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Abstract. Autonomic networking is an emerging approach to the man-
agement of computer networks that aims at developing self-governed
devices. Among the main issues of autonomic systems is the question
of self-configuration. In this paper, we describe a method for discover-
ing and self-generating the configuration of a network device in order to
dynamically push a new service into a network. On each configuration,
several rules representing the semantics of the services are expressed in a
logical formalism called Configuration Logic. From these rules, we show
how to use traditional satisfiability methods to automatically generate
or modify the configuration of a device with respect to the configuration
of its neighbours. We illustrate our case with an example of a switch
that automatically discovers its VLAN configuration when connected to
an existing network. The results presented here have been implemented
into the configuration management tool ValidMaker.

1 Introduction

Despite the tremendous development of network services and functionalities over
the years, the configuration and deployment of network elements such as routers
and switches remains a mostly manual task. An intricate knowledge of each
devices’ and services’ inner workings and dependencies between configuration
parameters is required from the network engineer in order to successfully run
even basic use cases. The addition of a new device or the deployment of a new
service to an existing infrastructure requires repetitive but careful manipulation
of multiple configuration parameters on many elements, and even such a cautious
work can spawn unpredicted side effects that are discovered by trial and error.

The application of the autonomic systems paradigm [19] to computer net-
works offers a promising means to release the burden of knowledge and tedious
manipulations currently needed from engineers. By definition, self-governed de-
vices can automatically modulate their behaviour in reaction to configuration
inconsistencies or changes in the topology or management policies of the network.

We gratefully acknowledge the financial support of the Natural Sciences and Engi-
neering Research Council of Canada on this research.
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In this paper, we describe a method of automatically discovering and gener-
ating the configuration of a network device. Each configuration is represented in
the form of a hierarchy of parameter-value pairs that is assimilated to a labelled
tree. The dependencies between these parameters are then expressed as self-rules
in a special formalism called Configuration Logic (CL) [22].

From the CL formula defining each rule, we show how an action can be auto-
matically associated; this action consists in a number of configuration operations
whose end result ensure that the rule is fulfilled. A CL validation engine can au-
tomatically check whether a given set of self-rules are respected in a network
and trigger the appropriate actions associated with the rules that are violated.

The system then uses a standard Boolean satisfiability test to generate a
plan that properly instantiates parameter values and chooses between conflicting
actions; in the case where more than a single plan is possible, the final choice can
then be passed on to a higher-level policy manager. This method can be used
for integrating self-configuring and self-healing functionalities in any autonomic
network where devices’ configurations are represented by trees. We illustrate it
by a simple example on Virtual LANs in which a new switch is connected and
discovers its configuration in a plug-and-play manner based on data obtained
from other devices in the network.

The rest of the paper is structured as follows. Section 2 presents related
work. Section 3 presents the VLAN use case that illustrates our method and
elicits a number of VLAN configuration self-rules. Section 4 presents the tree
structure used to describe configurations and formalises the configuration rules
using Configuration Logic. Section 5 extends the original VLAN scenario to allow
for self-configuration and shows how violated VLAN rules trigger configuration
operations. Finally, section 6 concludes and indicates possible future work.

2 Related Work

The autonomic approach to network management has been the source of nu-
merous related work in the recent years. Companies like Cisco and Motorola are
developing similar concepts respectively called programmable networks [2] and
cognitive networks; the idea has also been developed in [16].

The SELFCON [5] project developed a self-configuring environment based on
the Directory-enabled Networking (DEN) [21] principles, where devices register
at a centralised directory server that notifies them of changes in configuration
policies or network state. Similarly, the AUTONOMIA [15] environment provides
an autonomic architecture for automated control and management of networked
applications. In [20], a suite of protocols compatible with TCP/IP is described
that could be implemented into autonomic, agent-based “smart routers” that
take decisions about which protocol in the suite should be used to optimise
some user-defined goals. All these projects describe an infrastructure in terms of
high level concepts and do not concentrate on the representation, validation and
actual generation of configurations and rules, but rather provide an environment
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in which these operations can take place. The agent approach is extended in [11]
from a quality of service perspective and is currently under development.

