
IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 1

Policy-Based Management and Context Modelling
Contributions for Supporting Services in Autonomic Systems

J. Martín Serrano1; Joan Serrat1, John Strassner2, Ray Carroll3

1Universitat Politècnica de Catalunya. Barcelona, Spain.
{jmserrano; serrat}@tsc.upc.edu

2Motorola Labs, Schaumburg, IL, USA.
{john.strassner@motorola.com}

3Telecommunications, Systems and Software Group,
Waterford Institute of Technology. Waterford, Ireland.

{rcarroll@tssg.org}

Abstract. Autonomic networking systems dynamically adapt the services and
resources that they provide to meet the changing needs of users and/or in
response to changing environmental conditions. This paper presents a novel
policy-based, context-aware, service management framework for ensuring the
efficient delivery and management of next generation services using autonomic
computing principles. The novelty of this approach is its use of contextual
information to drive policy-based changes that adapt network services and
resources. Policies control the deployment and management of services and
resources, as well as the software used to create, manage, and destroy these
services and resources. Policies also control the distribution and deployment of
the necessary components for fully managing the service lifecycle, and provide
the efficiency and scalability necessary for supporting autonomic systems.

Keywords: Autonomic Systems, Autonomic Networking, Policy-Based Service
Management, Context Information, Self-Management Technologies, Next
Generation Services, Context-Aware Framework, Context Information Model.

1 Introduction

Over the last decade, simple advances in resources and services have been
feasible as result of the ever-increasing power and growth of technologies. However,
this drive for more functionality has dramatically increased the complexity of systems
– so much so that it is now impossible for a human to visualise, much less manage, all
of the different operational scenarios that are possible in today’s complex systems.
The stovepipe systems that are currently common in OSS and BSS design exemplify
this – their desire to incorporate best of breed functionality prohibits the sharing and
reuse of common data, and point out the inability of current management systems to
address the increase in operational, system, and business complexity [1]. Operational
and system complexity are spurred on by the exploitation of increases in technology
to build more functionality. The price that has been paid is the increased complexity
of system installation, maintenance, (re)configuration and tuning, complicating the
administration and usage of the system. Business complexity is also increasing, with
end-users wanting more functionality and more simplicity. This requires an increase
in intelligence in the system, which defines the need for autonomic networking [2]. If
autonomic computing, as described in [1][3] is to be realized, then the needs of the
business must be able to drive the services and resources that the network provides.

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 2

Autonomic systems were built to manage the increasing complexity of systems
[3][4] as well as to dynamically respond to changes in the managed environment [1].
While many have proposed some variant of automatic code generation, this requires a
detailed model of the system that is being reconfigured as well as the surrounding
environment. More importantly, a system component can not be reconfigured if the
system does not understand the functionality of the component. This means that the
system requires self-knowledge of its component, and knowledge of its users and
requirements. One of the most important forms of knowledge is context. For a system
to be able to generate code to modify itself, a model of context and its relation to not
just the set of self-configuration, self-healing, and other operations, but in general to
the management environment itself, is required. In addition, policy management is in
theory able to control these functions and ensure that they are applied consistently.

There are important business and technical drivers encouraging the use of
autonomic principles [3]. Our work in autonomic systems centers on using the
combination of policy management and context information in a formal and efficient
way for supporting and managing services. Formal indicates that the specification of
context should be depicted through a representational language; efficient means that
context are gathered and distributed in many layers (e.g., customer site as well as the
core network), and hence requires semantics to relate them. This paper presents a
novel policy-based service management framework for ensuring the efficient delivery
and management of next generation services using autonomic principles. We present
an architecture that uses an innovative fusion of semantic information that relates the
current context to services and resources delivered by the network. Different self-
functions, such as self-configuration, are controlled by policy-based management.
From a service oriented architecture viewpoint, policies are used for distributing and
deploying the necessary services, either atomically or through composition.

This paper provides an overview of our approach. In section II we provide an
overview of policy based management, and how it relates to autonomic systems.
Section III describes the functionality of the policy-based service management
framework, including its corresponding functional blocks and their mutual
relationships. It also introduces the “policy-based paradigm” to service management,
which is a novel framework for supporting service management functionality in
autonomic systems. Section IV presents the policy model that is currently
implemented and deployed as our approach to providing next generation services.
Section V presents the validation and results for our policy-based management
system. Section VI presents the conclusions, and finally the acknowledgements and
bibliography references are included.

