
On Runtime Adaptation of
Application-Layer Multicast Protocol

Parameters

Christian Hübsch, Christoph P. Mayer, and Oliver P. Waldhorst

Institute of Telematics, Karlsruhe Institute of Technology (KIT), Germany
{huebsch,mayer,waldhorst}@kit.edu

Reasonable choice of protocol parameters is crucial for the successful deploy-
ment of overlay networks fulfilling given service quality requirements in next
generation networks. Unfortunately, changing network conditions, as well as
changing application and user requirements may invalidate an initial parame-
ter choice during the lifetime of an overlay. To this end, runtime adaption of
protocol parameters seems to be a promising solution—however, it is not clear
if protocol parameters can be adjusted dynamically at runtime in a distributed
setting. In this paper, we show—using the NICE application layer multicast pro-
tocol as an example—that runtime adaptation of protocol parameters is indeed
feasible. We propose an algorithm for adapting the NICE clustersize parameter
k dynamically at runtime and discuss the impact on service quality. Our simu-
lations show that runtime adaptation of NICE protocol parameters is promising
for service improvement and that data latencies can be optimized by up to 25%
without increasing the overhead significantly for most of the nodes.

1 Introduction

During the evolution towards next generation networks, the Internet architec-
ture faces a number of limitations due to upcoming requirements like mobil-
ity, multi-homing, or multicast communication. E. g., a clean implementation of
multicast communication within the Internet architecture has been proposed for
years but never experienced widespread end-to-end deployment. One reason for
the rare deployment of IP-based multicast is its inflexibility and requirement for
provider trust. Therefore, deployment of overlay networks attracted great inter-
est throughout the scientific community as a feasible approach for adding new
services like multicast communication on top of the Internet architecture in an

This work was partially funded as part of the Spontaneous Virtual Networks
(SpoVNet) project by the Landesstiftung Baden-Württemberg within the BW-FIT
program and as part of the Young Investigator Group Controlling Heterogeneous
and Dynamic Mobile Grid and Peer-to-Peer Systems (CoMoGriP) by the Concept
for the Future of Karlsruhe Institute of Technology (KIT) within the framework of
the German Excellence Initiative.

unintrusive and flexible way. A large number of protocols have since been pro-
posed that enable the overlay-based deployment of new services like multicast,
or distributed hash tables [4].

As services implemented by application-layer overlay networks typically pro-
vide worse service quality than native implementations in lower layers, careful
parameterization and fine-tuning of the overlay protocol becomes essential. Un-
fortunately, runtime changes of network conditions, as well as application and
user requirements can make a good parameterization turn worse during the life-
time of an overlay. This requires re-adjustment of overlay parameters during
runtime to prevent degradation of service quality—at best without any service
downtime.

In this paper we show by the example of the NICE application-layer multi-
cast (ALM) protocol that runtime adaptation of parameters is indeed feasible.
For this purpose, we conduct in-depth simulation experiments using a NICE im-
plementation in the P2P simulator OverSim [2]. As service quality measures, we
use message latency and resulting protocol overhead. We identify the size of the
node clusters maintained by NICE, the thresholds for cluster refinement and the
interval of the heartbeats exchanged by members of a cluster as relevant param-
eters for tuning the service quality. Subsequently, we show that these parameters
can be adapted at runtime by providing an algorithm for dynamically setting
the cluster size as an example. We discuss the (positive and negative) impact
of an adaptation on service quality measures. Our simulation experiments indi-
cate that runtime adaptation of the NICE protocol parameters is promising for
service quality as it may improve latency up to 25%.

The remainder of this paper is structured as follows: Related work is pre-
sented in Section 2. To make the paper self contained we introduce the NICE
ALM protocol in Section 3. We then present an in-depth analysis of the NICE
behavior with respect to parameters that determine service quality in Section 4.
In Section 5 we discuss how parameters can be adapted at runtime and illus-
trate the impact of runtime adaptation on service quality measures. Finally,
concluding remarks are given in Section 6.