In [12], the parameters of an optical network are automatically reconfigured
based on link traffic using regression techniques. However, the range of legal val-
ues of these parameters is fixed and known in advance and the reconfiguration
only aims at finding an optimal adjustment of existing values: the network itself
is supposed to be properly working at any moment. Our work rather attempts to
structurally modify a configuration by adding and removing parameters. More-
over, in our situation, the legal range of values changes from time to time and
our method attempts to discover that range from the configuration rules.

The GulfStream software system [10] provides a dynamic topology discovery
and failure detection for clusters of switches in multiple VLANs; the approach is
not based on the examination of the configuration of other switches, but rather
on the broadcasting of Beacon and heartbeat messages between VLAN peers
and is somewhat restrained to this particular situation.

Our approach also differs from well-established configuration systems like
Cfengine [7] in that only the desired properties of the configuration are expressed
in a declarative way, but no action or script must be specified by the user. The
method we present automatically determines the proper actions to take on the
configuration in order to fulfill the desired rules.

Finally, a lot of work has been published about self-configuration applied
to wireless sensor networks. In this context, the word “configuration” generally
refers to the topological arrangment of the different elements forming the sensor
mesh, and not the logical parameters that regulate the behaviour of a device in
itself. It is therefore only faintly related to the present work.

3 Constraints and Rules in Network Services

In this section, we develop a configuration example based on Virtual Local Area
Nertworks and the Virtual Trunking Protocol. We express configuration self-
rules for a configuration of this type to be functional. This example will later
be used to show how we can find the appropriate configuration of a device in a
self-configuring and self-healing context.

3.1 Virtual Local Area Networks and the Virtual Trunking Protocol

Switches allow a network to be partitionned into logical segments through the
use of Virtual Local Area Networks (VLAN). This segmentation is independent
of the physical location of the users in the network. The ports of a switch that are
assigned to the same VLAN are able to communicate at Layer 2 while ports not
assigned to the same VLAN require Layer 3 communication. All the switches
that need to share Layer 2 intra-VLAN communication need to be connected
by a trunk. IEEE 802.1Q [3] and VTP [1] are two popular protocols for VLAN
trunks.
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In principle, for a VLAN to exist on a switch, it has to be manually created by
the network enginneer on the said switch. The Virtual Trunking Protocol (VTP)
[1] has been developped on Cisco devices to centralise the creation and deletion
of VLANs in a network into a VTP server. This server takes care of creating,
deleting, and updating the status of existing VLANs to the other switches sharing
the same VTP domain.

3.2 Constraints on VLAN Configurations

Our configuration example involves VTP. Consider a network of switches such
as the one shown in Figure 1 where several VLANs are available. We express a
number of VTP self-rules that must be true across this network.

Fig. 1. A simple cluster of switches in the same VLAN. The links are VLAN trunks.

First, in order to have a working VTP configuration, the network needs a
unique VTP server; all other switches must be VTP clients. This calls for a first
set of two self-rules:

VTP Self-Rule 1 The VTP must be activated on all switches.

VTP Self-Rule 2 There is a unique VTP server.

We impose that all switches be in the same VTP domain, and that if two
switches are connected by a trunk, then this trunk must be encapsulated in the
same mode on both interfaces. This gives us two more constraints that should
be true in all times:

VTP Self-Rule 3 All switches must be in the same VTP domain.

VTP Self-Rule 4 The interfaces at both ends of a trunk should be defined as

such and encapsulated in the same mode.
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4 Configurations and Rules

In this section, we give a brief overview of Configuration Logic (CL), a logical
formalism over tree structures developed for expressing properties of configura-
tions. We show how the VTP Self-Rules described in the previous section can
be rewritten in CL to become Formal VTP Self-Rules.

4.1 Representing Configurations

As explained in [13], the configuration of network devices such as routers and
switches can be represented as a tree where each node is a pair composed of
a name and a value. This tree represents the hierarchy of parameters inher-
ent to the configuration of such devices. As an example, Figure 2 shows a tree
representation of the configuration of switch-1 in the network of Figure 1.

Fig. 2. A portion of the configuration of the switch-1 in the network of Figure 1. The
configuration of switch-2 and switch-3 differs in the VTP mode and trunk informa-
tion.

