
An Approach to Integrated Semantic

Service Discovery

Shanshan Jiang and Finn Arve Aagesen

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N-7491 Trondheim, Norway
{ssjiang, finnarve}@item.ntnu.no

Abstract. In a distributed service environment, service discovery is a
core functionality to locate the desired services. We propose an integrated
semantic service discovery approach based on ontology, which provides
matching of functional and non-functional properties. Functional proper-
ties are described in terms of operations, inputs, outputs, preconditions
and effects, while non-functional properties are specified as business poli-
cies, QoS properties and context policies. Ontological inference and rule-
based reasoning are applied for automatic and accurate discovery.

1 Introduction

In a distributed service environment, service discovery is a core functionality to
locate the desired services. Service discovery is a process of finding the desired
service(s) by matching service descriptions against service requests. A service
description provides service-related information which can be advertised by a
service provider and searched during service discovery process. Such informa-
tion usually includes functional properties and non-functional properties. In this
paper, functional properties representing functionality of a service are modeled
in terms of operations, inputs, outputs, preconditions and effects, while non-
functional properties comprise business policies, Quality of Service (QoS) prop-
erties as well as context policies. QoS properties include QoS parameters and
QoS policies. A service request represents user’s service requirements, comprising
requirements on functional and non-functional properties.

Ontologies are the basis for adding semantic expressiveness to service de-
scriptions and requirements. An ontology is an explicit and formal specification
of a shared conceptualization [19]. A service ontology is accordingly an explicit
and formal specification of core concepts of the functional and non-functional
properties of service. “A domain ontology (or domain-specific ontology) models
a specific domain and represents the particular meanings of terms as they apply
to that domain. An upper ontology is a model of the common objects that are
generally applicable across a wide range of domain ontologies.” 1 Ontological
relations such as “is-subclass-of” or “part-of” are used for ontological inference.
1 Wikipedia: http://en.wikipedia.org/wiki/Ontology (computer science).

Semantic service discovery is a service discovery process based on ontology
concepts. By using ontology concepts defined in a service ontology expressively
in a service description, semantics of the service description can be defined.
These service descriptions are therefore expressive semantic descriptions. At the
same time, by having both ontology-based descriptions and requirements, an
ontology-enhanced reasoning engine (i.e. capable of ontological inference) can be
used to locate services automatically and accurately. Integrated semantic service
discovery is a semantic service discovery process based on both functional and
non-functional properties of the services.

Service discovery has been a hot topic in the last years, and many different
approaches have been proposed. In Web Services technology, Web Services are
described in WSDL (Web Services Description Language) [22] and advertised in
UDDI (Universal Description, Discovery and Integration) [21] registries. UDDI
provides only keyword-based discovery (e.g. service category or provider name)
and makes no use of semantic information of service behaviour (e.g. semantics
of operations, inputs and outputs) defined in the service descriptions during dis-
covery. A number of protocols for service discovery have also been proposed,
most notably, SLP (Service Location Protocol) [8], Jini [11], UPnP [7] and Salu-
tation [4]. Service descriptions in these protocols are usually based on categories
of predefined service types, interface types, attributed IDs and values, with-
out expressive semantic descriptions to enable reasoning. Thus service discovery
is restricted to simple keyword-based category and attribute matching. Other
approaches based on Semantic Web technology, such as [13], provide semantic
service discovery, but limit their discovery to functional properties only, without
considering non-functional properties during the process. Integrated semantic
service discovery, however, is important to achieve accurate and satisfactory dis-
covery results.

In this paper, we propose an integrated semantic service discovery approach
based on semantic-annotated WSDL [16]. Ontologies are defined in the Web
Ontology Language, OWL [12]. Behavioral semantics are added to WSDL file
by associating service functionality related elements with links to OWL-based
service ontology. Non-functional properties are specified as QoS parameters and
rule-based policies comprising business policies, QoS policies and context poli-
cies. Furthermore, WS-Policy Framework (Web Services Policy Framework) [6]
and WS-PolicyAttachment (Web Services Policy Attachment) [5] are utilized to
attach QoS parameters and policies to WSDL-based service descriptions. Ser-
vice requirements are also expressed using ontology concepts. Based on them, an
integrated semantic service discovery procedure is presented, which takes into
account selection criteria based on business policies, QoS policies and context
policies, as well as user defined service selection criteria in terms of overall QoS
scores based on QoS parameters.

