood of starting at position |’.

2.6 Algorithm

The previous section has presented the underlying principles of Markov-Localization.
Equation 5 provides a recursive scheme for updating the desired density Bel (L =1)
when new sensor readings s; are available. Complementary to this Eq. 8 provides the
recursive definition of the update procedure when movement of the MT has been de-
tected. The complete algorithm in pseudo-code is shown in listing 2.1.

So far four questions — all of which are highly dependent on the application envi-
ronment — remain unanswered:

1. HowisP(s; | I) (Eq.5) calculated, i.e. the probability of sensor readings depending
on the location?

2. How is P(l | ar,Ly_, =1") (Eq. 8) calculated, i.e. the probability of reaching one
location from another given a movement?

3. How is movement detected based on RSS measurements?

4. How should the density function for Bel (L,_,) be initialized?

All questions are answered in Sect. 4 which describes the implementation details of
the Markov localizer. First however the automatic creation of radio maps is discussed,
as this is an important prerequisite for the location determination system.



Algorithm 2.1 Markov-Localization

1: {initialize probability distribution Bel (L,_q)}
2: loop

3. if new sensory input s available then
4 if TravelledDistance > Threshold then
5: for all Locations | do
6: {apply action model}
7 end for
8: end if
9: for all Locations | do
10: {apply sensor model}
11: end for
12: {normalize resulting distribution}
13:  endif
14:  wait At
15: end loop

3 Computing Radio Maps

In order to calculate the likelihood of a signal strength measurement given a certain po-
sition and base station, the system needs to know what to expect. Radio (signal strength)
maps are commonly used to associate reference positions with their expected radio sig-
nal strength. The simplest way to build a radio map is by conducting measurements for a
set of reference points, with the obvious disadvantage being its enormous costs in terms
of time. Trivially the positioning accuracy depends on the distance between the chosen
reference points. For example, a desired positioning accuracy of 2m on one floor of the
computer science department building depicted in Fig. 1 would require approximately
300 measurements. Should the floor plan change or an access point be relocated these
measurements would have to be repeated. In essence the empirical creation of radio
maps is impractical especially considering large-scale deployment of location-based
services.

A different approach to generating a radio map given a floor plan is to employ radio
propagation models, which are frequently used to plan wireless communication net-
works. The advantage of calculating instead of measuring the radio map is less effort
and the allowance for arbitrarily fine grained grids. However, radio propagation mod-
els can only provide an estimate for the expected signal strengths as radio waves are
subject to diverse and complex propagation phenomena. The following section briefly
introduces the concept of empirical propagation models which are then modified for the
purposes of generating radio maps for Markov localization.

3.1 Empirical Propagation Models

Empirical propagation models are based on the model presented in [8] which was
adopted by Seidel und Rappaport to the conditions of indoor environments [9].
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Fig. 1. Floor plan of Chair for Communication and Distributed Systems.

Np(d) = np(dy) —10- neg-log,, (dgo) -X 9)

The first term on the right side of the equation describes the received signal strength
at a reference distance d, from the sender under conditions of free-space propagation
and is thus an indirect measure of the sender’s transmitting power and antenna gain.
The unit of n,, is dBm and its value is usually determined by measurements. The second
term models the free-space pathloss of the signal. The received signal strength decreases
logarithmically with increasing receiver-transmitter displacement d. The parameter g
is called pathloss exponent and is also estimated by measurements. The last term models
the variable attenuation of the signal due to obstructions in the environment.

The RADAR-system [2] employs such a model to calculate a radio map, whereby X
is made a function of the number of walls/obstacles between sender and receiver and an
average attenuation for all obstacle types. This model is called Wall Attenuation Factor
(WAF) model.

3.2 Design Of A Probabilistic Propagation Model

The modifications to the empirical propagation models mentioned above aimed at bal-
ancing the accuracy and the effort for estimating the model parameters, by classifying
the different obstacle types in the environment. This achieves a higher accuracy than
averaging the attenuation over all obstacles as in the WAF-model, yet it requires less
effort than the FAF-model described in [10] which requires the attenuation for every
specific obstacle.

