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Abstract. In this paper we present a distributed algorithm, which en-
ables to follow and surround moving objects by a swarm of homogenous
robots that only use local sensing. We introduce the multi orbit sur-
rounding problem and present a solution for it. We prove that our solu-
tion always guarantees that the robots enclose the target and circulate
around them. We also evaluate our solution by simulations.
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1 Introduction

The cooperative control of biological and artificial intelligence have been being
a popular research filed of many scientific researchers. The origin of the research
of the swarm behavior can be dated to 1987. In this year Reynolds [13] published
a method about creating realistic flock motion in a virtual reality. Since this the
way of controlling multiple entities has changed significantly. Instead of using
a centralized coordinator for controlling the movements of the other entities,
Reynolds described and implemented a decentralized control method.

Reynolds achieved a realistic flocking model by the definition of the following
three simple rules, which should be individually obtained by each virtual bird :

1. Match the velocity of the other members of the swarm.
2. Avoid collision.
3. Avoid getting too far from the others.

By defining these simple rules the computation complexity was dramatically
reduced.

In order to control the formation and the direction of the motion of these
kind of asynchronous systems many solutions are using potential or gravitational
fields to move the entities [5]. Besides the low computational complexity it is
also oblivious, which is ideal for the desired artificial robots of the swarms.

⋆ This work is connected to the scientific program of the ”Development of quality-
oriented and cooperative R+D+I strategy and functional model at BUTE” project.
This project is supported by the New Hungary Development Plan (Project IDs:
TÁMOP-4.2.1/B-09/1/KMR-2010-0002, TÁMOP-4.2.1/B-09/1/KMR-2010-0003).
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Our contribution: We introduce the multi-orbit surronding problem, where
autonomous robots with limited sensing range have to surround a target and
circulate around it. We describe a simple algorithm to solve this problem, where
each entity only needs information about the entities in its local environment
and the target. We prove the correctness and the convergence of our solution
and also provide simulation results.

Outline of the paper: This paper is organized as follows. Section 2 gives an
overview of related work. In Section 3 we introduce our multi-orbit surrounding
algorithm and mathematical notations. We prove the convergence of the algo-
rithm in Section 4. Section 5 presents our experimental results and our simulation
environment. Finally, Section 6 summarizes the work.

2 Related work

There are many other working implementations of swarms which rely on the
work of Reynolds like the RAVEN project of the MIT[8] the UAV system [3],
or a military solution for UGVs [1]. The main goal of these implementations is
to design a stable group of quasi autonomous robots that can keep dedicated
formations.

One of the most simple solution is created by Mataric [12]. She defined five
easily adoptable rules which comforms to the rules of Reynolds. These five be-
haviors are the following.

1. Safe-Wandering: The ability of a group of agents to move about while avoid-
ing collisions with obstacles and each other.

2. Following: The ability of an agent to move behind another retracing its path
and maintaining a line or queue.

3. Dispersion: The ability of a group of agents to spread out in order to establish
and maintain some minimum inter-agent distance.

4. Aggregation: The ability of a group of agents to gather in order to establish
and maintain some maximum inter-agent distance.

5. Homing: The ability to find a particular region or location.

By using these five basic rules more dynamic and complex behaviors can be
constructed. However the effectiveness of this solution was shown only through
simulations.

From the mathematical perspective there are many approaches which are
able to clearly formalize the swarm behavior. Most of that are using the already
introduced artificial potential fields [7], [4], [9], [10], [11], in order to define in-
teraction control forces between neighboring entities and the environment itself.
The benefit of this formalism was the easy provability of the stability of the
overall system.

Gazi et al. [7] have presented a virtual potential field based solution which
are able to stabilize swarm of homogenous entities in an n-dimension Euclidean
space. Based on this approach Chu [4] has extended this to be able to handle
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heterogenous entities. However, by using interactive matrix, the final shape of
the swarm will be rough in contrast with the sphere form of Gazi’s solution.
Neither of these solutions are taking care of those situations where the average
velocity of the swarm is not zero.

Leonard and Fiorelli [11] proposed a concept for the above mentioned prob-
lem. They introduced virtual leaders, which are moving ”independently”, while
they are followed by the rest of the entities.

Hsieh et al. [10] also used virtual potential fields in their solution in order
to keep entities in a dedicated smooth shape ”orbit”. Once the entities have
reached the given trajectory, they are using the tangential speed to avoid inter-
agent collisions.

Barnes et al. [2] has presented a similar methodology to the work of Hsieh.
However they have been using multiple weight functions depending on the dis-
tance from the center of the potential filed. We have modified and extended their
weight functions in order to decrease the time while the entities are reaching the
desired trajectory.