2 Policy-Based Paradigm
Policy based management has been proven as a useful paradigm in the area of

network management. In the last few years, several initiatives have used policy
management approaches to tackle the problem of fast and customisable service
delivery. These include OPES [5] and E-Services [6]. We go one step further and
present an architecture that is intended to control the full service life cycle by means
of policies; in addition, it takes into account the variation in context information, and
relates those variations to changes in the services operation and performance. The
synergy obtained from the autonomic systems and the policy-based paradigm is the
knowledge platform, which is another innovative aspect of our work.

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 3

A policy has been defined in the sense of administrator-specified directives that
manages and provides guidelines for the different network and service elements in
[7]. In other words, a policy is a directive that is administratively specified to manage
certain aspects of desirable or needed behaviour resulting from the interactions of
user, applications and existing resources [8]. In this paper, we use the definition
“Policy is a set of rules that are used to manage and control the changing and/or
maintaining of the state of one or more managed objects” [4]. The inclusion of state is
very important for autonomic systems, as state is the means by which we know if our
goals have been achieved, and if the changes that are being made are helping or not.

The main benefits from using policies are improved scalability and flexibility for
managing services. Flexibility is achieved by separating the policy from the
implementation of the managed service, while scalability is improved by uniformly
applying the same policy to large sets of devices and objects. Policy-based
management emerged in the network management community and it is supported by
standards organisations such as the IETF, DMTF, and TMF [9][10][11]. In next
generation network (NGN) usage, the application of policies is being abstracted to
facilitate the works of service customisation, creation, definition and management.
Another benefit from using policies when managing services is their simplicity. This
simplicity is achieved by means of two basic techniques: centralised configuration
(e.g., each element does not have to be configured individually), and simplified
abstraction (e.g., each device does not have to be explicitly and manually configured
– rather, a set of policies is established that governs desired behaviour, and the system
will translate this policy into device-specific commands and enforce its correct
implementation.

The main objective of using policies for service management is the same of
managing networks with policies: we want to automate management and do it using
as high a level of abstraction as possible. The philosophy for managing a resource, a
network or a service with a policy-based managed approach is that “IF” something
happens “THEN” the management system is going to take an action. The main idea is
to use generic policies that can be customised following user subscription; the
parameters of the conditions and actions in the policies are different for each user,
reflecting its personal characteristics and its desired context information. We use the
policy-based paradigm to express the service life-cycle and subsequently manage its
configuration in a dynamic manner. It is this characteristic which provides the
necessary support and operations of autonomic systems. It should be noted that [4]
and [11] propose an important extension and enhancement to the simpler definitions
employed by the IETF and DMTF that is very attractive to autonomic systems.
Specifically, the definition of policies is linked specific to state management. The
following definitions are from [1] and will be used in our work:

“Policy is a set of rules that are used to manage and control the changing and/or
maintaining of the state of one or more managed objects.”
“A PolicyRule is an intelligent container. It contains data that define how the
PolicyRule is used in a managed environment as well as a specification of behavior
that dictates how the managed entities that it applies to will interact. The contained
data is of four types: (1) data and metadata that define the semantics and behavior of
the policy rule and the behavior that it imposes on the rest of the system, (2) a set of
events that can be used to trigger evaluation of condition clause of a policy rule, (3)
an aggregated set of policy conditions, and (4) an aggregated set of policy actions.”

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 4

Policy management is best expressed using a language. However, there are
multiple constituencies involved (e.g., business people, architects, programmers, and
technicians). It is shown in Figure 1. While most of these constituencies would like to
use some form of restricted natural language, this desire becomes much more
important for the business and end users. This notion was codified as the Policy
Continuum in [4][11]. Our approach is based on producing a formal language (with
appropriate dialects matched to each constituency) for standardisation in near future.

Figure 1. Mapping of Policy Languages to the Policy Continuum.
Our approach defines this set of languages in XML to ensure platform

independence. It is also easy to understand and manage, and the large variety of off-
the-shelf tools and freely available software provides powerful and cost-effective
editing and processing capabilities. Each of the implementation dialects shown in
Figure 1 is derived by successively removing vocabulary and grammar from the full
policy language to make the dialect suitable for the appropriate level in the Policy
Continuum. For some levels, vocabulary substitution using ontologies is used to
enable more intuitive GUIs to be built, but this is beyond the scope of this paper.

The policies are used in the managing of various aspects of the services lifecycle,
an important aspect of policy-based service management is the deployment of
services throughout the programmable elements. For instance, when a service is going
to be deployed over any type of network, decisions that have to be taken in order to
determine in which network elements the service is going to be installed and/or
supported by. This is most effectively done through the use of policies that map the
user and his or her desired context to the capabilities of the set of networks that are
going to support the service. Moreover, service invocation and execution can also be
controlled by policies, which enable a flexible approach for customising one or more
service templates to multiple users. Furthermore, the maintenance of the code
realising the service, as well as the assurance of the service, can all be related using
policies. Additionally when some variations in the service are sensed by the system,
one or more policies can define what actions need to be taken to solve the problem.