The novelty of the proposed model is that it calculates an expected value for the
RSS at a map location and a measure for the uncertainty or accuracy of the calculated



value. These figures can be interpreted as mean and standard deviation of a normal
distribution. The calculation of these two values is explained in the following.

Taking a classification of obstacles according to their attenuation properties, let K
denote the cardinality of the classification and n*@' the attenuation of the ki object
class and ¢, the maximum number of objects of class k to consider. Using the above
definition the expected strength for a position at distance d from an access point given
a floor plan can be calculated as

d) & N Ne<g
Np(d) = Np(dy) —10- Neg-logy, (d_o> - kzl{ckk. n\kll\(lall Nt > Ct (10)

with

np(dy) : signal strength at reference distance d,,
Neg > 0 : free-space pathloss.
nal > 0 : attenuation of object class k.
N, : number of objects of class k between sender and receiver.
¢, - maximum number of considered objects of class k.

Neither the WAF- nor the FAF-model attempt to estimate the deviation of the calcu-
lated expected signal strength to corresponding RSS-measurements. However the dif-
ference between model and reality is likely to increase with the distance and the number
of obstacles between sender and receiver, as the corresponding parameters pathloss ex-
ponent and object attenuation can hardly be determined very precisely.

The uncertainty can be modelled as standard deviation of a probability distribution
with mean as defined above by np(d). To calculate the standard deviation we first define
a helper function y(d) Vd > 0 which linearly maps the transmitter-receiver separation d
to the range 0 < y(d) < 1.

For evaluating the location determination scheme proposed in this paper the follow-
ing two functions modelling the uncertainty have been developed and tested.

K
0,(d) :1+4-(l—y(d))2+%-kz N, (11)
=1
and
K
az(d)=1+2-\/1—y(d)+%-zj\fk (12)
=1

Both models take into account a standard measurement noise (first addend) and the
uncertainty introduced by unprecise attenuation parameters (third addend). The models
differ in their second addend which estimates the contribution of the sender-receiver
displacement to the error caused by an unprecise pathloss exponent. The effect of cre-
ating radio maps for Markov localization on the basis of these functions is described in
Sect. 5, where the complete model is also parameterized according to our testbed.



4 Implementation Details

Some issues concerning Markov localization on the basis of RSS measurements have
so far not been discussed. This section will address the open questions stated in Sect. 2
and provides some additional implementation details.

4.1 Sensor Model Details

In Sect. 2 it was left open how P (s; | I) (Eq. 5) should be calculated. Taking the proba-
bilistic propagation model presented in Sect. 3 it is now feasible to determine the like-
lihood of an RSS reading at a given location. If the expected signal strength calculated
for a position and its corresponding uncertainty are interpreted as mean p and standard
deviation o of a Gaussian distribution then

v ) dss,, (13)

Pla<SS, <b)= \/_na/_%

provides an estimate for the probability P(s; | ) where SS; denotes the calculated
RSS and Sﬁv, the measured signal strength. The integration boundaries have been set to
and b= S, + 3
ThIS probablllty is calculated for each cell in the probability map associated with a
base station for which RSS measurements are available. The resulting maps of all base
stations — informally put, each representing a guess concerning the MT’s position based
on the resp. information-subset — are then superimposed in a multiplicative manner.

4.2 Movement Model Details

The answer to the question of how to calculate P (I | a;_;,Ly_; =1") (Eq. 8), i.e. the
probability of reaching one location from another given a movement, has so far been
deferred. Before the modelling of movement is tackled it must first be described how
movement can be detected in a WLAN without dedicated sensors. At first this presented
a major obstacle to the adaptation of Markov localization to WLANSs. However it was
discovered that the population variance of a sliding mean window, originally used to
filter the highly fluctuating raw RSS data, could be used to detect absolute movement
quite reliably. Without moving the mobile terminal the variance (of the sliding mean
with a window size of 10) seldom exceeded one, even in highly dynamic office envi-
ronments. When actually moving the mobile terminal the population variance increased
to values of six or more at normal walking speed.