Cohen and Peleg [5] presented an asynchronous algorithm to gather entities
at the center of gravity. Their algorithm uses the LCM (Look-Compute-Move)
discrete cycle based model to move their robots. They mathematically proved up-
per and lower bounds on the convergence speed of their solution. Cord-Landwehr
et al. [6] described an easy-to-check property of target functions that guarantee
convergence and gives upper time bounds. This property holds for the target
function in [5] and improves the upper bound on the speed of the convergence.

3 Multi-orbit surrounding

In this section we will present our solution for target surrounding. We have been
using a similar potential field based approach as it was introduced and used by
Hsieh et al. [10] and Barnes et al. [2]. However in order to achieve a faster and
more uniform surrounding process we have been using a more complex potential
field.

3.1 The concept

If multiple entities are trying to capture a moving target one of the most relevant
tactic is the surrounding. Most animal groups who are hunting in group - like
wolf packs - are following this strategy. Therefore, the main idea of our method
is to define a trajectory around the target on which the entities should take
place. However, in order to assure that the target cannot escape from the circle
of the entities - i.e. the circle is not uniformly filled and there a holes on it - ,
they should move around him. In order to minimize the possibility of inter agent
collision we have defined a heading direction on the trajectory. Nevertheless by
the introduction of this strict direction rule on the desired trajectory prohibits
the use of a usual pincer movement.
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In order to solve this issue, we have introduced the multi-orbit surround-
ing mechanism. We have defined multiple orbital trajectories around the target
which are moving with it. A simple example can be seen on Fig. 1.

Fig. 1. Three circular trajectory curves and their headings around a given target.

Each trajectory has a different heading direction like their neighbors. This
serves two purposes. First it enables the possibility of the pincer movement while
keeping the probability of inter-agent collision low. Each neighboring trajectory
pair has different heading direction, which implies that there should be some
distance between them in order to minimize the collision probability. Second it
accelerates the surrounding process, i.e. if an inner trajectory contains a hole,
an additional robot from the next trajectory can fill it in shortest time.

The basic behavior of the entities between two trajectories is a radial move-
ment around the target.

As it can be seen there are two types of trajectories. The first type is the
primary trajectory (Tprimary). This is the nearest trajectory around the target.
The main goal of the entities is to put themselves into orbit on this trajectory.
Whenever an entity has reached this trajectory, it stops radial movement and
start to move around the target in the given heading direction.

The second type of trajectories is the secondary trajectory (Tsecondary). These
trajectories are more distant than the primary. If an entity is passing through
one of this trajectories during the surrounding process and it is sensing another
entity in front of it, it should put itself onto orbit on the current trajectory. By
doing this not only the collision will be avoided but the surrounding process will
be accelerated: a robot in the secondary trajectory and a hole in the primary
trajectory move towards each other.
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However if the entities are not staying on any of the above introduced tra-
jectories, it is not allowed to make tangential movements around the target.

Our solution uses the gradient vectors of the potential field to move the
entities to the desired direction. The potential of the entities are decreasing while
they are approaching the desired trajectory. We are calculating with constant
velocity.

3.2 Potential field based approach

In this section we present the mathematical notations for our potential field
based multi-orbit surrounding solution.

Let the two dimensional potential function - which generates the potential
field - of the target be the following:

f(x,y) = e−α((x−xc)
2+(y−yc)

2) (1)

The xc, yc are the coordinates of the target, α is a positive parameter.

(a) Attraction (b) Radial

(c) Surrounding (d) Circular gradients

Fig. 2. Different vector fields generated with the gradients

The gradient of this function can be seen on the Figure 2(a) and it is look
like as follows:
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dx = −2αf(x, y)(x− xc)

dy = −2αf(x, y)(y − yc) (2)

This gradient can be used for a pure attractive function. In order to keep the
entities away from the close proximity of the target, a repulsion function should
be used. This can be achieved by inverting the direction of the gradients.

dx = 2αf(x, y)(x− xc)

dy = 2αf(x, y)(y − yc) (3)

The next part of our function gradient set is the perpendicular gradients.
This will be used for the circulation on the trajectories. These gradients can be
generated by a simple rotation. See Figure 2(b).

dx = 2αf(x, y)(y − yc)

dy = −2αf(x, y)(x− xc) (4)

In order to limit the attraction and repulsion and perpendicular forces to the
desired areas, weight functions should be used. For the attraction and repulsion
functions the following weight function is sufficient:

Wrad =
1

1 + e−αout(r−(R+Rout))
−

1

1 + eαin(r−(R−Rin))
(5)

Where R is the radius of the primary trajectory, r is distance function which
is rotation invariant, αin, αout, Rin and Rout are positive parameters. More
detailed description can be found in [2].