Building a tree from an XML document is trivial; therefore, the represen-
tation of configurations as trees closely matches the XML nature of a protocol
such as Netconf [9] that uses this format to fetch and modify the configuration
of a device.

4.2 A Logic for Configurations

Configuration Logic [22] was developped in order to express properties on config-
uration trees. CL formulas use the traditional Boolean connectives of predicate
logic: ∧ (“and”), ∨ (“or”), ¬ (“not”), → (“implies”), to which two special quan-
tifiers are added. The universal quantifier, identified by [ ], indicates a path in
the tree and imposes that a formula be true for all nodes at the end of that path.
Likewise, the existential quantifier, identified by 〈 〉, indicates a path in the tree
and imposes that a formula be true for some node at the end of that path.

To improve readability of CL rules, we can use predicates. Predicates are
expressed in the same way as rules, with the exception that arguments which
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correspond to already quantified nodes can be specified. For example, to create a
predicate that returns true if a switch is a VTP Client, one can do so by writing:

IsVTPClient(S) : −
〈S ; vtp mode = x〉x = client

This predicate states that under the node S passed as an argument, there
exists a node whose name is “vtp mode” and whose value is x, and where x is
equal to “client”. In other words, this predicate is true whenever S has a child
labelled “vtp mode = client”, which means that the device is indeed a VTP
client.

Similarly, the predicates IsVTPServer and IsTrunk respectively indicate that
the device is a VTP server and that a specific interface is connected to a trunk.
They are defined as the following:

IsVTPServer(S) : −
〈S ; vtp mode = x〉x = server

IsTrunk(I) : −
〈I ; switchport mode = x〉x = trunk

The next predicate asserts that two switches are in the same VTP domain.
This is done by checking that for two nodes S and T representing the root of the
configuration tree of two devices, every VTP domain listed under S also appears
under T .

SwitchesInSameVTPDomain(S, T ) : −
[S ; vtp domain = x]

〈T ; vtp domain = y〉x = y

Finally, this last predicate verifies that the encapsulation on a VLAN trunk
is either IEEE 802.11Q or ISL, and that both ends use matching protocols:

SameEncapsulation(I1, I2) : −
[I1 ; switchport encapsulation = x1]

〈I2 ; switchport encapsulation = x2〉
(x1 = dot1q ∧ x2 = dot1q) ∨ (x1 = isl ∧ x2 = isl)

For more details about CL, the reader is directed to [14, 22, 23].

4.3 Rules Expressed in Configuration Logic

Equipped with the previous predicates, the VTP self-rules mentioned in section
3 can now be expressed in Configuration Logic. The first rule checks whether
VTP is activated on all switches.

Formal VTP Self-Rule 1 (VTPActivated)

[device = s1]
IsVTPServer(s1) ∨ ISVTPClient(s1)
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This is done by stating that for every device s1, either s1 is a VTP server,
or s1 is a VTP client. Note that this rule uses the predicates defined above
to simplify its expression; however, the predicates are not necessary, and their
definition could have simply been copied in the rule instead.

The second rule makes sure that there is one, and only one server in the
network. It first states that there exists a device s1 which is a VTP server, and
then that every device s2 different from s1 is a VTP client. Remark that this
rule subsumes the previous one, which has still been included to illustrate later
concepts.

Formal VTP Self-Rule 2 (UniqueServer)

〈device = s1〉
(IsVTPServer(s1)∧

[device = s2]
s1 6= s2 → IsVTPClient(s2))

The third rule checks that all switches in the network have the same VTP
Domain.

Formal VTP Self-Rule 3 (SameVTPDomain)

[device = s1]
[device = s2]

SwitchesInSameVTPDomain(s1, s2)

It does so by stating that for every pair of devices s1 and s2, the predicate
“SwitchesInSameVTPDomain” defined previously is true.

Finally, the fourth rule checks that if two interfaces are connected, then
these two interfaces must be defined as trunks and have the same encapsulation
protocol.