The movement model makes use of this phenomenon in order to decide whether the
mobile terminal is being moved or not. A population variance above two is interpreted
as movement, whereas lower values indicate the MT is stationary. Assuming the mobile
terminal has an average speed of Vyax = 1.8 T when in movement, then the movement
model can estimate the travelled distance using ASy,t = Vimax- At, where At denotes the
time since the last invocation of the movement model. This is just an approximation of



Fig. 2. Belief about MT’s position before and after movement model has been applied.

the travelled distance, as the movement detector unfortunately does not indicate direc-
tion. This implies that the action a; introduced in Sect. 2 does not describe the directed
movement betweent =T —1andt =T, from position | € L to position|” € L. Rather
the implemented action model defines a; as movement from one position | € L to all
positions I’ € L within a distance of ;7.

As the movement sensor is not accurate concerning the travelled distance of the MT,
the underlying uncertainty is modelled as two-dimensional Gaussian distribution, with
mean U = Asy,r and g = 1. The effect of applying the movement model is clarified in
Fig. 2. The left illustration shows the belief about the MT’s position at timet =T — 1.
The probability map has two peaks, indicating that there are two positions the MT is
likely to be located at. To reduce computational complexity the action model is only
applied to probabilities above a certain threshold. In this example the action model is
only applied to the maximum of each peak. The right illustration shows the belief at
time t = T after movement has been detected. The action model is applied to the two
peak values and the resulting probability distributions are additively superimposed. The
superimposition of the two volcano cones is apparent — note how the cones are weighted
by the probability of their origin.

The outlined scheme provides a means to calculate the desired P (I | a;_y,Ly_; =1");

tests have proven the estimation of the distance travelled by the MT’s between two in-
vocations to be sufficiently accurate.

4.3 Probability Map Initialization

Before the first iteration of the algorithm the probability map Bel(L,_,) needs to be
initialized to reflect the system’s knowledge (or at least belief) about the MT’s location.
In principle two cases need to be considered. In the first case information about the
MT’s location is available and can be used to initialize the map. This information can
be provided by external intervention (e.g. querying the user about his location) or by
means of a user profile. In the second case no information pertaining to the MT’s initial
location is available, which is modelled by initializing Bel(L,_,) equally distributed,
i.e.alll € L are equally probable.

The current implementation has no notion of users but only locates terminals. This
is done mainly for reasons of privacy, as the WhereMops-system is being used as a



Table 1. Object classes and their parameters.

|object class k|description [attenuation n/"@T[c, |

1 window 6.0 dBm| 2
2 thick concrete 15.0dBm| 7
3 doors 2.0dBm| 3
4 light wall 40dBm| 7
5 steel locker 7.0dBm| 1
6 thin concrete 5.0dBm| 1

research and production platform. Hence the system cannot work on the basis of user
profiles and initializes the probability map equally distributed.

5 Experimental Evaluation

This section presents the results of the experimental evaluation and compares them with
the results obtained of related systems. The investigated properties include the absolute
positioning errors both in case of line-of-sight (LOS) and without line-of-sight (NLOS)
with no movement, the influence of the uncertainty factor in the radio maps and the
accuracy of the estimated positioning error.

All experiments were conducted in the office wing of the Chair for Communication
and Distributed Systems at Aachen University depicted in Fig. 1. The wing has a di-
mension of about 40m x 15m and is covered by three access points placed on this floor,
which are marked with circles in Fig. 1. The radio map was generated using the param-
eters listed in Table 1. The chosen cell size for all maps was 0.5m x 0.5m. Furthermore
Np(dy) was set to —37dBmwith dy = 2mand n.q=2.

The following describes the conducted experiments and their results. The position-
ing error is defined as the Euclidian distance between the true position and the absolute
maximum of the probability density function describing the belief about the MT’s state.

5.1 Resultsof LOS-Measurements

The LOS-measurements were conducted twice to examine the effect of the different
uncertainty models (Eg. 11) and (Eg. 12) on the absolute positioning error. Though this
series is categorized as being under LOS-conditions it must be noted that all times there
is only line-of-sight to one access point.

The measurements were taken at locations in the hallway spaced apart by one me-
ter and marked by a cross in Fig. 1. In both series of measurements the terminal was
located periodically every 5sec. After 10 iterations the current probability density, i.e.
the belief about the terminal location, was reset by an equal distribution, to capture the
convergence of the belief, i.e. probability distribution. In the first series this is done five
times resulting in 50 location calculations per measurement point, while all other mea-
surements repeated this procedure 10 times yielding 100 calculations per measurement
point.
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Fig. 3. Absolute positioning error under LOS conditions.