There are important approaches and projects dealing with Policy Based Service
Management (PBSM). A survey of policy specification approaches has been provided
[12]. The ANDROID Project [13] aims to prove the feasibility of providing a
managed, scalable, programmable network infrastructure. A more service layer
oriented approach is a proposed project [14]. The overall objective of the TEQUILA
project [15] is to study, specify, implement and validate a set of service definition and
traffic engineering tools to obtain quantitative end-to-end quality of service
guarantees through careful planning, dimensioning and dynamic control of scalable
and simple qualitative traffic management techniques within Internet services.

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 5

Another interesting proposal is the CONTEXT project [16], the objective is to
provide a solution in the form of an architecture that is oriented for creating,
deploying and managing context-aware services. This approach is well oriented under
the scope of policy based systems, but was developed without considering the
multiplicity of context information and the technology non-dependence. Generalised
policy-based service management architecture for autonomic systems will articulate a
functional process model and include process inter-relationships for an organisation.
It shall encompass a methodology that identifies the necessary policies, practices,
procedures, guidelines, standards, conventions, and rules needed to support the
business and their process inter-relationship enabling the organisation to govern the
application of policy management mechanisms. Hence, application of Policy-Based
paradigm in the service management area seems to be a feasible alternative for
meeting next generation service management goals.

3 Policy-Based Service Management Framework Approach
The PBSM framework that we present deals with the creation and modelling of

services, including their context information, in order to provide service assurance
and management functions. It does this by constructing a framework using autonomic
elements for the management and execution of services. The framework uses
programmable networks [17] implemented using autonomic elements to provide the
suitable execution environment for the services [2].

The framework allows the use of appropriate APIs for deploying the services in
mobile and IP domains. The context-policy model that we propose is flexible enough
to accommodate the value of context information that needs to be evaluated,
especially if the context changes [18]. Our context-policy model overcomes many of
the approaches done in the area of policy-based service management. It is based on
standards as much as possible and moreover, the policy model scales with the
network or applications that use it. Our context-policy model is expected to be
accessible from autonomic elements that can reside in heterogeneous networks and
architectures. Storage and retrieval of this information is also important; we meet this
requirement by being defined and implemented using an object-oriented philosophy.

The architecture deal with autonomic systems, for instance as an external
management method such as a finite state machine, containing the desired state of the
system. The autonomic system then compares the current state to the desired state
and, if different, orchestrates any required changes (e.g., reconfiguration). The
referred autonomic part is shown in Figure 2.

Figure 2. Behavioral Orchestration Using an Autonomic System and Policy Management.

Gather Sensor
Data

Compare Actual State to
Desired State

Define New Device
Configuration(s)

Match?
YES

NO

Managed
Resource

Control
Loop 1: Maintenance Autonomic Manager

Policy Manager
Policies control application of intelligence

Intelligent
Devices

Ontological
Comparison

Intelligent
Mediation Layer

Reasoning and
Learning

Control

Business Rules

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 6

The Intelligent Mediation Layer is a set of software that enables existing (i.e.,
legacy) and future (i.e., autonomic-enabled) entities to be governed by the autonomic
system. Since network devices can have different programming languages and types
of management information, we use DEN-ng to provide a Network lingua franca (i.e.,
a controlled vocabulary, along with a consistent set of meanings) for all management
information. The “Gather Sensor Data” is responsible for harmonising data received
from different sources. The “Ontological Comparison” describes concepts and
relationships between objects defined in the DEN-ng information model, enabling the
Autonomic Manager to reason about data received and infer meaning. For example,
we can find out which customers are affected by a particular SNMP alarm, even
though this information is not contained in the SNMP alarm, by looking at
relationships in both the information model and relevant ontologies and deducing
which customers are affected by the SNMP alarm. The autonomic system then
determines whether the actual state of the managed entity is equal to its desired state.
If it is, then the system keeps on monitoring the entity. If it is not, then the system
defines the set of configuration changes that should be sent to the managed entity.
These are translated by the Intelligent Middleware into vendor-specific commands for
legacy as well as future devices. The Autonomic Manager provides the novel ability
to change the different control functions (such as what data to gather and how to
gather it) to best suit the needs of the changing environment. An important, but future,
area of research is to add learning and reasoning algorithms to the system. Finally, the
Policy Manager is both an interface to the outside world (GUI and/or scripted) as well
as the translation of those requests to the autonomic system.