2 Related Work

Work in overlay adaptation and optimization can be roughly divided into two
groups: structure optimization and underlay optimization. Structure optimiza-
tion focuses on performance of the overlay structure in itself, whereas underlay
optimization tries to adapt the overlay structure to the underlay, aiming to
overcome performance disadvantages of overlay-based networks. Our work can
be categorized as structure optimization. Work that has been performed under
aspects of overlay robustness and churn [7] is explicitly excluded in our work.

Our work is most closely related to [6]: The authors present the DHT protocol
Accordion that adjusts itself to different network sizes by adaptation of the
routing table size. While their focus is on performance and robustness under
churn in a DHT protocol, we work on adaptation in ALM and focus on service

quality. Furthermore, we concentrate on feasibility using the NICE protocol as an
example. Earlier work by the same authors [7] presented an analytical parameter-
space evaluation that focuses on systems under churn. The authors identify the
routing table size for DHT protocols as the most important parameter. This is
similar to the cluster size parameter of the NICE protocol that we use in this
work for dynamic adaptation.

Fan and Ammar describe reconfiguration policies for adaptation of overlay
topologies [3]. The authors consider design problems for static and dynamic over-
lay networks, the dynamic being based on occupancy cost and reconfiguration
cost. Their work provides insight into general reconfiguration and the question
of when to perform reconfiguration, whereas our work focuses on the concrete
effects of parameter adaptation.

Our work is based on a defined overlay structure with adaptation within
the parameter-space. Jelasity and Babaoglu [5] in contrast use a topology-space
to develop a protocol for topology structure adaptation, called T-MAN. The
T-MAN protocol allows for runtime variation of overlay topologies.

The authors of the NICE protocol performed analysis on static parametriza-
tion of the protocol, with focus on the k parameter [1]. In their work they look
at stretch and stress and how they are affected by selecting a constant parame-
ter k at design time. The ZIGZAG protocol [9] for application-layer multicast is
similar to NICE in its layered clustering structure, but outperforms NICE with
respect to node degree, and failure recovery. ZIGZAG, too, defines a constant
parameter k, similar to NICE. Therefore, we see applicability of our work to
ZIGZAG.

Interesting work has been published by Mao et al. on the MOSAIC system for
dynamic overlay composition at runtime [8]. The MOSAIC system can dynami-
cally compose a set of overlay protocols to include/exclude specific properties—
like mobility, or performance features—provided by the respective overlay. In
contrast, our work tries to optimize behavior inside a single overlay protocol.

3 NICE Protocol

The NICE protocol [1] is an early approach for ALM that implements an overlay
aiming at scalability by establishing a cluster hierarchy among participating
member nodes. In the following, we give a short description of the protocol.

3.1 Basic Protocol

NICE divides all participating nodes into a set of clusters. Protocol traffic is
mainly exchanged between nodes residing in the same cluster, leading to good
scalability. In each cluster, a cluster-leader is determined that is responsible
for maintenance and refinement in that cluster. Furthermore, all cluster-leaders
themselves form a new set of logical clusters in a higher layer, exchanging proto-
col data. Respective cluster-leaders are determined from one layer for the next
higher layer. This process is iteratively repeated until a single cluster-leader in

the topmost cluster is left, resulting in a layered hierarchy of clusters. Each clus-
ter holds between k and (αk − 1) nodes, α and k being protocol parameters. In
case of size bound violations, a cluster is split, or merged with a nearby clus-
ter. Clusters are formed on the basis of a “distance” evaluation between nodes,
where distance is basically given by network latency. NICE aims at combining
“near” nodes in the same cluster. Cluster-leader election is accomplished by de-
termining the node nearest to the graph-theoretic center of that cluster. Nodes
in the same cluster periodically exchange heartbeat messages to indicate their
liveliness and report measurements of mutual distance to other nodes in that
cluster. Cluster-leaders decide on splitting and merging of clusters as they are
aware of the current cluster size and all distances between nodes inside their
cluster.