Figure 3 shows the mean of the 50 resp. 100 location calculations per measurement
point. The error bars give the 95% confidence interval. The distance is given in rela-
tion to the LOS access point on the left side of the hallway outside the seminar room
abbreviated by "SR”.

The first series of measurements started very promising with distance errors in the
range of 1m — 4m, but then exposed great errors of up to 12m in an area about 16 m —
22m from the measurement’s origin. The estimated locations strongly tended towards
the left-most access point, which indicates that the measured RSS is higher than the cal-
culated RSS. Indeed the RSS readings of the LOS access point were about 5 — 10dBm
higher than predicted by the model. As all other values in the radio map corresponded
well with measured values, it is assumed that the deviation is caused by constructive
multi-path propagation.

The experience gained from this first series of measurements motivated the change
of the uncertainty model in the radio map module as described in Sect. 3.2. As the RSS
measurements deviated more strongly from the empirical propagation model than esti-
mated by o3, the uncertainty model o, was defined to assign higher uncertainties even
to small transmitter-receiver separations. In the second series of LOS-measurements
(using o,) the resulting error distance dropped significantly, especially in the previ-
ously problematic area. Though the effect of an incorrect estimation of the RSS is still
visible, all remaining measurements were conducted using the new radio maps created
with o,(d).
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5.2 Results of NLOS-Measurements

The case of NLOS is generally more challenging as the radio signals are subject to more
transmission phenomena than in the case of LOS. Furthermore there is a higher chance
of errors introduced by false parametrization of the radio propagation model. Despite
these adverse conditions the results are quite satisfactory.

One series of measurement per room was carried out, where possible with the ter-
minal placed in the middle of the room. At each location 100 measurements were con-
ducted with a re-initialization of the probability map after 10 iterations (see above).

The cumulative histogram of the absolute positioning errors for the case of LOS and
NLOS is shown in Fig. 4. The second series of LOS-measurements using the improved
radio propagation model has a median error of 1.5m and a 95" percentile of 6m. The
median error in the NLOS-case is 2m whereas the 95"-percentile amounts to 8.5m.

5.3 Estimated Positioning Error

A novel feature of the proposed indoor geolocation system is the ability to provide an
estimate for the distance error of the calculated position. As stated above the maximum
of the probability distribution was used as an estimate for the MT’s location during
system evaluation. To provide an estimate for the distance error, the probabilities of
the grid cells surrounding the maximum were added up until a predefined probability
threshold was reached. The result is a quasi-circular location area. The radius of this



Table 2. Comparison of positioning errors.

| System][[ 25 %] 50 %] 75 %] 95 %]
Markov-Localization LOS|[0.6m|{1.5m|2.8m|6.0m
Markov-Localization NLOS|[1.5m|2.0m|3.6m|8.5m
RADAR-System|[1.9m|2.9m|4.7m -

Joint Clustering{|0.6 m|1.1m|(1.2m|(2.1m
Incremental Triangulation{|0.8 m|{1.2m|1.5m|3.4m

location area is interpreted as the estimated positioning error (EPE) with a confidence
level corresponding to the threshold.

During the measurements the EPE at a 90% confidence level was recorded and af-
terwards compared to the absolute (i.e. true) positioning error (APE). If the EPE is
lower than the APE, then the true position is outside the given location area. If the EPE
is greater than the APE then the true position lies within the range stated by the algo-
rithm. For the LOS-measurements 73% of the EPEs were greater than the corresponding
APEs. This is quite satisfactory however it is below the desired confidence level of 90%.
Surprisingly the NLOS-measurements showed better results in this respect. Here 89%
of the EPEs were greater than the APEs.

5.4 Comparison

Table 2 compares the obtained results with those of related location determination sys-
tems presented by Bahl and Padmanabhan in [2] and by Youssef et al. in [4]. The lo-
cation determination system proposed in this paper performs considerably better than
the RADAR-system even in the case of NLOS. In contrast the schemes presented in [4]
apparently outperform the Markov localization scheme. However it is very likely that
this is due to the use of reference measurements for creating a radio map. It is ques-
tionable whether the high effort for creating radio maps by measurements justifies the
achieved accuracy. Aachen University for example is spread over 150 buildings with a
total usable floor space of around 300.000m 2 — taking 300sec reference measurements
for every 2m? as suggested in [4] would require at least 4.5 person-years assuming an
eight-hour working day.