The rest of the paper is organized as follows: Sect. 2 discusses service de-
scription elements with focus on rule-based policy specifications. Based on it, an
integrated semantic service discovery framework is presented in Sect. 3. Related
work is discussed in Sect. 4, followed by summary and conclusions in Sect. 5.

2 Service Description Elements

A service description comprises the following elements:

– Functionality description in terms of operations, inputs, outputs, precondi-
tions and effects.

– QoS parameters offered by the service.
– Service parameters such as location and other service specific parameters.
– Policies for service discovery, comprising business policies, QoS policies and

context policies.

A policy is a rule applied in the decision making process. It is usually con-
ditional criteria against which factual variables are evaluated to determine an
appropriate action. Therefore, a rule-based policy representation is a natural
choice for policy specification. Ontology-based policy description allows service
providers and requestors to describe their policies with respect to a common
ontology in terms of meaningful concepts and relations. Furthermore, benefit
from semantic enrichment and ontological inference can be achieved. For service
discovery process, policies will guide the optimal selection of desired services
among several functionally equivalent services.

Formally, an ontology-based policy rule P can be defined as a tuple <r, o, s,
c, a>, where r is a reference to a policy ontology, o denotes the organization P
belongs to, s denotes the service P applied to, c the conditions, a the actions.
WS-Policy framework [6] provides a general purpose model to describe and com-
municate policies of a Web Service. It places no restrictions on the language used
to represent policy expressions. We use an ontology language, OWL, to express
the policy based on the upper ontology for policy inspired by [18] and depicted in
Fig. 1. The upper ontology defines the concepts used for policy specification and
their relations. A policy belongs to an organization and is applied to a service.
A policy has a policy domain and refers to a domain-specific policy ontology.
A policy may have multiple rule sets, each of them defines a set of rules. The
rule sets have rule operators, such as “ExactlyOne” to specify that only one rule
set is applied at a time. Each rule is a conditions-and-actions statement, which
specifies the actions to be performed when conditions are evaluated to TRUE.
Conditions are specified in expressions while actions are associated with opera-
tions of a service. Actions may also have expressions and may require conditions.
Expressions may have attributes, literal values, operators as well as logical oper-
ators. Attributes can be service parameters, inputs, outputs or QoS parameters
of a service. Therefore, this upper ontology of policy has relations with service
ontology, i.e. concepts in the gray area in Fig. 1 also belong to service ontology.

2.1 Business Policies

Business policies are rules related to business concepts. They can be published
associated with a service to constrain service discovery process. As an example,
consider a delivery policy for an online bookstore, say BookStoreA, which spec-
ifies that if the number of copies ordered for a book is less than 50, then the

policy

Policy
domain

Rule

RuleSet

Service

Condition

Rule
Operator Action

Expression

Operation

Policy
Ontology

Organization

Literal
value

Attribute

hasRuleSet

hasRule

belongTo

referTo

hasDomain

hasAction

hasCondition

hasRuleOperator

hasExpression

hasVariable

associateWith
Operation

hasParameter

”Operator”

hasOperator

hasVariable hasOperation
hasLiteralValue

hasLogicalOperator

”LogicalOperator”
isAppliedTo

hasExpression

Require
Condition

outputinput

hasInput hasOutput

canBe canBe

QoS
parameter

Service
Parameter

canBe

hasQoS
canBe

Part of service ontology

Fig. 1. Upper ontology for rule-based policy

delivery time will be within 5 days; if between 50 and 200, the order will be
delivered within 10 days; otherwise, the inventory should be checked before an
action is taken. The policy can be expressed in three rules as shown in Fig. 2.

Rule 1 IF (numberOfCopies ≤ 50)
THEN DeliverBooks (deliveryDays ≤ 5)

Rule 2 IF (50 < numberOfCopies ≤ 200)
THEN DeliverBooks (deliveryDays ≤ 10)

Rule 3 IF (numberOfCopies > 200)
THEN CheckInventoryFirst

Fig. 2. Example delivery policy for an online bookstore

A user who orders 100 copies of a textbook to be delivered within 15 days
from online bookstores may select the PurchaseBook service from BookStoreA
since his/her request can be matched by the second rule. Figure 3 shows part of
the policy specification called DeliveryPolicyBookStoreA for an online bookstore
BookStoreA based on the upper ontology defined in Fig. 1, which corresponds
to Rule 1 in Fig. 2. Note that the namespace po: refers to the upper ontology,
while the namespace sp: refers to the domain-specific policy ontology. Attribute

xmlns:po=“http://examplepolicy.com/policy.owl#”
xmlns:sp=“http://ecommerce.com/policy.owl#”
xmlns=“http://BookStoreA.com/PolicyRule.owl#”