The objective of NICE is to scalably maintain the hierarchy as new nodes join
and existing nodes depart. Conformance tests and rearrangements are performed
by NICE periodically. Based on the hierarchical clustering structure, paths for
data dissemination in NICE are defined implicitly. A node intending to send
out multicast data sends its data to all nodes in all clusters it currently resides
in. A node receiving data from inside its cluster forwards the packet to clusters
it is part of except the one it received it from. This leads to each participant
implicitly employing a dissemination tree to all other nodes in the structure.
To analyze the effects of parameter adjustment, we implemented NICE in the
open-source overlay simulation framework OverSim [2] based on the technical
descriptions given in [1].

4 Static Parameter Selection

In this section we analyze the protocol parameters of NICE with focus on their
impact on service quality.

4.1 Protocol Parameters and Service Quality Measures

The protocol behavior of NICE is adjustable by a variety of parameters. For com-
pleteness, we mention them here shortly in order to focus on the most relevant
in the following. In our implementation of NICE we find the parameters α, k,
HBI, min CL Dist and min SC Dist, triggering cluster sizes, interval length
between heartbeat messages, and decision bounds for clusterleader estimations,
respectively. Furthermore, the protocol employs several timers to detect failures
in communication or structure. The Maintenance Interval determines the inter-
val in which a node checks for protocol invariants. Peer Timout is defined to be
the period of time after which a node assumes another node has failed or gone.
It is a configurable multiplicity of HBI. Structure Timeout is the period of time
after which a node assumes to be partitioned from the structure and attempts
to reconnect. The Query Timeout detects lost queries in NICE for initiation of
retransmissions (while NICE is typically soft-state, some messages have to be
assured to be received in order to work properly).

NICE-specific Simulation-specific
Parameter Value Parameter Value

α, k 3 Number of nodes 512
HBI 5s Offset after last join 60 s
Maintenance Interval 3.3 s Measurement phase 600 s
Peer Timeout 2 HBI Joins ∼every 3 s
Query Timeout 2 s Data Interval 6 s
Structure Timeout 3 HBI
min CL Dist 30%
min SC Dist 30%

Table 1: Protocol and simulation parameters

As service quality measures, we consider data latency and protocol overhead.
Data latency is given by the average time that elapses between sending a data
packet via multicast and receiving it. Protocol overhead is measured by the
average bandwidth used by a node for sending control messages.

Several pre-evaluations have shown that the major impact is limited to 3
relevant parameters in NICE:

– the clustersize parameter k
– the refinement of node cluster memberships, in the following referred to as

inter-cluster refinement (especially by adjusting min SC Dist)
– the rate of protocol heartbeat messages (HBI)

Due to space limitations we only focus on k in the remainder of this paper.

4.2 Experimental Setup

Our experiments are conducted using the peer-to-peer simulation framework
OverSim [2]. As network model we chose OverSim’s SimpleUnderlay and use the
protocol-specific and simulation-specific parameters given in Table 1.

In our simulations we analyze a total of 512 nodes in NICE. From simulation
start, a new node joins the network every 3 s. After the last node joined we
employ a backoff time of 60 s to stabilize the hierarchy. Then, every node starts
sending a data packet using the multicast structure every 6 s. After 10 min of data
exchange, we again employ a backoff of 60 s before finishing the simulation run.
All simulation settings have been conducted with 30 different seeds of the random
number generator and mean values have been calculated for all performance
measures.