3.1. PBSM Framework Functional Block Description
The framework is composed of four main functional blocks as shown in Figure 3.

The Code Distributor is intended to download the generated code to the appropriate
code repositories and/or storage points (it could also be downloaded directly to
entities that can reconfigure themselves using this mechanism; this is part of our
future work). This installation process is a precondition for a service to be delivered.
This is because the autonomic system functions by dynamically adapting the services
and resources that they deliver, and one way of providing new or different
functionality is through self-configuration. In particular, our approach uses a variant
of the model driven architecture [19] to achieve this.

Figure 3. Policy-Based Service Management framework functional components.

Innvocation
Service
Listener

Code and Policies
Generation Engine

Service Assurance

 Execution Environment

Performance
Acerter Code Execution

Controller

Autonomic
Elements

Monitoring

Service
Customization

Service
Authoring

Service Creation
Instances

Policy Management
Editor

Code
Distributor

Network
Context

 User
Context

Service
Context

 AE’s
Context

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 7

Code repositories will be distributed throughout the network infrastructure.
Therefore, the Distributor will need to keep track of the URIs where code was
installed. The Code Execution Controller is the functional entity that will download
the code corresponding to the desired service from one of the repositories to install it
in the service execution environment and subsequently activate the service. The
Invocation Service Listener captures any of the different types of triggers (e.g., an
event, such as a user logging onto the network, or the change in state of a managed
entity) that may cause this service to be activated. This component also is responsible
for communicating these events to the autonomic elements that provide these
services. Finally, the Service Assurance module continuously monitors the quality of
service. The usual sequence of events would start with the detection of a trigger
(perhaps caused by an explicit or implicit consumer request) by the Invocation
Service Listener that detects a problem with the service; the service listener binds the
entities shown in Figure 3 to the appropriate autonomic elements and informs the
Code Execution Controller about this problem. The Code Execution Controller would
compose and forward an activation request message to the appropriate programmable
nodes in the service execution environment, which in turn would retrieve code from
the repository and execute it, starting the service provisioning phase. As soon as the
service has been started, Service Assurance module would keep track of its behavior.

3.2. PBSM Framework Components Description
The PBSM framework is composed of a set of components as shown in Figure 4.

The key component is the Policy Manager, which supports and governs the
functionality of all of the remaining modules including the Policy’s Consumers. The
Authorisation Check Component verifies that the user introducing the policy has the
necessary access rights to perform this function. This is supported using the role-
based access control model of DEN-ng. The Policy Conflict Check component is
responsible for maintaining the consistency of all policies introduced into the system.
E.g. each dialect of the policy language has its own vocabulary and grammar rules.
The system will check a policy against these rules to ensure that the policy is well-
formed. Decisions of when a policy must be enforced are closely linked with policy’s
Condition Evaluators, which are coordinated by the Decision Making Component.

Figure 4. Policy-Based Service Management framework Components and Interfaces.

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 8

For example the Decision Making Component checks its list of business rules
that must be enforced against the list of submitted policies, and notifies the
administrator of any matches. It also provides valuable information for policy conflict
detection and resolution. Finally, the Policy Repository (Database) gives support to all
other components by storing Information Model objects that provide a picture of the
system status and the Policies ruling the system at any time. Note that this makes use
of the DEN-ng policy model [4], which is an ordered event-condition-action triplet.
That is, WHEN an event occurs, IF a set of conditions are satisfied, THEN a set of
actions are executed. Policy components are defined and stored as Information Model
objects. Using the DEN-ng approach [4][11] the policy model is instantiated.

3.2.1. Policy Manager (PM)
The Policy Manager (PM) has two main functions: 1) to govern the functionality

of the system components, and 2) to check and incorporate new policies that arrive
from a Policy Generation Engine. The specific fields required by these policies and its
general structure are explained in the section “Policy Model”. Once a new policy, or
policies, arrives as an XML document from the Policy Generation Engine, the PM
parses it into Java and sends it to the Policy Conflict Check Component, which checks
for conflicts with other policies that are already loaded in the system. This provides
the flexibility to a) reject the policy if it conflicts with an already deployed policy, b)
replace an already deployed policy with this new policy (which of course involves
locating and gracefully stopping policy execution of the previous instance), or c) note
that there is an unresolved conflict and wait for a human administrator to resolve it.