<sp:DeliveryPolicy rdf:ID=“DeliveryPolicyBookStoreA”>
<po:hasRuleSet rdf:ID=“RuleSet1”>

<po:hasRuleOperator rdf:resource=“po:ExactlyOne” />
<po:hasRule>

<po:Rule rdf:ID=“Rule1”>
<po:hasCondition rdf:resource=“#CheckQuantity1”/>
<po:hasAction rdf:resource=“#DeliverBooks1”/>

</Rule>
</po:hasRule>
....

</po:hasRuleSet>
</sp:DeliveryPolicy>

<sp:CheckQuantity rdf:ID=“CheckQuantity1”>
<po:hasExpression>

<po:Expression rdf:ID=“ExprCondition1”>
<po:hasVariable>

<po:Attribute rdf:resource=“sp:numberOfCopies”/>
</po:hasVariable>
<po:hasOperator rdf:resource=“po:isLessThanOrEqual”/>
<po:hasLiteralValue>

<po:LiteralValue rdf:ID=“LiteralValue1”>
<po:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema#int”>50
</po:hasValue>
<po:hasType rdf:resource=“po:Integer” />

</po:LiteralValue>
</po:hasLiteralValue>

</po:Expression>
</po:hasExpression>

</sp:CheckQuantity>

<sp:DeliverBooks rdf:ID=“DeliverBooks1”>
<po:associateWithOperation>

<sp:DeliverBookOperation rdf:ID=“DelBkStoreA” />
</po:associateWithOperation>
<po:hasExpression>

<po:Expression rdf:ID=“ExprAction1”>
<po:hasVariable>

<po:Attribute rdf:resource=“sp:deliveryDays” />
</po:hasVariable>
<po:hasOperator rdf:resource=“po:isLessThanOrEqual” />
<po:hasLiteralValue>

<po:LiteralValue rdf:ID=“LiteralValue2”>
<po:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema#int”>5
</po:hasValue>
<po:hasType rdf:resource=“po:Integer” />

</po:LiteralValue>
</po:hasLiteralValue>

</po:Expression>
</po:hasExpression>
<po:requireCondition rdf:resource=“#CheckQuantity1”/>

</sp:DeliverBooks>

Fig. 3. Example policy rule specification in OWL

numberOfCopies is a service input, attribute deliveryDays is a service output,
while operation DeliverBookOperation is a service operation.

2.2 QoS Properties

QoS is a very important aspect of non-functional properties for a service. In a
distributed environment, services with equivalent functionality can be provided
by different service providers with substantially varied QoS. How to specify QoS
and incorporate it into service discovery process is thus of great importance.

QoS properties can be specified as QoS parameters and QoS policies. QoS pa-
rameters are QoS attributes that can be expressed in quantifiable measurements
or metrics. A service usually possesses a set of QoS parameters. Though many
of them are of dynamic nature, i.e., related to the execution of the service, a
service can still advertise its guaranteed QoS in service description. QoS policies
are rules related to QoS parameters. Rule-based QoS policies have often been
used in network-related services, e.g. network and system management services.
A service can provide different QoS classes of service depending on the service
classes users subscribed. For example, a GoldClass user may have access to Gold-
ClassService, which guarantees a set of QoS parameters, such as bandwidth and
response time, much better than a user in SilverClass. A QoS policy for service
discovery can similarly be specified as “If a user belongs to GoldClass, then the
service provided guarantees a set of QoS parameters.”

QoS parameters can be classified into different categories, e.g., scalability,
capacity, performance, reliability, availability, etc. There are several efforts to
define and categorize QoS parameters in terms of classifications or ontologies [10]
[15]. Fig. 4 shows part of a QoS ontology based on [10] for illustration purpose.

QoS

Economic

Cost

Performance

Latency Throughput

Reliability

Scalability Availability

Security

Authentication

Encryption

Auditability

ResponseTime

Jitter

Recoverable

MTTR

Fig. 4. Part of a QoS ontology (arrows indicate subClassOf relationship)

Not all attributes in the QoS ontology is relevant in a specific service discovery
process, for example, a user may consider some of the QoS parameters valuable
in his or her request. The matching procedure for service discovery therefore
needs to take this into account by calculating the user specified QoS selection
criteria. We adopt the QoS ranking approach proposed in [14], which defines a
quality matrix to represent the values of user specified QoS parameters for all
candidate services and an overall QoS score function to calculate overall QoS
satisfactory values.