4.3 Clustersize Parameter k

The clustersize parameter k determines the thresholds of cluster sizes that trigger
splitting and merging a cluster with neighboring clusters. As all nodes in a cluster
directly exchange protocol messages, increasing k will intuitively increase per-
node overhead. In contrast, larger clustersizes also lead to fewer layers in the

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

Layer Depth
Number of Nodes
Join Delay

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

(a) Struct Building Process, k=2

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

Layer Depth
Number of Nodes
Join Delay

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000
 0

 100

 200

 300

 400

 500

 600

 700

 800

Jo
in

 D
el

ay
 (

s)
 /

La
ye

r
D

ep
th

s

N
um

be
r

of
 N

od
es

Time(s)

(b) Struct Building Process, k=4

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

Latency(ms)

0.9% 1.8% 5.5% 12.2%22.5%29.7%27.4%

Data
HB

Global

1 2 3 4 5 6 7

(c) Latencies and Hopcount, k=2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500
P

er
ce

nt
ag

e
Latency(ms)

1.6% 3.0% 14.5%30.2%50.8%0.0% 0.0%

Data
HB

Global

1 2 3 4 5 6 7

(d) Latencies and Hopcount, k=4

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

O
ve

rh
ea

d
pe

r
H

os
t (

kb
it)

Time(s)

Overhead/Node, 1s mean
Overhead/Node, 10s mean

(e) Mean Overhead per Node, k=2

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

O
ve

rh
ea

d
pe

r
H

os
t (

kb
it)

Time(s)

Overhead/Node, 1s mean
Overhead/Node, 10s mean

(f) Mean Overhead per Node, k=4

Fig. 1: Sensitivity to Clustersize Parameter k

hierarchy. Therefore, data packets have to traverse less overlay hops, leading to
lower overall data latencies. Thus, adjustment of k trades off protocol overhead
against data packet latencies.

Figure 1 gives an overview of the impact of different choices of k. Here, the
rows reflect the resulting NICE structure, latencies and overlay hopcounts, and
overhead per node, respectively. For the individual columns we set k to be 2 and
4, respectively. Concerning the hierarchy structure (Figures 1a and 1b) we find
that small changes of k already have mentionable impact on protocol properties.
The figures show the number of nodes in the structure and the resulting number
of layers as a function of simulation time. For each joining node it also shows
the join delay, i. e., the time that has passed between first contacting the RP

and finally joining a cluster in layer L0. Each figure visualizes the values for 10
out of 30 different seeds each.

In general, incrementing k leads to a decrementation in the hierarchy depth.
While the final structure with k = 2 converges to five layers, it converges to
three with k = 4. Each additional layer also increases the mean join delays that
joining nodes take to become part of the structure. Figures 1c and 1d show
the resulting latencies and hopcount distributions for each k, acquired after the
structure finished its building process. The figures show three aspects of latencies:
(1) global network latencies between all nodes as they have been placed randomly
in the simulation field, (2) latencies inside the clusters built (i. e. the heartbeat
round-trip times), and (3) data latencies that the data packets experience when
being routed through the overlay. We also show the distribution of hopcounts for
the data packets, meaning how many overlay nodes they pass before reaching all
nodes in NICE. It is clearly visible that the NICE clustering process combines
nodes with low network latencies in the same cluster. Decreasing hopcounts
lead to lower latencies. Finally, Figures 1e and 1f compare the resulting mean
overhead per node for each k. As the number of neighbors in a cluster increases
with k, the overhead due to heartbeat and other signaling also grows. Note that
adjusting k also influences the impact on the underlay by trading off between
resulting stress and stretch [1]. Due to space limitations, we will not discuss these
aspects in this paper.

We conclude from these experiments that adjusting the clustersize parameter
k enables trading off data latency and control overhead. Thus, it is promising
to adapt k in a scheme for runtime parameter adaption. However, it is not clear
whether k can be changed for an existing NICE overlay at runtime. We will
discuss this issue in more detail in the following Section 5.

5 Runtime Parameter Adaptation

Instead of choosing parameters for overlays at design time, we propose to enable
the protocol to adjust them during runtime. In the following, we provide an
algorithm for choosing the clustersize parameter k dynamically and illustrate its
impact on the service quality measures.

5.1 Adaptive Selection of the Clustersize Parameter k

In Section 4.3 we stated how k implicitly trades off overhead against data laten-
cies in NICE. Assuming the protocol has knowledge about the desired latency
constraints on the one hand and the tolerable resulting overhead on the other
hand, it may adaptively re-adjust k during runtime to provide desired data la-
tencies without exceeding its overhead bounds. As data packets in NICE traverse
the whole structure through its hierarchy layers, latencies will increase with the
depth of the hierarchy.