Formal VTP Self-Rule 4 (TrunkActive)

[device = s1]
[device = s2]

[s1 ; interface = i1]
〈s2 ; interface = i2〉

(InterfacesConnected(i1, i2) → (IsTrunk(i1)
∧ IsTrunk(i2) ∧ SameEncapsulation(i1, i2)))

The relation “InterfacesConnected” is not a predicate defined in CL, but
rather a system primitive that the network can tell us about. It returns true if the
two interfaces are connected by a link. This requires knowledge of the topology
of the network and depends on the architecture of the autonomic component, as
will be discussed in the next section.
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5 A Self-Configuration Scenario

In this section, we show how to use Configuration Logic to trigger configuration
changes in devices. Figure 3 presents a possible architecture using this method.
It shows how an existing tool called ValidMaker [8] that downloads and uploads
configuration trees from the configuration file stored on routers and switches,
can be used off-the-shelf to provide autonomic behaviour to the devices. A CL
validation engine is implemented within ValidMaker. Therefore, one can load
configurations, define self-rules on these configurations and automatically verify
them. If one or many rules happen to be false, an additional configuration gen-
erator can adjust the configuration trees and generate the new configurations
which can then be put back on the devices.

Fig. 3. A possible self-configuring architecture using off-the-shelf components.

To this end, we revisit the original VLAN scenario described in section 3
from a network autonomic viewpoint. Instead of validating configuration rules
on a static, fully formed cluster of switches, we suppose one switch is connected
to the cluster with a blank configuration, as shown in Figure 4. More precisely,
the interface fe04 of switch-4 is connected to the interface fe06 of switch-3.
The initial configuration tree of switch-4 is is a tree with only one root node
labelled “device=switch-4”.

Based on this use case, we describe a method that enables the switch to
automatically discover its configuration.
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Fig. 4. Autonomic use case. Switch 4 is connected to Switch 3 and attempts to discover
its configuration.

5.1 Active Constraints

The network rules shown in section 3.2 have been up to now interpreted in
a static way: their validation allowed us to determine whether a configuration
satisfied them or not. However, it is possible to go further and automatically
associate with each rule an action, thereby making it a “self-rule”. This action,
in line with the semantics of the operators used in the rule, is generated such
that executing it changes the configuration in a way that fulfills the rule that
was originally proved false.

As an example, consider a rule of the form 〈p = x〉ϕ(x). Such a rule imposes
the existence of a node p = x in the configuration of the device. If it is violated,
this means that no such tuple p = x exists; to make this rule true, the node
must be added to the configuration. This addition of a new node corresponds
to a configuration operation equivalent to typing a command (or a sequence of
commands) to the CLI of the device. Moreover, the value x of this parameter
must be such that ϕ(x) is true.

For such a procedure to be possible, the formulas it attempts to fulfill must
be expressed in a logic where the existence of a model is a decidable problem.
Otherwise, it is not always possible to find and construct a configuration satis-
fying a given formula. Therefore, the choice of CL as the logical formalism of
formal rules is not arbitrary: it has been shown in [23] that under reasonable
conditions, CL is a decidable logic. Using a richer logic such as XPath or TQL
would lead to undecidability, as has been shown in [6].

Hence, by recursively descending through the nested CL subformulas, it is
possible to come up with a series of configuration operations and constraints
on their parameters that make every self-rule true. To this end, we define a
procedure called PlanT that recursively creates the plans for each rule given a
global configuration tree T . The special notation ⊕(p = x ; p = x) indicates that
a node of parameter p and value x must be added to the tree at the tip of the
branch p = x. This procedure is defined in Table 1.

As an example, consider the initial configuration of switch-4 when added
to the configuration of the original cluster of switches shown in Figure 2. It
is clear that Formal VTP Self-Rule 1, which imposes the presence of either
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PlanT (ϕ) = 1 if T |= ϕ

PlanT (¬ϕ) = ¬PlanT (ϕ)

PlanT (ϕ ∧ ψ) = PlanT (ϕ) ∧ PlanT (ψ)

PlanT (ϕ ∨ ψ) = PlanT (ϕ) ∨ PlanT (ψ)

PlanT (〈p = x ; p = x〉ϕ(x)) = ⊕(p = x ; p = x) ∧ PlanT (ϕ)

PlanT ([p = x ; p = x] ϕ(x)) =
∧

x

PlanT (ϕ)

Table 1. The recursive plan generation procedure

server or client definition on every switch, is violated for switch-4. The recursive
application of Plan on this formula produces the following action:

⊕(device = switch-4 ; vtp mode = server)∨
⊕ (device = switch-4 ; vtp mode = client)

(1)

which commands that the VTP role of the switch be determined. This role is
specified by the addition of either node vtp mode = server or vtp mode = client
under the root of switch-4’s configuration tree.