A quality matrix, Φ = {V (Qij); 1 ≤ i ≤ m; 1 ≤ j ≤ n}, is defined as a
collection of quality attribute-values for a set of candidate services, where V (Qij)
represents the value of the ith QoS attribute for the jth candidate service. These
values are obtained from candidate service descriptions and mapped to a scale
between 0 and 1.

An overall QoS score function is defined as

fQoS(Servicej) =
m∑

i=1

(V (Qij) × Weighti)

where m is the number of QoS attributes in Φ, Weighti is the weight value
(specified by user) for each attribute.

The fQoS score is calculated for each candidate service, and if the fQoS score
is greater than some user defined threshold, the corresponding service will be
selected. Take an example, a user requesting an online streaming video service
considers throughput, response time and availability more valuable than other
QoS parameters and specifies the QoS selection criteria as WeightThroughput =
0.8, WeightResponseTime = 0.9, WeightAvailability = 0.7, and a threshold score
value UThreshold = 1.5. Assume there are three candidate services for online
streaming video, S1, S2 and S3, and the quality matrix is:

Φ =

⎛
⎜⎜⎝

S1 S2 S3

Throughput 0.90 0.80 0.50
ResponseTime 0.90 0.80 0.60
Availability 0.90 0.50 0.40

⎞
⎟⎟⎠

After calculation of their respective fQoS scores, only S1 and S2 will be
selected. Further assume that the user specifies to rank the services based on
Cost in ascending order, and the Cost of S1 is greater than that of S2 , the results
returning to the user will be {S2, S1}, specifying that S2 is a better choice than
S1 for the user’s purpose.

2.3 Context Policies

Context policies are rules related to context information. Some context informa-
tion can greatly affect the selection of services. For instance, for a home food
delivery service, the user’s location is an important aspect for selecting possi-
ble service providers. In addition, depending on service types, different context

information should be considered. Examples of context information include lo-
cation, time, connection (e.g., if the user is accessible via a wireless or wired
connection), user’s feeling, presence, and user’s habits and hobbies.

Context policies can be specified in the same format as business policies and
QoS policies. For example, a service provider for a home food delivery service
may specify a location-based policy as “only deliver food within the same city”.
This location policy can be specified as:

IF (UserLocation.city = ServiceProviderLocation.city)
THEN Service can be provided.

Some services are context-aware, others are not. For context-aware services,
it is preferable that the context information can be automatically integrated
into the service request even though the user does not specify them explicitly.
For instance, there are several approaches to identify the location of a mobile
user. One method to position the mobile user is to leverage the SS7 network
to derive location. Another example is user profiles, which usually define user
preferences, such as habits, hobbies, and other personalized information, such as
access rights and startup applications. However, mechanisms for obtaining such
context information are outside the scope of this paper. We just demand that
context information should be included as a part of service request wherever
possible so that context policies can be used during service discovery.

3 Integrated Semantic Service Discovery Framework

3.1 Integrated Semantic Service Description

There have been efforts to add semantics to service descriptions. Two major ap-
proaches based on ontology are OWL-S [3] and semantic-annotated WSDL [16].
OWL-S uses an OWL-based ontology for describing Web Services and supports
service discovery at the semantic level. The semantic-annotated WSDL approach
relates concepts in WSDL to OWL ontologies in Web Services descriptions, i.e.,
WSDL or UDDI. We adopt semantic-annotated WSDL to describe services, be-
cause WSDL has been accepted as the industry standard for Web Services de-
scription and most of the existing Web Services support WSDL standards. This
has the advantage of having widely acceptance without adding significant com-
plexity.