Given a NICE structure of depth d (d being the number of hierarchy layers),
to decrease the overall depth by one, k has to be chosen such that all nodes in

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000

N
od

es
/L

ay
er

Time (s)

Layer 0 Nodes
Layer 1 Nodes
Layer 2 Nodes
Layer 3 Nodes

(a) Members per layer, static k=3

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000

N
od

es
/L

ay
er

Time (s)

Layer 0 Nodes
Layer 1 Nodes
Layer 2 Nodes
Layer 3 Nodes

(b) Members per layer, opt. k

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000

O
ve

rh
ea

d/
N

od
e

(k
bi

t)

Time (s)

Layer 0, 10s mean
Layer 1, 10s mean
Layer 2, 10s mean
Layer 3, 10s mean

(c) Overhead per node, static k=3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000

O
ve

rh
ea

d
pe

r
H

os
t (

kb
it)

Time(s)

Layer 0, 10s mean
Layer 1, 10s mean
Layer 2, 10s mean
Layer 3, 10s mean

(d) Overhead per node, opt. k

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300

C
D

F
 M

ea
n

D
at

a
La

te
nc

ie
s

(%
)

Time (s)

(e) Distribution of data latency,
static k=3

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300

C
D

F
 M

ea
n

D
at

a
La

te
nc

ie
s

(%
)

Time (s)

Static k
Optimized k

(f) Distribution of data latency,
optimized k

Fig. 2: Clustersize k Runtime Adaptation Schemes (512 nodes)

layer d − 1 become part of one bigger cluster. In that case, there will be only
one cluster leader left on layer d, i. e. this cluster is eliminated. To determine a
suitable k under a worst-case assumption, the cluster-leader of the highest cluster
in layer d must assume that every cluster in layer d− 1 holds its maximum node
number of αk − 1 nodes. As the highest cluster-leader knows the number x of
nodes in layer d (i. e. its direct neighbors in the single highest cluster), it may
determine the worst case number of nodes in layer d− 1 to be x(αk− 1). Based
on this information the cluster-leader calculates a new value knew as follows:

knew = (x ∗ (α ∗ k − 1) + 1)/α

This ensures that all nodes in layer d − 1 will fit in a single cluster, resulting
in a decrease of one layer in the hierarchy structure. After calculating knew, the
cluster-leader instructs all nodes in layer d to merge their d−1-clusters with him,
so that he stays the last node in layer d which is equivalent to eliminating the
highest layer cluster. Furthermore, it propagates knew to its new cluster members
by including the new value in its periodic heartbeat messages. A node receiving a
changed value k will update its own cluster it is leader of, but with a randomized
bounded backoff to prevent all nodes from refining their structural part at the
same time. Note that the worst case estimation may raise k to a value that
potentially induces much more overhead to the participating nodes than really
necessary. Thus, the protocol may be optimized by the following addition: If the
highest cluster-leader knows the exact number of nodes in layer d − 1 it can
choose k to be just big enough to hold all such nodes in one cluster. To gain this
knowledge, all nodes in cluster layer d tell their specific current number of d− 1
cluster nodes to the leader of the highest cluster by including this information in
their periodic heartbeat messages. At the time of changing k, the highest leader
may sum up these numbers to find a value num that satisfies the following:

(α ∗ k) ≤ num ≤ x ∗ (α ∗ k − 1)

In general this value will be smaller than the one computed using the worst
case assumption, leading to a choice for k that is significantly smaller. We will
illustrate this fact in the following Section.

