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Abstract. A new generation of distributed embedded systems (DES) is coming 

up in which several heterogeneous networked devices execute distributed 

applications. Such heterogeneity may apply to size, physical boundaries as well 

as functional and non-functional requirements. Typically, these systems are 

immersed in changing environments that produce dynamic requirements to 

which they must adapt. In this scenario, many complex issues that must be 

solved arise, such as remote task preemptions, keeping task precedence 

dependencies, etc. This paper presents a framework aimed at DES in which a 

central node, the Global Scheduler (GS), orchestrates the execution of all tasks 

in a DES. The distributed nodes take a proactive role by notifying the GS when 

they are capable of executing new tasks. The proposed approach requires from 

the underlying technology support for task migrations and local preemption at 

the distributed nodes level.  

Keywords: Distributed embedded systems, Framework, Reconfigurable 

Architectures, Middleware 

1   Introduction 

Nowadays, there is a clear trend in the software industry to create distributed 

systems from already designed components. This trend, which is especially relevant 

in the embedded systems industry, has promoted the use of middleware technologies 

such as Java-RMI, CORBA/e, CORBA-RT, ICE, DDS or even SOA architectures. 

Indeed, distributed computing has proven its added value especially in some 

application domains, such as multimedia telecommunications, manufacturing, 

avionics or automotive [1], [2].  

Typically, middleware technologies abstract the details of underlying devices 

facilitating the creation of distributed applications by providing uniform, standard, 

high-level interfaces to developers and integrators. Another objective of middleware 

technologies is supplying services that perform general purpose functions in order to 



avoid duplicating efforts and facilitating collaboration among applications. This paper 

sticks to the second objective. Namely, it presents a middleware framework for DES 

aimed to manage the deployment and execution of a set of tasks in a set of distributed 

nodes, so the time requirements of the overall system are met and the use of the 

resources of the distributed nodes is optimized (e.g. CPU, volatile / non-volatile 

memory or battery). The proposed framework allows deploying tasks to the nodes in 

run-time for achieving a better overall optimization. 

The framework uses a set of entities, namely the Global Scheduler (GS) and the 

Remote Servers (RS), which provide the infrastructure to execute the tasks at the 

distributed nodes. In particular, the GS orchestrates the execution of all tasks at the 

DES according to scheduling and optimization policies implemented as pluggable 

components. The RS act as local managers responsible for executing application tasks 

at the distributed nodes.  

Even though typically DES must be configured at start-time, the framework allows 

dynamic reconfigurations of the system at run-time, providing a certain degree of 

flexibility and adaptability to changing requirements. These reconfigurations include 

modifications of both functional requirements at run-time, such as updating the 

executable code of the applications, as well as non-functional requirements, such as 

changing QoS parameters or introducing new nodes or removing existing ones 

without impacting the functionality of the system. These characteristics, which allow 

optimizing the computational load of a distributed system by adding or removing 

tasks from the system without changing the underlying hardware, may be applicable 

in certain application domains such as distributed multimedia applications or home 

automation, in which changing the hardware may become a complex issue.  

A centralized scheduling approach has been selected for the sake of flexibility 

since concentrating all the information of the system in one single node facilitates the 

coordination of the distributed nodes. However, this approach has some drawbacks 

since a single GS may become a critical point of failure. In the future the authors 

intend to introduce replicated GS in the framework for improving fault tolerance. 

The layout of the paper is as follows: section 2 presents a description of some 

relevant works on this topic; section 3 describes the proposed software architecture; 

and lastly, in section 4 some preliminary conclusions are drawn and the future work 

on the topic is described. 

2. Related Work 

The implementation of DES has been a very important research topic in the last 

decades. Examples of early investigations on the field can be found in [3] and [4], 

where some of the first solutions applicable to DES were described. 

More recent works on the field have explored the implementation of complex 

scheduling frameworks for distributed systems on top of popular middleware 

architectures, such as CORBA or Java RMI. Their main advantage lies in the 

flexibility and the implementation simplicity provided by the middleware layers, 

which enables developers to abstract from low level details of the distributed system, 

such as communication protocols, operating systems, etc. These works vary in vision 



and scope. For example, references [5] and [6] focus on the timing requirements of a 

DES, providing a framework able to orchestrate task activations in time and, 

therefore, allowing DES designers to easily decouple the execution of periodic tasks 

that make use of the same resources. Other works, such as [7] and [8] implement 

control loops to change the timing characteristics of the distributed tasks in order to 

achieve schedulability and improve the overall performance of a DES. Lastly, some 

works focus on specific characteristics of DES, such as the management of aperiodic 

tasks, admission control strategies or task migrations strategies [9] [10]. 