Figure 5 demonstrates the semantic annotation for our integrated service
description approach. An ontology-based semantic service description is repre-
sented as a semantic-annotated WSDL file, with links to the ontology definition
and WS-Policy file for policy definitions and provided QoS parameters. This
semantic-annotated WSDL is an XML-formatted Web Service description doc-
ument based on WSDL, and is extended with OWL-based ontologies to add se-
mantics to WSDL elements. The WSDL file PurchaseBookService.wsdl specifies
the functional properties in terms of operations, inputs and outputs. Preondi-
tions and effects for the operation can also be specified [17]. The concepts of

them are referred to concepts in the service ontology. Policies for service discov-
ery are specified in OWL file PolicyRule.owl, while WS-Policy framework and
WS-PolicyAttachment are utilized to attach them to WSDL. In order to incorpo-
rate QoS parameters into WSDL without significant changes to existing WSDL
structure, QoS parameters and other service parameters are also specified in an
OWL file QoS.owl, and attached to WSDL using the same mechanism as the
policy file. In detail, this means that all policies related to the service as well as
QoS and service parameters can be specified in one XML file, Policy.xml, with
links to respective OWL files, as shown in Fig. 6. This policy specification can
then be attached to WSDL description, as shown in Fig. 7. As to be noted, we
assume there is a shared ontology for each service domain, the same stands for
policy and QoS ontologies. At the same time, a local ontology can be extended
based on shared ontology to accommodate special needs.

WSDL

Operation:
PurchaseBook

Input:
BookDetails

Output:
Confirmation

BookSelling
Services

Data

Operation

BookOrdering

BookInfo
ConfirmMessage

Policy

Context rules

QoS paramter

Avaliability

Economic
Cost

Accessibility

Business rules
QoS policy

Condition

...

cost

availability

accessibility

PolicyAttachment

Policy.xml

PurchaseBook
Service.wsdl

PolicyRule.
owl

QoS.owl

hasOperation
subClassOf

subClassOf

hasInput

subClassOf

Service

subClassOf

subClassOf
subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

Part of Service
Ontology

Part of Policy
Ontology

Part of QoS
Ontology

QoS parameter

DeliverPolicy
BookStoreA

LocationPolicy
BookStoreA

hasOutput

...

Effect
hasEffect

hasCondition

decisionOn

GoldClassQoSPolicy
BookStoreA

subClassOf

Fig. 5. Semantic annotated service description for integrated service discovery

<wsp:Policy Name=“PurchaseBook”>
<wsp:All>

<!– Business policy –>
<po:DeliveryPolicy>http://BookStoreA.com/PolicyRule.owl#DelieveryPolicyBookStoreA
</po:DeliveryPolicy>
<!– Context policy –>
<po:LocationPolicy>http://BookStoreA.com/PolicyRule.owl#LocationPolicyBookStoreA
</po:LocationPolicy>
<!– QoS policy –>
<po:QoSPolicy>http://BookStoreA.com/PolicyRule.owl#GoldClassQoSPolicyBookStoreA
</po:QoSPolicy>
<!– QoS parameters and other service parameters –>
<po:QoSParameters>http://BookStoreA.com/QoS.owl#QoSParametersBookStoreA
</po:QoSParameters>
<!– other policy for PurchaseBook, e.g. security policy –>
...

</wsp:All>
</wsp:Policy>

Fig. 6. Policy.xml - All policy specification for Web Service PurchaseBookService

<wsp:PolicyAttachment>
<wsp:AppliesTo>

<wsa:EndpointReference>
<wsa:ServiceName Name=“PurchaseBookService” />
<wsa:PortType Name=“PurchaseBookPortType” />
<wsa:Address URI=“http://BookStoreA.com/PurchaseBookService” />

</wsa:EndpointReference>
</wsp:AppliesTo>
<wsp:PolicyReference URI=“http://BookStoreA.com/Policy.xml” />

</wsp:PolicyAttachment>

Fig. 7. Attaching policy specification to WSDL file PurchaseBookService.wsdl

3.2 Integrated Semantic Service Requirement

A user request specifies the functional requirements, non-functional requirements
and user defined selection criteria in terms of preferred QoS parameters and their
weights. Such request is also based on ontology concepts. A request template can
be provided. This user request is combined with automatically obtained context
information to produce an integrated service requirement specification in the
form of an integrated semantic service request, which comprises the following
information:

– Functional requirements in terms of operations, inputs, outputs, precondi-
tions and effects.

– Non-functional requirements, such as QoS constraints.
– Context information obtained automatically by the system.
– User specified selection criteria, i.e. QoS parameters and their weights as

well as user specified ranking criteria. This allows for personalized service
ranking.

3.3 Integrated Semantic Service Discovery Procedure

Integrated semantic service discovery process can be arranged in two major steps.
The first step is to find out the services that meet the functional requirements

based on matching of functional properties. As there is usually more than one
service matching the functional requirements, a set of candidate services are
obtained. The next step is therefore to select the most appropriate ones from
these candidates based on non-functional properties and rank them according to
user defined criteria.