The PM uses a sequential algorithm, aided by the atomic characteristics from the
policies (described in the policy model), to decide which policies will be activated at
any given moment, otherwise it will be stored in the repository for further processing.
This is governed by several factors in the DEN-ng policy model [4]. Briefly put, two
types of containment semantics are provided by DEN-ng for PolicyRules: grouping
and nesting. Grouping is the simpler of the two methods. It has the semantics of an
assembly of PolicyRules. The PolicyGroup establishes its own hierarchy for
evaluation purposes, and all immediate children (whether PolicyGroups or
PolicyRules) that are directly contained within a given PolicyGroup are treated as
being at the same level of containment. Finally, the DEN-ng model provides a set of
metadata attributes that control the semantics of a PolicyRule or PolicyGroup. The
decisionStrategy attribute is used to determine whether a single or potentially a group
of PolicyRules should be evaluated, and how it is done. The isMandatory attribute
defines whether a rule must be executed, and hence should be used with care, since it
requires the evaluation of the condition clause of a PolicyRule and the execution of
the actions of a PolicyRule if the condition clause evaluates to TRUE.

3.2.2. Decision Making Component (DMC)
The DMC receives the policy conditions from the PM. When the DMC receives

the conditions of a particular policy, it determines when this condition became true
and notifies the PM when the condition is met. The PM then notifies the appropriate
consumers of the policy that the policy actions are ready to be executed. During the
evaluation process three main activities must be performed: obtain the values of the
Condition Objects; evaluate the Condition Requirements; and apply the Evaluation
Method. The DMC will use the components called Condition Evaluators (CEs) in
order to support this evaluation process that deal with the autonomic elements.

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 9

3.2.3. Policy & Information Model Repository
The Policy & Information Model Repository is the logical place where policies

and other needed management information will be stored and fetched when needed.
The Repository will store information about the Policies loaded in the system,
information about the network, the available components (CE & AC) and their
capabilities (variables they can monitor and actions they can enforce), and other
information entities (e.g. management information). This information is of great
importance, for example when evaluating conditions, in order to determine whether
the appropriate Condition Evaluators are already installed or not to monitor
appropriate variables. The Policy Definition System will have to be aware of the
different Action Consumer and Condition Evaluator components, as well as the
different actions and conditions they are able to enforce and evaluate, in order to
effectively use and activate Management Policies.

3.2.4. Policy Conflict Resolution (PCR)
The Policy Conflict Resolution component (PCR) has the responsibility of

maintaining the overall consistency of the system. One example of inconsistency
would be that two policies require opposite actions when the same conditions are met.
The functionality of the PCR is to detect these situations and only accept new policies
when they do not introduce inconsistencies into the system. The algorithms required
to detect inconsistencies are not straightforward, and an active area of ongoing
research. For this reason the implementation of this component is not yet done, and
the component has been mentioned only for completeness.

3.2.5. Action Consumers (AC)
The Action Consumers (ACs) are the components for enforcing the policy

actions after the request of the PM. The PM will send to the appropriate Action
Consumer the action to be enforced and the initial parameters (if needed) to be used in
order to do that. The AC will return the results of the enforcement, showing if the
action has been successfully enforced. The ACs should be dynamically installed when
they are needed. To support this feature, it is necessary that the code(s) of the ACs are
stored in one (or more) Code Storage Points, playing the role of a Management Code
Repository. An example of one API for these components is given below:

 public class CodeInstallerInterface {
 public CodeInstallerInterface();
 public boolean InstallCode(String CodeId, URL[] URLList, int NoCopies, int Level, String[] PotentialExecPoints);
 public URL[] GetOptimalURLOfCode(String CodeId, InetAddress DINANodeIPAddr);
 public boolean RemoveCode(String CodeId);

 }

3.2.6. Condition Evaluators (CE)
The CEs are software components that can be installed in different parts of the

network or network components. They interact with the appropriate autonomic
elements to get the values required by a given condition. The CEs perform monitoring
and requirement evaluation activities, and can be responsible for evaluating
requirements (apply Condition Requirements) if all the events or variables (Condition
Objects) needed to evaluate the requirements are obtained. The Condition Object is a
PolicyStatement [4] that has the generic form {variable operator value}. DEN-ng
enables variables and values to be modeled as classes to facilitate reuse; runtime
substitution (e.g., with a literal) is also supported. An example of one API for these
components is given as follows:

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 10

 public class userPositionController {
 public userPositionController ();
 public int userPosition(String userID, String X, String Y, String Z, String [] arg);
 public int userPosition(String userID, String X, String Y, String Z, String mapReference, String [] arg);
 public int sendMessageToService(String user ID, String X, String Y, String Z, String msg);
 public int sendMessageToService(String userID, String X, String Y, String Z, String mapReference, String msg);
 }

4 Policy Model
The policies are structured hierarchically, in terms of Policy Sets, which can be

either PolicyRules or Policy Groups. The Policy Groups can contain PolicyRules
and/or other Policy Groups. This is enabled through the use of the composite pattern
for defining a PolicySet, and is shown in Figure 5. That is, a PolicySet is defined as
either a PolicyGroup or a PolicyRule. The aggregation HasPolicySets means that a
PolicyGroup can contain zero or more PolicySets, which in turn means that a
PolicyGroup can contain a PolicyGroup and/or a PolicyRule. In this way, hierarchies
of PolicyGroups can be defined.