Similarly, Formal VTP Self-Rule 2 is violated. It imposes that there is only
one server in the network and that all other be clients, and produces the following
action:

⊕(device = switch-4 ; vtp mode = client) (2)

In other words, the only possible action is the definition of switch-4 as a client.
Formal VTP Self-Rule 3 is also violated. This rule imposes that all switches

be in the same domain. The application of Plan on this rule produces this
action:

⊕(device = switch-4 ; vtp domain = accounting) (3)

Finally, the actions produced by Formal VTP Self-Rule 4 are the following:

⊕(device = switch-3 ; interface = fe06)
∧ ⊕(device = switch-4 ; interface = fe04)
∧ ⊕(device = switch-3 , interface = fe06 ; switchport mode = trunk)
∧ ⊕(device = switch-4 , interface = fe04 ; switchport mode = trunk)
∧ (
(⊕(device = switch-3 , interface = fe06 ; switchport encapsulation = dot1q)∧
⊕ (device = switch-4 , interface = fe04 ; switchport encapsulation = dot1q))∨

(⊕(device = switch-3 , interface = fe06 ; switchport encapsulation = isl)∧
⊕ (device = switch-4 , interface = fe04 ; switchport encapsulation = isl))

)
(4)
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This last set of actions is interesting, since it imposes addition of nodes not
only under the newly connected switch-4, but also under switch-3 which is
already part of the working VLAN. The reason is that connecting switch-3 to
switch-4 involves setting up a trunk, an operation that requires configuration
modifications on both ends of the wire.

Therefore, the actual course of actions will depend on the architecture chosen:
if the self-configuration module depicted in Figure 3 is decentralised in every
switch, then each switch must ignore the actions that modify other devices,
assuming that the concerned devices will take proper measures to correct the
situation on their side. If the self-configuration module is rather centralised for
some number of devices, the changes can be sent by the device communication
manager to multiple switches at once.

The global plan that must be executed to make the rules true is the con-
junection of equations (1)-(4).

5.2 Generating the Configuration

It can be seen that the previous plan is nondeterministic. For example, if a
formula 〈p = x〉ϕ ∨ ψ is false, there are two different ways of making it true:
either by making ϕ true, or by making ψ true. In such a case, both solutions are
explored and propagated up the recursion stack. This happens with the actions
produced by the Formal VTP Self-Rule 1 that either define the switch as client
or as server. In the same way, the actions produced by the Formal VTP Self-
Rule 4 rule impose that the trunk encapsulation in switch-3 and switch-4 be
either both dot1q or both isl, but since none of them is already configured and
no further constraint applies, the choice is free.

Moreover, a separate plan has been generated for each violated self-rule;
however, it is well possible that these plans are mutually contradictory and that
no global solution exists. Finally, one must make sure that executing the plans
not only makes the violated rules true, but in turn does not produce side effects
that could falsify other rules that were previously true.

To this end, two further steps are taken before committing any configuration
to the device. First, a satisfying assignment of the global plan must be found.
This can be easily obtained by applying a standard Boolean satisfiability (SAT)
solver such as zChaff [17] or SATO [24]. This assignment designates the actions
that are actually chosen from the many alternatives suggested by the plan to
make the formulas true.