The whole discovery process is carried out by a reasoning engine. When an
integrated semantic service request is sent to the reasoning engine, the engine will
first determine the candidate services that offer the requested functionality based
on matching of functional properties. We adopt a procedure based on ontological
inference and degree of match [13]. This procedure typically uses subsumption
reasoning to find similarity between service descriptions and service requests
based on operations, inputs and outputs. Preconditions and effects can also be
used for matching. During the second step, policies will be checked and applied
to further select services among the candidate services. The semantic-annotated
WSDL files of candidate services contain links to all policy specification file
(e.g. Policy.xml), which can be referenced to retrieve the related policy rules
(PolicyRule.owl) as well as QoS and service parameters (QoS.owl). Rule-based
reasoning can then be applied to determine satisfied matching. After that, overall
QoS scores for those candidate services are calculated based on user defined
selection criteria (i.e. based on selected QoS parameters and their respective
weights) as described in Sect.2.2. All the matches will be returned according to
user specified ranking criteria.

Ontological inference and rule-based reasoning are applied during seman-
tic service discovery process. The reasoning engine which carries out the above
procedure is based on XDD [23] - a knowledge representation framework - and
XET [2] - a powerful computing and reasoning engine for XDD. Work has al-
ready been done, based on this representation framework and reasoning engine,
for dynamic service configuration [1], composition [20], and management [9],
proving the practicability and reasoning power of such reasoning engine.

XDD (XML Declarative Description) is an expressive XML rule-based knowl-
edge representation, which extends ordinary, well-formed XML elements by in-
corporation of variables for an enhancement of expressive power and represen-
tation of information into so called XML expressions. A description in XDD
is a set of XML expressions and the XML elements’ relationships in terms of
XML clauses. XML expressions represent facts, while XML clauses express rules,
conditional relationships, constraints and ontological axioms. Applying XDD
framework, Ontology-annotated WSDL descriptions, concepts and properties in
OWL-based ontologies, service parameters and QoS parameters can all be rep-
resented as facts using XML unit clauses. Ontological relations and axioms as
well as policy rules for service discovery can be represented as rules using XML
non-unit clauses. Rules can also be defined for ontological inference and query-
ing in XDD. Service requests can be represented as XDD query clauses using
XML clauses, which specify the patterns as well as the selection conditions of
the queries. This means all information and rules for integrated semantic service
discovery can be directly represented as XDD descriptions. Furthermore, XDD

descriptions can be computed and reasoned using XET (XML Equivalent Trans-
formation), a Java-based reasoning engine that transforms the query clause by
the XDD-based rules based on equivalent transformation [2]. Therefore, by ex-
pressing ontologies and rules directly in XDD and executing service discovery
queries using XET-based engines, we eliminate the overhead of transforming be-
tween ontology language and rule-based representation, and can achieve both
ontological inference and rule-based reasoning, two fundamental functionalities
for semantic service discovery process.

4 Related work

Several approaches for ontology-based semantic service discovery have been pro-
posed, based on OWL-S [13] or semantic-annotated WSDL [16]. However, both
of them only apply ontology for matching on the operational interfaces (i.e. in-
put and output parameters of the operations of the Web Services). In addition,
both of them lack mechanisms to represent non-functional properties based on
rule-based policies. We extend the semantic matching and selection based on
non-functional properties, i.e. ontology-based policy rules and QoS parameters.

Sriharee et al. [18] proposed to discover Web Services based on business
rules policy using WS-Policy and ontology, but without further consideration of
QoS attributes. For incorporating QoS attributes with service discovery, Zhou
et al. [24] proposed a DAML-QoS ontology for specifying various QoS properties
and metrics. However, there was no provision for the users to specify ranking cri-
teria (based on non-functional properties) for service selection. The framework
proposed by Pathak et al. [14] provides QoS-based service selection; however,
there was no consideration for policy rules during the discovery process. Max-
imilien et al. [10] proposed a framework and ontology for service selection also
considering QoS properties, but there was no provision for user-specified ranking
criteria in service request.

5 Conclusions

An approach to integrated semantic service discovery is presented. We first de-
scribe how non-functional properties are expressed based on business policies,
QoS policies and context policies as well as QoS parameters. We then present
our approach for adding semantics to service description for both functional
and non-functional properties based on ontologies. We further show how service
request can be integrated with context information and personalized ranking cri-
teria. Based on them, an integrated semantic service discovery procedure based
on both functional and non-functional properties is presented.