5.2 Performance Results

Figure 2 gives insights in the dynamic adjustment of k during runtime. Each
column covers a different case, being (1) no runtime adaptation of k at all,
(2) optimized adaptation of k to decrease the hierarchy depth. In case (2) the
adjustment of k is triggered actively 300 seconds after the structure has stabi-
lized, i. e., the new value of k is propagated and the merge of all clusters in d−1
is triggered. The first column compares the development of the average number
of members in clusters of a specific layer in the two cases (1) – (2), respectively.
Figure 2a shows that with a static value of k, the clusters in each layer show a
comparable size, with more layers being created with growing number of partic-
ipants. When adapting k at runtime (Figure 2b), the highest layer is eliminated,
while the next lower layer grows notably.

Looking at the overhead per node, Figures 2c and 2d show that the overhead
per node naturally grows with the highest layer the node resides in. In case
of adapting k, all nodes in the highest layer after the adaptation have higher
overhead due to the higher number of cluster participants they have to exchange
protocol messages with. While the overhead grows, it still remains manageable.

Comparing data latencies, we see that latency is significantly reduced as
shown in Figure 2e and 2f. To illustrate the gain of the adaptation more clearly,
Figure 2f compares the latencies before and after the runtime adaptation of k.
The figure shows a decrease in mean data latency by 25%. We conclude that

the clustersize parameter k can be adapted during runtime in order to trade off
latency against protocol overhead. How to determine an optimal new value for
k is subject to future research.

6 Conclusion

Careful selection of overlay parameters is crucial for the successful deployment
of overlay-based services in next generation networks. As conditions may change
due to dynamics in the network or overlay structure, we propose the self-adaptation
of parameters at runtime to adapt to service- and user-requirements. As a first
step towards this autonomous behavior we identified parameters with high im-
pact and showed the feasibility of adapting the clustersize parameter k during
runtime using the exemplary NICE ALM protocol. By extensive simulation we
presented the impact of protocol parameters and behavior during parameter
changes. We have shown that runtime adaptation of k is feasible and can reduce
data latencies by up to 25%.

References

1. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application Layer
Multicast. In Proc. Conf. on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications (SIGCOMM’02), volume 32, pages 205–217,
Oct. 2002.

2. I. Baumgart, B. Heep, and S. Krause. OverSim: A Flexible Overlay Network Simula-
tion Framework. In Proc. 10th IEEE Global Internet Symp. (GI ’07) in conjunction
with IEEE INFOCOM, pages 79–84, May 2007.

3. J. Fan and M. H. Ammar. Dynamic Topology Configuration in Service Overlay
Networks: A Study of Reconfiguration Policies. In Proc. 25th IEEE Int. Conf. on
Computer Communications (INFOCOM’06), pages 1–12, Apr. 2006.

4. M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas. A Survey
of Application-Layer Multicast Protocols. Communications Surveys & Tutorials,
IEEE, 9(3):58–74, July 2007.

5. M. Jelasity and O. Babaoglu. T-Man: Gossip-based Overlay Topology Management.
In Proc. 4th Int. Workshop on Engineering Self-Organizing Applications (ESOA’06),
volume 3910, pages 1–15, May 2006.

6. J. Li, J. Stribling, R. Morris, and F. M. Kaashoek. Bandwidth-efficient Management
of DHT Routing Tables. In Proc. 2nd conference on Symp. on Networked Systems
Design and Implementation (NDSI’05), volume 2, pages 99–114, May 2005.

7. J. Li, J. Stribling, R. Morris, F. M. Kaashoek, and T. M. Gil. A Performance vs.
Cost Framework for Evaluating DHT Design Tradeoffs under Churn. In Proc. 24th
IEEE Int. Conf. on Computer Communications (INFOCOM’04), volume 1, pages
225–236, Aug. 2005.

8. Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. Mosaic: Unified declarative platform
for dynamic overlay composition. In Proc. Int. Conf. On Emerging Networking
Experiments And Technologies (CoNEXT’08), pages 883–895, Dec. 2008.

9. D. A. Tran, K. Hua, and T. Do. ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming. In Proc. 22th IEEE Int. Conf. on Computer Communications
(INFOCOM’03), volume 2, pages 1283–1292, Mar. 2003.