Furthermore the search-space of the implemented system is not as restricted as those
in [2] and [4]. At all times every grid square presented a potential location of the mobile
terminal. In contrast the works presented in [2] and [4] naturally restrict their search-
space to those locations that were part of their offline measurements, which in both
cases only covered hallways.

6 Conclusionsand Future Work

Determining the position of mobile terminals within buildings on the basis of WLAN
signal strength is extremely difficult, due to dynamic environments and complex ra-
dio propagation mechanisms. This paper presented the design and implementation of a



probabilistic location determination algorithm based on the concept of Markov localiza-
tion. To avoid time-expensive reference measurements a probabilistic radio propagation
model was developed, which provides an estimate for the inaccuracies of the model.

The experimental results are very satisfactory especially considering the use of a
radio propagation model instead of reference measurements to provide a data basis. The
conducted experiments show that the proposed technique can provide a median error of
less than 2m even when there is no line-of-sight to an access point. The 90t"-percentile
is around 4 m under line-of-sight conditions.

In order to investigate the effects of the many parameters of the Markov localization
algorithm more efficiently a simulator is currently being developed. The simulator will
chose a position on a map and generate RSS values according to previously recorded
histograms of real measurements. This simulator can also be used to evaluate the posi-
tion estimation of a moving terminal, which can hardly be done in practice.

Finally the interpretation of the probability density representing the belief about the
mobile terminal’s position needs to be analyzed. The maximum of the density function
is in general a good candidate for the location estimate. However finding the smallest
location area with a given error probability could improve the accuracy.

References

1. IEEE 802.11 WG, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, 8802-11: 1999 (ISOIEC) (IEEE Std 802.11, 1999 Edition) Information tech-
nology - Telecommunications and information excahnge between systems - Local and
metropolitan area networks - Specific Requirements - Part 11, 1999.

2. P.Bahl, V.N. Padmanabhan, RADAR: An In-Building RF-based User Location and Tracking
System, Proceedings of IEEE Infocom 2000, Tel-Aviv, Israel.

3. A. Kishan, M. Michael, S. Rihan, R. Biswas, Halibut: An Infrastructure for Wirelss LAN
Location-Based Services, Technical Report, Stanford University, June 2001.

4. M.A. Youssef, A. Agrawal, A.A. Shanka, S.H. Noh, A Probabilistic Clustering-Based Indoor
Location Determination System, Technical Report, CS-TR-4340, March, 2002.

5. P. Castro, P. Chiu, T. Kremenek, R. Muntz, A Probabilistic Location Service for Wireless
Network Environments, Ubiquitous Computing 2001, Atlanta, GA, September 2001.

6. D. Fox, W. Burgard, S. Thrun, Markov Localization for Mobile Robots in Dynamic Environ-
ments, Journal of Artificial Intelligence Research 11, Pages 391 — 427, 1999.

7. M. Hassan-Ali, Using Ray-Tracing Techniques in Site-Specific Statistical Modeling of Indoor
Radio Channels, Ph. D. Dissertation, Worcester Polytechnic Institute, Worcester, MA, 1998.

8. P. Harley, Short Distance Attenuation Measurements at 900MHz and 1.8GHz Using Low
Antenna Heights for Microcells, IEEE JSAC, Vol. 7, No. 1, January 1989.

9. S.Y. Seidel, T.S. Rappaport, 914 MHz Path Loss Prediction Models for Indoor Wireless Com-
munications in Multifloored Buildings, IEEE Transactions on Antennas and Propagation,
\Wol. 40, No. 2, February 1992.

10. K.W. Cheung, J.H.M. Sau, R.D. Murch, A New Empirical Model for Indoor Propagation
Prediction, IEEE Transactions on Vehicular Technologies, September 1997.

11. M. Wallbaum, WhereMoPS: An Indoor Geolocation System, The 13th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, Lishoa, Portugal,
September 2002.