Once this assignment has been found, the plan is tentatively executed on
the configuration, and the whole set of self-rules is then revalidated against this
modified configuration. If one of the rules is violated, the satisfying assignment
is discarded and the procedure backtracks to find a new assignment. This is
the case if the following operations are chosen as the action to execute on the
configuration (for clarity, the actions on switch-3 have been omitted):

⊕(device = switch-4 ; vtp mode = server)
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⊕(device = switch-4 ; vtp mode = client)

⊕(device = switch-4 ; vtp domain = accounting)

⊕(device = switch-4 ; interface = fe04)

⊕(device = switch-4 , interface = fe04 ; switchport mode = trunk)

⊕(device = switch-4 , interface = fe04 ; switchport encapsulation = dot1q)

The configuration resulting of the previous operations violates Formal VTP
Self-Rule 2, since it assigns switch-4 both to the role of client and server at the
same time. It violates Formal VTP Self-Rule 2 for another reason, as a server
already exists in the network.

However, a second possible truth assignment to the global plan is the follow-
ing:

⊕(device = switch-4 ; vtp mode = client)

⊕(device = switch-4 ; vtp domain = accounting)

⊕(device = switch-4 ; interface = fe04)

⊕(device = switch-4 , interface = fe04 ; switchport mode = trunk)

⊕(device = switch-4 , interface = fe04 ; switchport encapsulation = dot1q)

The configuration resulting of these operations validates all formal VTP self-
rules and is therefore admissible. In such a case, the tentative configuration is
committed as the running configuration of the switch. The resulting configura-
tion tree obtained from these autonomic configuration steps is shown in Figure 5.

Fig. 5. The configuration of switch-4 after automatic configuration generation.

One can remark that this method can also work in a self-healing context
where a working network is disturbed; the recursive plan generation method
provided here ensures that the configurations of the devices can be but back to
a state where they fulfill all the rules that must apply on the network.
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Validation time per device (ms)
Switches Rule 1 Rule 2 Rule 3 Rule 4

10 0.024 0.012 0.106 0.564
20 0.029 0.012 0.312 1.715
40 0.044 0.024 1.011 6.482
80 0.078 0.041 3.655 21.948

Table 2. Validation time of each formal VTP self-rule in a network formed of a varying
number of switches

5.3 Complexity of the Method and Experimental Results

We now evaluate the global complexity of the method. Although Boolean satis-
fiability is an NP-complete problem, it is not the bottleneck of the procedure, as
the global Boolean formula that is generated never has more than a few dozens,
possibly a hundred, configuration operations. Therefore, the size of the Boolean
instance to be processed is negligible by SAT standards, and can be processed in
fractions of a second by SAT solvers accustomed to problems topping the million
of variables.

Each configuration operation in itself consists solely in the addition of a
single node in the configuration tree of a device and can also be considered
instantaneous. Hence, the core of the complexity of this method resides in the
validation of CL formulas on multiple incarnations of configurations for many
devices.

In order for this method to be tractable, the validation of CL formulas must
be quick and simple. It has been shown in [14] that CL model checking of a
formula is polynomial in the size of the tree.

We give in Table 2 the validation times for a network composed of 10 to 80
switches. These configurations were generated by a parameterisable script and
then loaded into ValidMaker. All results have been obtained on a Pentium IV
of 2.4 GHz with 512 Mb of RAM running Windows XP Professional; they are
consistent with the polynomiality result already demonstrated.

As one can see from these results, the validation times are reasonable and do
not excess 25 milliseconds per device for the largest network of 80 switches. One
should compare these figures with the time required for actually injecting a new
configuration in a switch and restarting it to make it effective, which is at least a
few seconds. Moreover, it should be noted that the validation experiments shown
here involve the validation of the whole network, and not only of the few devices
that might be concerned when a new switch is connected; this is especially true
for VTP Self-Rule 4.

6 Conclusion and Future Work

In this paper, we have shown how to self-configure a network device by vali-
dating constraints on the configuration of other devices expressed as trees of
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parameters and values. We showed how a new switch connected to an VLAN
can discover its configuration by selecting a suitable plan that tries to fulfill the
existing configuration constraints. We also showed by experimental results with
the ValidMaker configuration tool that the validation of self-rules is a tractable
operation that imposes negligible time to execute.

At the moment, the SAT instances forming the possible plans are treated
separately from the CL validation in an independent solver embedded into the
Configuration generator. A natural extension of this work is to enrich this active
model by dealing with side effects of the application of a self-rule and support
node deletion and modification, for example by integrating CL components into
an existing SAT solver in the context of SAT modulo theories [18].
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