The framework proposed in this paper addresses some of the same objectives as 

previous works, but it introduces some innovative aspects. Firstly, the proposed 

framework aims at merging scheduling and resource optimization in the same DES 

structure. Secondly, it follows a different approach based on proactive distributed 

nodes, instead of reactive nodes fully dependent on the decisions of a global 

scheduler. Also, the proposed framework allows dynamic reconfigurations in run-time 

(e.g. changes on the number of nodes in the DES, software updates in the code of the 

tasks or changes in the tasks parameters). Finally, the proposed framework includes 

mechanisms to manage some of the complexities of DES, namely, precedence 

dependencies between tasks and remote preemptions.  

3. Framework description 

The proposed framework is composed of two component types: one Global 

Scheduler (GS), responsible for deploying and activating the tasks according to a 

predefined application graph (see Fig. 1) as well as an optimization criterion and 

several Remote Servers (RS), which encapsulate the distributed processors and 

execute the tasks. In this work applications are defined as the execution of a set of 

tasks following an application graph. As shown in the figure the tasks that compose 

an application may be executed in different nodes, being migrated from a node to 

another following to the decisions of the GS. Tasks are encapsulated with a special 

structure, known as Task Wrapper (TW), which contains not only the executable 

code, but also a set of parameters that characterize them. 

 

Fig. 1. Example graph of an application 

Due to its characteristics, the nodes hosting the components of this framework 

must meet the following requirements: 

• Task migration. The target software platform must support task migration 

between different nodes of the system. This can be achieved by explicitly 

sending the executable code of the application to the nodes of the system (e.g. 



by using Java serialization). Sometimes, this restriction can be relaxed, 

reducing the flexibility of the framework, by previously deploying the tasks at 

the distributed nodes so they are activated by the central node. 

• Local schedulers. In order to implement remote preemptions the framework 

requires the use of preemptive local schedulers. This role may be assumed 

either by a local preemptive OSs, or by dedicated local schedulers which must 

be able to preempt local tasks when required by the framework. 

Any DES whose nodes meet the latter requirements is candidate for the 

implementation of the proposed framework. Task migrations may represent a 

considerable overhead when the required execution times of the tasks are similar to 

their migration times. Hence, the framework is applicable to applications where the 

execution times are much longer than migration times. Possible target applications 

may be found in the multimedia applications domain. As a matter of example, a Java 

based intelligent surveillance system formed by different types of nodes such as IP 

cameras, network video recorders, control centers and video analysis and streaming 

nodes, could be candidate for applying this approach since Java technology allows 

task migration via object serialization and the distributed nodes are capable of using 

local schedulers. Also, this kind of system requires an extensive use of CPU that may 

justify task migrations. Moreover, the optimal use of physical resources, such as CPU, 

memory or battery, justifies the implementation of optimization policies to improve 

the overall performance of the applications. 

3.1   Functional overview 

Briefly, the proposed architecture works as follows. The GS activates the tasks that 

compose the applications and orders them according to the application graphs and the 

scheduling and optimization policy. Since the GS is in charge of the activation of the 

periodic tasks, it needs a global timing reference for the whole DES, which defines a 

minimum granularity of the invocations at the DES. This timing reference unit will be 

called the Elementary Cycle (EC) and it will described below. 

RS abstract the distributed processors in charge of executing tasks. Whenever an 

RS completes the execution of all assigned tasks, it notifies the GS its availability 

with a WorkCompleted message as depicted in Fig 2. The GS reacts by selecting the 

next task in the queue and deploying it to the free RS. 

Deploying a task to an RS typically involves migrating a task from the GS to this 

RS; however, since task migrations have a great impact on the overall performance of 

the framework each RS is equipped with a sort of cache memory. So, depending on 

the status of the cache of the target RS, the GS may carry out three different 

deployment types. If (1) the deployed task is not in the cache of the target RS and it 

has enough memory for holding the new TW a regular deployment is performed and 

the TW object is physically transmitted to the RS. Else, (2) if the deployed TW is 

already in the cache of the target RS, the TW object is not sent; instead, the GS only 

sends the input parameters to run the task. Lastly, (3) if the deployed task is not in the 

cache of the target RS and it has not enough memory to keep it, an overwrite 

deployment takes place. In such case, the TW is sent to the RS, and it overwrites an 

older TW from the cache of the RS to store the new task. 



To implement this functionality the GS keeps a set of ordered task queues, 

associated to every RS of a DES, that are updated when changes are produced. After 

each update, the task located in the first position of the queue is considered by the GS 

as the highest priority task to be deployed to the RS associated with that queue. 