The order of execution of PolicyRules
and PolicyGroups depends on the structure
of the hierarchy (e.g., grouped and/or
nested) and is controlled by the set of
metadata attributes defined in Section
3.2.1. The high level description of
policies follows the following format:

WHEN an event_clause is received that triggers a condition_clause evaluation
 IF a condition_clause evaluates to TRUE, subject to the evaluation strategy
 THEN execute one or more actions, subject to the rule execution strategy

The above has the following semantics. Policies are not evaluated until an event
that triggers their evaluation is processed. Note that the event does not have to be
actively sent to the autonomic system by a network component (e.g. as in an SNMP
alarm) – passive events, such as the passing of time, can also be included. The Service
Management Policies control just the service lifecycle, never the logic of the service.
In this way, Service Management policies are used by the PBSM components of the
system to define the Code Distribution and Code Maintenance of the service as well
as the Service Invocation, Service Execution and Service Assurance processes.
Coming from the general requirements associated to the Service Management layer,
we have defined five types of policies covering the service lifecycle. These five
policy types are structured around an information model whose most representative
part is shown in Figure 6.

Figure 6. Policy Information Model Hierarchy

HasPolicySets

PolicyRule

PolicySet

PolicyGroup0..1

0..n

0..1

0..n

Figure 5. The Composite Pattern Applied
to the Defintion of PolicySets

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 11

We have extended the above model by adding the new concept atomicity of a
PolicyGroup or PolicyRule. If the first PolicyRule or PolicyGroup is labeled as
Atomic, then the second PolicyRule or PolicyGroup will be activated only if the first
one has been previously enforced. If it is not then the second Policy can be activated
simultaneously with the first one. Note that if a PolicyGroup is labelled as Atomic,
then all the Policies contained have to be previously enforced before any Policies of
the second PolicyGroup can be activated. The different Policy Groups inside a Policy
Set or inside other Policy Groups are also ordered with a sequence number. The first
Policy Group in the sequence will be processed first, then the next, and so forth.
4.1. Service Code Distribution

This step takes place immediately after the service creation and customisation. It
consists of storing the service code in specific storage points. Policies controlling this
phase are CDistribution Policies. The mechanism controlling the code distribution
will determine in which storage points the code is to be stored. The enforcement will
be carried out by the Code Distribution Action Consumer. A high level example of
this type of policies is presented:

“If (customised service B code is received)
 then (configure distribution of service B code and optimum Storage Point selection parameters)”

4.2. Service code maintenance
Once the code is distributed, it must be maintained in order to support updates

and new versions. For this task, we have the CMaintenance Policies. These policies
control the maintenance activities carried out by the system on the code of specific
services. A typical trigger for these policies could be the creation of a new code
version or the usage of a service by the consumer. The actions include code removal,
update and redistribution. These policies will be enforced by the Code Distribution
Action Consumer. Three high level examples of this type of policies are shown here:

“If (new version of customised service B code)
 then (remove old code version of service B from Storage Points) & (distribute new service B code)”

“If (customised service B code expiration date has been reached)
 then (deactivate execution polices for service B) & (remove code of service B from Storage Points)”

“If (The invocation’s number for service B is very high)
 then (distribute more service B code replicas to new Storage Points)”

4.3. Service invocation
The service invocation is controlled by SInvocation Policies. The Service

Invocation Condition Evaluator detects specific triggers produced by the service
consumers. These triggers also contain the necessary information that the policy is
going to evaluate in order to determine the associated actions such as addressing a
specific code repository and/or sending the code to specific execution environments in
the network. The policy enforcement takes place in the Code Execution Controller
Action Consumer. A high level example of this type of policies is presented:

“If (invocation event X is received)

 then (customised service B must be downloaded to the specific IP address) ”

4.4. Code execution
CExecution Policies will drive how the service code is executed. This means that

the decision about where to execute the service code is based on one or more factors
(e.g., using performance data monitored from different network nodes, or based on
one or more context parameters, such as location or user identity). Service Assurance
Action Consumers are entrusted to evaluate such network conditions and the