In order to localize the perpendicular forces to the primary trajectory another
weight function should be introduced:

Wtan = e−α⊥(r−R)2
[

0 1
−1 0

]

(6)

Where α⊥ is a positive parameter. By combining these two weight function

in the following equation of V =
[

vx vy
]T

, the entities will move until they reach
the primary trajectory where they start their orbital motion, as it can be seen
on Figure 2(c).

V = (Wrad +Wtan) ∂x (7)

Where ∂x =

[

dx
dy

]

.

In order to extend this system with our multi-trajectory solution we have
generated a new weight function which can be seen on Figure 2(d) and looks like
as follows:
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Str = (2−
1

2 + er
)sin(αtrr) (8)

Sout =
1

1 + eαout(r−(R+Rout))
(9)

W ∗
tr = SoutStr (10)

The Str component generates the distinct trajectory curves with a slightly
increasing tangential speed while the Sout limits its gain to the outside of the
primary trajectory.

However it is not efficient when every entity start to move along on the sec-
ondary trajectories before reaching the desired trajectory. This is only required
when they are not able to move directly towards the desired position. This can
only happen, when there is another entity in the way, which means that this
newly introduced weight is required only in collision avoidance situations.

Therefore we have extended this by adding proximity parameters to it:

Wtr =
∑

i∈X

W ∗
tr

(

λ−
λ

1 + e−αavoid(ravoid−Ravoid)

)

(11)

The λ is a parameter like the κ, nevertheless it should be minor: λ < κ/2.
The final velocity vector of a given entity looks like as follows:

V = (Wrad +Wtan +Wtr) ∂x (12)

4 Analysis of the convergence

In this section we prove that by using of the above introduced surrounding
method a swarm of robots will always enclose a given target. For this we use
following assumptions.

Assumptions:

1. The entities are modeled as points.
2. There is only one static target at the same time.
3. All entities know the position of the target.
4. All movements of the entities are divided into discrete steps.
5. In each step a robot can move a unit distance in the direction determined by

the potential field or stay in place if this movement is prohibited by another
robot.

6. The distance d(u, v) between each pair of entities u, v must be at least some
constant dmin < 1.

7. The distance between neighboring trajectories are 1 unit, i.e. ri+1 − ri = 1,
i = 0, 1, ..., where ri is the radius of the ith trajectory Ti.
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8. The sensing range of the entities is at least dmin+2. Thus, each entity which
could get closer than dmin after one time step is within the sensing range.

9. The entities are able switch between neighboring trajectories within one time
step.

Remark: For simplicity, we assume a static target. This assumption can be
changed for a slowly moving target. In that case the unit velocity of the robots
must be relativ to the velocity of the target.

4.1 Convergence

Each entity tries to move straight into the direction of the target. If it is not
possible, because it would get too close to another entity, it moves on the tra-
jectory containing their current position. Note that by Assumption 5,6, 7, and
8, all entities that could be closer to an entity v than dmin in the next time step
and could cause a collision with v, are within the sensing range of v.

We assume that at the beginning the distance between each pair of eintities
u and v is at least dmin. We prove that the entities always can move, never stuck
in deadlock situation and we give a convergence guarantee of the surrounding
process.

We say that two entities u and v prohibit each others movement if the above
rule would cause collision. In that case the entity with lover potential is allowed
to move. In order to break ties, we assume that each entity v ∈ V has a unique
ID denoted by v.ID and each entity knows the IDs of the entities within its
sensing range1.

We say that an entity v has a higher priority than another entity u, iff
ϕ(v) < ϕ(u) ∨ (ϕ(v) = ϕ(u) ∧ v.ID < u.ID). Thus, we have a straight total
order on the entities. If two entities prohibit each others movement, the entity
with higher priority is allowed to move.

First we show that each entity can move eithter staight into the direction of
the target or on the trajectory around the target. Therefore, the potential of an
entity never increases.

Lemma 1. Each entity v, which is not on the innermost trajetory, can move
straight towards the target if v is not prohibited by another entity u with higher
priority. Otherwise, v can move on the trajectory around the target in the cor-
responding heading direction. The potential of v never increases during the sur-
rounding process.

Proof. First we consider an entity v which is already on the innermost trajectory
T0. We show that v can move on that trajectory and its potential never increases.
Since all entities on T0 (if any) move in the same direction around the target,
their distance to each other remains the same, and thus, they do not cause a

1 For example, the entities within the sensing range of each other exchange their IDs
through their communication interface.



Target surrounding solution for swarm robots 9

collision. Another entity u with a higher potential ϕ(u) > ϕ(v) is only allowed
to move to T0, if it does not cause a collision.