 

Fig. 2. Overview of the proposed architecture 

Often, distributed applications are formed by a combination of tasks that are 

executed in a concrete sequence. This implies that every task may have one or several 

predecessors and successors. Tasks may also require inputs from other tasks to 

perform their work. This information is modeled in the GS by an application graph 

which is built from the TW. The GS uses it in run-time to compose the applications 

and to select the more appropriate nodes for optimizing the use of the resources 

according to the selected criteria. The communications between a task and its 

successors are centralized by the GS which receives the outputs of the completed 

tasks from the RS and hand them over as inputs to the next tasks in the graph. 

Predecessor and successor tasks along with input and output elements are included in 

the TW structure, as it will be further explained along with the system 

characterization.  

The proposed framework assumes that tasks can be executed in any RS of the 

DES; however there will be cases in which some tasks will only be executable in 

certain nodes, e.g., when a specific library or hardware is required. The framework 

proposes the use of node bindings for modeling these requirements that will specify 

the list of nodes where a task may be executed.  

In order to achieve a soft real-time behavior, it is necessary to implement a remote 

task preemption mechanism. The proposed framework relies on the local schedulers 

of the distributed nodes to implement a simple preemption mechanism. Preemptions 



are triggered by the GS when a critical situation is detected, that is, when the laxity of 

a task, defined as its time to deadline minus its remaining execution time, becomes 

too short. If so happens the GS triggers a special deployment routine called 

PreemptionDeployment, which deploys the critical task to a non-free RS. This kind of 

deployment stops the running task and executes the newly deployed one.  

One of the key benefits of the proposed framework is its high level of dynamism. 

The GS provides a reconfiguration interface to dynamically add, remove or change 

the tasks in the system. The GS is equipped with an admission control system to 

prevent changes that could lead the system to unschedulable situations. This approach 

allows changes in the applications ensuring certain QoS parameters. 

Certain characteristics of the presented framework have direct implications in its 

behavior. For example, the authors have chosen a centralized approach because it 

provides more flexibility and higher scalability even though it may reduce fault 

tolerance. In future works the authors will introduce replicated GS in order to improve 

fault tolerance. Task migrations are also a key challenge since they may affect 

negatively the performance of the system. In future works the authors will quantify 

the impact of task migrations if different scenarios. Lastly, the presented framework 

does not consider shared resources dependencies among tasks as this issue can be 

worked around splitting the tasks and using precedence dependencies. 

3.2   System characterization 

The middleware framework described in the previous section requires keeping in 

memory a model of the tasks in the DES. Indeed, both the GS and the RS use a 

special structure to abstract the concept of a task, the Task Wrapper (TW). A TW not 

only models the task timing characteristics and precedence dependencies but also 

contains the logic of the application. Fig. 3 depicts this structure using UML notation 

and Java-like types for simplicity.  

 

Fig. 3. Characterization of the Remote Servers and Tasks 

The proposed task model requires a unified timing reference to be used in the 

entire DES. For the sake of consistency, all time measurements have been referred to 

an abstract time unit, the Elementary Cycle (EC), which is defined in a centralized 

way in the Global Scheduler as the minimum time between two subsequent task 

activations and specifies the time granularity of the system. The EC must be 



configured during the start-up phase of the GS and it cannot be modified by any 

means in run-time. As a consequence, all the timing parameters of the TW model are 

referred to this parameter. 

The task model is composed by the following parameters per TW: 

• Task identifier. Used to identify univocally a task in the distributed system. 

• Timing parameters. This set of parameters characterizes the timing properties 

of a TW. They are all defined as integer multiples of the EC. These parameters 

include: period, deadline, offset and worst-case execution time (wcet). Note 

that the wcet parameter is referred to a node with a unitary speed factor as 

detailed in the RS description section below. 

• Precedence graph management parameters. This group of parameters 

includes information related to the application graph such as predecessors, 

successors, input data (inputs) and outcomes (outputs) of one task. The GS 

uses these parameters to build the precedence graph in order to activate the 

tasks in the graph in order and manage the inputs and outputs involved.  

• Bound to nodes. This parameter is used to attach one TW to a specific node or 

list of nodes. It may be used when a node owns a specific hardware resource or 

software component (e.g. a library) required for the execution of a task. 

 

The framework also requires the GS to keep information about the status of the RS 

in the DES, since this information is essential for applying optimization policies. 

Therefore, the GS maintains a model in memory that represents the DES using a 

RemoteServer data structure per RS (also included in Fig. 3). Regarding the RS 

model, the following parameters are considered: 

• Node identifier. Integer value that identifies univocally an RS in the 

distributed system. 

• Physical parameters. Namely speedFactor, maximumTaskWrappers, 

deployedTaskList, battery and volatile / non-volatile memory. This group of 

parameters models the physical status of an RS. They are used to implement 

optimization policies in the GS. Special attention should be given to the 

deployedTaskList parameter, since it keeps a record of the current status of the 

cache of each RS. Also, the speedFactor parameter models the actual 

processing power of a node, compared with a reference node with a unitary 

speed factor. 