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 12

enforcement will be the responsibility of the Code Execution Controller Action
Consumer. A high level example of this type of policies is presented:

“If (invocation event X is received)
 then (customised service B must be executed)”

4.5. Service assurance
This phase is under the control of SAssurance Policies, which are intended to

specify the system behaviour under service quality violations. Rule conditions are
evaluated by the Service Assurance Condition Evaluator. These policies include
preventive or proactive actions, which will be enforced by the Service Assurance
Action Consumer. Two high level examples of this type of policies are presented:

“If (customised service B is running)
 then (configure assurance parameters for service B) & (configure local assurance variables)”

“If (level=2)&(parameterA>X) then (Action M)”
“If (level=2)&(parameterB>Y) then (Action N)”
“If (level=2)&(parameterC<Z) then (level=1)&(Action K)”

The proposed PBSM framework does not assume a 'static' information model
(i.e., a particular, well defined vocabulary that does not change) for expressing
policies. In contrast, our proposed framework can process policies that can be defined
dynamically (e.g., new variable classes can be defined at run-time). The essence of
our framework approach is to associate the information expressing policy structure,
conditions and actions with information coming from the external environment.
Specifically, the externally provided information can either match pre-defined schema
elements or, more importantly, can extend these schema elements. The extension
requires machine-based reasoning to determine the semantics and relationships
between the new data and the previously modelled data. This is new work, an
overview of which is in [1], and is beyond the scope of this paper. Information
consistency and completeness is guaranteed by a policy-definition system, which is
assumed to reside outside the proposed framework (the service creation and
customisation systems in the Context system).

By supporting dynamically defined policies, we achieve the flexibility of policy-
based management. We think that this feature is indeed a requirement of the design of
the overall Context system (for achieving rapid context-aware service introduction
and automated provisioning) and that it is supported by our approach.

5 Validation and Results
Many applications that are currently being developed that require (or would

benefit from) autonomic computing systems follow the premise of optimising the
support for user-oriented services. Our framework is uniquely positioned to do this
task efficiently and effectively, since it is contextually aware of changes to the
environment and/or user. More important, it provides a means for reacting to context
changes in a predictable and scalable manner through policy based management.
Notably, this avoids requiring the use of skilled resources for simple, manually
intensive operations. The automation that these kinds of architectures provide is
critical for meeting the requirements of next generation services.

As an example application of this PBSM framework, we have been using a set of
scenarios in which the main factor is the non-intervention of specialised network
managers. Once the service has been created, the main idea is that the user interacts
with the system in a direct way, and the network operator now has a much simpler

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 13

and reduced role – to function mainly as a simple authoring entity, and/or an entity
that allows the operation. Only occasionally will the network operator have to
intervene and define new policies to take direct hard control of the system.

Let’s imagine services that need to be deployed on the fly (e.g., services that are
pre-defined but that will be deployed when the user signs in to the system or after a
certain period of time). Such services can be functions that execute when the user logs
in, a video conference or the downloading of multimedia content that starts on
demand. Furthermore the services need to be assigned the appropriate quality of
service, depending on the type of user as well as user-centric context-sensitive
attributes (e.g., this is a user that has just purchased a new service, or this is an
established gold user). These scenarios inherently require technological support based
on policy that allows them to react in a specific manner based on the specific context.

Using Policies to manage a communication system requires more computer
resources than systems that are not policy-based. Figure 7 shows the CPU usage (%)
and Memory usage (MBytes) versus the number of policies associated to a given
service. We can observe that the CPU usage decreases with the replication of the
service invocation rate. This means that the CPU usage decreases when the number of
services (users of policy) increases, while the Memory usage increases due to the
number of services (policies used to support services) being used. This occurs in all
systems (even those without a policy-based paradigm). This feature is important when
we try to design a scalable system with CPU limitations. In this scenario, the
advantages in using a policy-based management system outweigh the benefit of
requiring less computer resources, as provided by those that do not use policy.

Figure 7. CPU-Memory usage vs. Policy Allocation Rate.
The performance study was made using a PC with the following characteristics:

Processor Intel Pentium 4 at 2.00 GHz. AT/At Compatible with 785 KB of RAM and
supported by Microsoft Windows 2000 5.00.2195 with Service Pack 4; JRE 1.4.2_06
from Sun. and the AppPerfect DevSuite 5.0.1 - AppPerfect Java Profiler [20]

6 Conclusions
The main benefits from using policies for managing services are improved

scalability and flexibility for the management of the systems; this also simplifies the
management tasks that need to be performed. These scalability and simplification
improvements are obtained by providing higher level abstractions to the
administrators, and using policies to coordinate and automate tasks.