Now we consider an entity v which not in T0. If v is not prohibited to move
straight towards the target by any another entity u with higher priority then
it moves towards the target and its potential strictly decreases. Otherwise, by
similar argument than above, v can move on the trajectory corresponding to its
current position and its potential does not change. ⊓⊔

Now we are able to prove a guarantee of the convergence of the surrounding
process.

Theorem 1. Until the inner trajectories have not been filled with robots (i.e. an
inner trajectory Tin contains a hole of length at least 2dmin), the overall potential
energy of the swarm is strictly monotonically decreasing within rom·π+1 steps,
where rom is the radius of the outermost trajectory Tom.

Proof. Our rules guarantee that no robot increases its potential. If a robot is not
prohibited by other robots, it is moving on a straight line towards the target,
until it reaches the innermost trajectory. If a robot do not decreases its potential
in a time step, then it is either on the innermost trajectory or it is prohibited to
decrease the potential by another robot with higher priority.

Assume that in a time step no robot can decrease its potential. Let Ti be
the innermost trajectory which contains a hole of length at least 2dmin. Let ri
be the radius of Ti. Consider the robot v with the highest priority among the
robots having strictly higher potential than the robots on Ti. If no such robot
exists, then we are done, all inner trajectories are filled. Otherwise, v can only
be prohibited to move straight to the direction of the target by robots on Ti.
Then v circulates on trajectory Ti+1. The robot v and the hole on Ti circulate
in opposite direction. Within riπ+1 steps either v can move into the hole on Ti

or another robot filled the hole before v. Thus, within riπ+ 1 steps at least one
robot strictly decrease its potential. ⊓⊔

5 Simulation Environment and Validation

In this section we will present our experimental results, which were made by the
V-REP Virtual Robot Experimentation Platform, which is a 3D robot simulator
with an integrated development environment.

We have created a compact 2D model that is easily extendable into a 3D
model. Our virtual entities use infrared distance sensors, however a vision based
solution is also usable for simultaneously scan the foreground and track the
target. Although our entities are using local sensing only, it is possible to extend
it with a communication layer for an extended model.

Besides the scanning of the neighborhood the entities should also track the
target itself. Although we have made an assumption that all entities know the
position of the target, we have tried to be more realistic in order to ease the
integration of our simulation environment into a real implementation.
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In Section 5, for simplicity, we have assumed a static target and we remarked
that it can be changed for a slowly moving target. Then the unit velocity is
relative to the velocity of the target. In our simulations we have a slowly moving
target.

We compared our multi-orbit surronding algorithm (Algorithm 1) with an-
other simple algorithm, which we call baseline algorithm (Algorithm 2), where
the entities move to the left on the trajectory corresponding to its current posi-
tion, if they are prohibited to move towards the target.

Algorithm 1 Multi-Orbit Surrounding

loop

if current position is on T0 or a neighbor with higher priority prohibits to move
towards the target then

Circulate in the corresponding direction around the target
else

Homing to the target
end if

end loop

Algorithm 2 Baseline sorrounding

loop

if current position is on T0 or a neighbor with higher priority prohibits to move
towards the target then

move to left
else

move forward until the desired trajectory around the target is reached
end if

end loop

In the first simulation scenario the entities are forming a row behind the
target which is moving to the opposite direction. Fig. 3 shows the trajectory of
the entities during the surrounding process until the the stationary state, where
the swarm is circulating around the target. If the entities use an unidirectional
surrounding behavior like Algorithm 2, which can be seen in the left image of
Fig. 3, instead of our multi-orbit surrounding concept (middle and right image
of Fig. 3), the surrounding takes longer.

In our second simulation scenario the start positions of the robots formed a
block, i.e. they were distributed in a square area in a grid with dmin distance from
the neighbors. At the beginning of the simulation many robots was prohibited
to move towards the target. Our multi-orbit algorithm handeled this situation
easily.
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(a) baseline (b) multi-orbit (c) multi-orbit

Fig. 3. Simulated trajectories for the first test scenario, where 15 entities are surround-
ing a moving object.

In our third scenario the start positions of the robots were chosen randomly
from the simulation area. In this scenario almost all robots were able to move
straight towards the target until they reached the available innermost trajectory.
The results of the simulations are summarized in Table 1.

Line Block Random

baseline multi-orbit baseline multi-orbit baseline multi-orbit

number of entities 15 15 15 15 15 15

entity velocity 5· vtarget 5· vtarget 5· vtarget 5· vtarget 5· vtarget 5· vtarget

enclosing time (min) 3:15 1:00 1:40 0:56 0:21 0:20

Table 1. Simulation results where 15 entities are surrounding a moving object.

6 Summary

We have defined the multi-orbit surronding problem, where autonomous robots
with limited sensing range have to surround a target and circulate around it. We
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have described a simple local algorithm to solve this problem. We have proved
the correctness and the convergence of our solution and provided simulation
results.
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