3.3   Structure of the Global Scheduler 

As shown in Fig. 4 the GS is a modular entity composed by four active 

components; namely (1) Activator, (2) RSInterface, (3) ReconfigurationInterface and 

(4) PreemptionManager. Along with these components the GS also uses several data 

structures that represent the current status of the DES.  

For each connected RS, the TaskQueuesManager (see element #5 of Fig. 4) keeps 

an ordered queue with all the tasks that must activated at that node. These tasks are 

ordered according to a scheduling policy and then, the ordering is refined according to 

an optimization policy. A reordering is committed every time a new task is placed in a 



queue. As shown the figure, the framework is open to be used with different 

scheduling policies such as RMS, EDF or MUF, which are connected to the queues as 

pluggable components. Similarly different optimization policies can be connected to 

the queues. 

Additionally, the GS maintains a SystemModel (element #6), which is a data 

structure updated every EC by the Activator (element #1). This model is used to keep 

track of the remaining times for the next activation of each periodic task, the current 

laxities of the active tasks and the current status of the connected RS.  

Apart from updating the SystemModel, the Activator is in charge of adding the 

tasks activated every EC to the queues. Therefore, it also manages the precedence 

dependencies between tasks. 

All communications between the GS and the RS are handled via the RSInterface 

(element #2). Additionally, whenever the RSInterface receives a WorkCompleted 

message from any RS, it is the RSInterface itself who deploys the next task in the 

queue to the requesting RS and updates the SystemModel accordingly.  

Users and applications may interact with the GS to require dynamic 

reconfigurations at runtime through the ReconfigurationInterface (element #3). This 

interface allows changes in the task parameters (period, deadline, etc.) as well as 

adding or removing tasks to the system. All changes are recorded in the SystemModel; 

however, before any changes are committed this component executes an admission 

control test that checks whether the new configuration is feasible. This functionality is 

provided by a pluggable component that may be exchanged to use different admission 

policies. 

 

Fig. 4. Structure of the Global Scheduler 

Finally, the GS implements a PreemptionManager (element #4) module whose 

objective is to prevent tasks from missing their deadline. It uses the tables in the 

SystemModel to detect potential deadline misses. Should any problems be detected, 



the PreemptionManager would instruct the RSInterface to activate a preemption 

deployment routine to one or more RS. 

3.4 Structure of the Remote Servers 

An RS is an entity that manages only one processor of the DES (see Fig. 5). The 

main role of an RS is to execute the tasks deployed by the GS and, when all assigned 

tasks are completed, declare its availability to the GS via a WorkCompleted message.  

Communications with the GS are handled via the GSInterface component (element 

#1). When a new TW is received it is stored in the DeployedTaskList (element #3). 

This element plays a similar role to the caches in processors, allowing the GS to 

reduce deployment times when a TW is already loaded in an RS, and improving the 

overall performance of the framework. TW are executed by the TaskExecutor 

component (element #2), which is capable of starting, stopping and resuming the 

execution of a TW and sends the WorkCompleted messages to the GS with the results 

of each task when they are completed. It also implements a mechanism that allows 

preempting a TW in execution with another. When an RS receives a preemption 

deployment message the TW in execution is put in the PreemptedTaskList (element 

#4) and the TaskExecutor starts the execution of the new task. When the latter task 

terminates its execution, the task executor notifies the GS with a special 

TaskCompleted message which includes the results of the completed task to the GS to 

be handed over to successor tasks, and continues to work until all tasks in the 

PreemptedTaskList have been executed. 

 

Fig. 5. Structure of the Remote Server (RS) 

4   Conclusions and Future work 

This paper presents a middleware framework for DES that supplies a set of 

services aimed to manage the deployment and execution of a set of tasks in a set of 

distributed nodes, so the time requirements of the overall system are met and the use 

of the resources is optimized according to different criteria (e.g. use of CPU, memory 

or battery). In particular, it provides a timing reference for the whole DES, support for 

executing in order the tasks of a DES, a certain degree of dynamism in run-time to 

adapt to changing requirements (e.g. task parameters, code updates) and a 



reconfiguration interface to require these changes.  This framework is aimed at DES 

that allow task migration and that may use local schedulers at the nodes. It uses a 

central modular component (known as GS) that orchestrates the system, another 

component type (RS) to abstract the individual processors involved in the DES and a 

special structure that abstracts the concept of task (TW). The GS is built in a modular 

way so the designers of the applications may easily choose from different scheduling 

and optimization policies the one that suits best to their applications. 

In the future the authors will introduce replicated GS in the framework to improve 

fault tolerance and will evaluate the performance of the framework as well as its 

behavior using the real-time Java implementation. Special care will be taken 

regarding task migration costs and memory consumption issues. 
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