Policies make automation easier, as well as enable service management tasks to
take into account any customisation of the service, made by either the consumer or the
Service Provider. We have used the DEN-ng policy model due to its use of patterns,
roles, and additional functionality not present in other models (e.g., its support of
finite state machines). The extension of service management functionality to act on

0.00

5.00

10.00

15.00

20.00

25.00

St ar t Up 1 5 10 15 20 25 30

Po licy A llocat io n R at e

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

Star tUp 1 5 10 15 20 25 30

Policy A llocat ion R at e

IFIP/TC6 Autonomic Networking 2006: SMARTNET 2006 – Tools for the Autonomic Networking

EDAS File Reference: 1860050637 14

demand is an important property supported by using policy-based service
management systems. We extend the current state-of-the-art in this area in two
important ways. 1) We use the novel combination of policy management and context
to describe changes to service management functionality and, more importantly, how
to respond to these changes. 2) We have built a componentised, inherently scalable
architecture for managing services. This architecture has then been linked into a larger
autonomic architecture that uses the combination of information models, data models,
ontologies, and machine-based learning and reasoning to achieve autonomic
behaviour. Significantly, the Autonomic Manger of this architecture, and hence each
of the components that it governs, are controlled by our Policy Manager.

The policy-based service management framework approach proposed emerges as
a tool to solve some of the autonomic systems requirements in the line of the services
management. This framework approach has been conceived to provide an innovative
managing tool for next generation services and interact with autonomic systems.

Acknowledgments
This work is being extended and refers partially to the activities done in the
framework of the IST-CONTEXT project, a two and a half years research and
development project, partially funded by the European Commission. Thank you very
much also to all the collaborators that helped in the realisation of this paper.

References
[1] Strassner, J. and Kephart, J., “Autonomic Networks and Systems: Theory and Practice”, NOMS

2006 Tutorial, April 2006.
[2] Strassner, J., “Seamless Mobility – A Compelling Blend of Ubiquitous Computing and Autonomic

Computing”, in Dagstuhl Workshop on Autonomic Networking, January 2006.
[3] Kephart, J.O. and Chess, D.M., “The Vision of Autonomic Computing”, IEEE Computer, January

2003. http://research.ibm.com/autonomic/research/papers/
[4] Strassner, J., “Policy Based Network Management”, Morgan Kaufman, ISBN 1-55860-859-1
[5] G. Tomlinson, R. Chen, M. Hoffman, R. Penno, “A Model for Open Pluggable Edge Services”,

draft-tomlinson-opes-model-00.txt, http://www.ietf-opes.org
[6] Giacomo Piccinelli, Cesare Stefanelli, Michal Morciniec. “Policy-based Management for E-

Services Delivery” HP-OVUA 2001.
[7] Westerinen, A.; Schnizlein, J.; Strassner, J. “Terminology for Policy-Based Management”. IETF

Request for Comments (RFC 3198). November 2001.
[8] Verma D. (2000) “Policy Based Networking” 1ª ed. New Riders. ISBN: 1-57870-226-7 Macmillan

Technical Publishing USA.
[9] Moore, E.; Elleson, J. Strassner, A. “Policy Core Information Model-Version 1 Specification”.

IETF Request for comments (RFC 3060), February 2001.
[10] Moore, E.; “Policy Core Information Model-Extensions”. IETF Request for comments (RFC 3460),

January 2003.
[11] TMF, “The Shared Information and Data Model – Common Business Entity Definitions: Policy”,

GB922 Addendum 1-POL, July 2003.
[12] Damianou, N.; Bandara, A.; Sloman, M.; Lupu E. “A Survey of Policy Specification Approaches,

http://www.doc.ic.ac.uk/~mss/MSSPubs.html
[13] ANDROID Project. http://www.cs.ucl.ac.uk/research/android
[14] Jun-Jang Jeng; Chang, H; Jen-Yao Chung; “A Policy Framework for Business Activity

Management”. E-Commerce, IEEE International Conference. June 2003.
[15] IST-TEQUILA Project. http://www.ist-tequila.org
[16] IST-CONTEXT project. http://context.upc.es
[17] Raz, and Y. Shavitt, "An Active Network Approach for Efficient Network Management",

IWAN'99, July 1999, Berlin, Germany, LNCS 1653, pp. 220 –231.
[18] Henricksen. K., et al. “Modelling Context Information in Pervasive Computing System”.

Proceedings of Pervasive 2002, LNCS 2414, pp. 167-160, 2002.
[19] Please see http://www.omg.org/mda
[20] AppPerfect DevSuite 5.0.1-AppPerfect Java Profiler. http://www.appperfect.com/