We base our work on widely accepted standards in Web Services and Se-
mantic Web, i.e., WSDL, OWL and WS-Policy. The integrated semantic service
discovery approach is a rather generic one, and can be applied in a centralized
or distributed environment. We are working towards mechanisms to apply this

approach to autonomic environments with distributed, self-organizing and scale-
free communications. Issues about how the service descriptions are stored and
organized as well as how they are accessed need further exploration.

Shared ontologies are assumed for service descriptions and service requests in
our approach. If different ontologies are used, ontology mapping should be carried
out to build up correspondence between ontologies used for service descriptions
and those used for service requests.

References

1. F. A. Aagesen, P. Supadulchai, C. Anutariya, and M. M. Shiaa. Configuration man-
agement for an adaptable service system. In IFIP Int’l Conference on Metropolitan
Area Networks, Architecture, Protocols, Control and Management, proceedings, Ho
ChiMinh City, VietNam, 2005.

2. C. Anutariya, V. Wuwongse, and V. Wattanapailin. An equivalent-transformation-
based xml rule language. In Int’l Workshop Rule Markup Languages for Business
Rules in the Semantic Web, proceedings, Sardinia, Italy, 2002.

3. The OWL Services Coalition. Owl-s: Semantic markup for web services, 2003.
http://www.daml.org/services/owl-s/1.0/owl-s.html.

4. The Salutation Consortium. Salutation architecture specification version 2.0c,
1999. http://www.salutation.org/.

5. S. Bajaj et al. Web services policy attachment, 2006. http://www-
128.ibm.com/developerworks/library/specification/ws-polatt/.

6. S. Bajaj et al. Web services policy framework (ws-policy), 2006. http://www-
128.ibm.com/developerworks/library/specification/ws-polfram/.

7. UPnP Forum. Upnp device architecture version 1.0, 2000. http://www.upnp.org/.

8. E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol, version
2. RFC2608, 1999.

9. S. Jiang, M. M. Shiaa, and F. A. Aagesen. An approach for dynamic service
management. In EUNICE’04, Proceedings, Tampere, Finland, 2004.

10. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5):84–93, 2004.

11. Sun Microsystems. Jini architecture specification version 2.0, 2003.
http://www.jini.org/.

12. OWL. Owl web ontology language overview. W3C Recommendation, Feb 2004.
http://www.w3.org/TR/owl-features/.

13. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First Int. Semantic Web Conf., Proceedings, 2002.

14. J. Pathak, N. Koul, D. Caragea, and V. Honavar. A framework for semantic web
services discovery. In WIDM’05, Proceedings, 2005.

15. S. Ran. A model for web services discovery with qos. ACM SIGecom Exchanges,
4(1):1–10, 2003.

16. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web
services standards. In ICWS’03, Proceedings, 2003.

17. N. Sriharee and T. Senivongse. Discovering web services using behavioural con-
straints and ontology. In DAIS’03, volume 2893 of LNCS, pages 248–259. Springer,
2003.

18. N. Sriharee, T. Senivongse, K. Verma, and S. Sheth. On using ws-policy, ontology,
and rule reasoning to discover web services. In INTELLCOMM 2004, Proceedings,
volume 3283 of LNCS, pages 246–255, Bangkok, Thailand, 2004. Springer.

19. R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and
methods. Data and Knowledge Engineering, 25(1-2):161–197, 1998.

20. P. Supadulchai and F. A. Aagesen. A framework for dynamic service composition.
In First Int’l IEEE Workshop on Autonomic Communications and Computing,
Proceedings, Taormina, Italy, 2005.

21. uddi.org. Universal description, discovery and integration of web services.
http://www.uddi.org/.

22. W3C. Web services description language (wsdl)1.1, 2001.
http://www.w3.org/TR/wsdl.

23. V. Wuwongse, C. Anutariya, K. Akama, and E. Natajeewarawat. Xml declarative
description: A language for the semantic web. IEEE Intelligent Systems, 16(3):54–
65, 2001.

24. C. Zhou, L. Chia, and B. Lee. Service discovery and measurement based on daml-
qos ontology. In Special Interest Tracks and Posters of 14th World Wide Web
Conference, Proceedings, 2005.

