
Resource Adaptive Distributed Information
Sharing

Hans Vatne Hansen1, Vera Goebel1, Thomas Plagemann1, Matti Siekkinen2

1 University of Oslo, Department of Informatics
{hansvh|goebel|plageman}@ifi.uio.no

2 Aalto University School of Science and Technology, Department of Computer
Science and Engineering matti.siekkinen@tkk.fi

Abstract. We have designed, implemented and evaluated a resource
adaptive distributed information sharing system where automatic ad-
justments are made internally in the information sharing system in or-
der to cope with varying resource consumption. Our results show that
resource adaptation is an efficient way of improving query throughput,
and that it is most effective on our hardware when the number of stored
data elements is larger than 1000 or when more than 100 queries are
run per minute. We have been able to improve the number of performed
queries with a factor of 2.5 when 2000 data elements are stored and 100
concurrent queries are issued per minute, and with a factor of 4.7 when
1000 data elements are stored and 250 concurrent queries are issued per
minute.

Keywords: autonomic networks, self-optimization, resource adaptation.

1 Introduction

Data centric networking has become an important networking paradigm. In-
deed, focus on content instead of its location has started to drive the design
of communication systems, and over the last decade much research efforts have
been invested into developing solutions for networking data instead of hosts.
These activities have addressed several kinds of approaches ranging from build-
ing overlay type of solutions[10, 7, 5] to designing complete data-centric network
architectures from scratch[4, 2].

It would be desirable to have generic information sharing solutions that are
capable of storing and looking up various kinds of data and meta-data. This is
true for both the current situation as well as for the future. Specific applications
today often rely on particular overlay solutions and the different solutions are
usually non-interworking, which introduces significant amount of unnecessary
overhead and complexity. Futuristic Internet architectures such as ANA (Auto-
nomic Network Architecture) would benefit from such a solution as an integral
and reusable core component of the architecture. To this end, we have designed
and developed a fully distributed system called MCIS (Multi-Compartment In-
formation Sharing) which is based on a distributed hash table (DHT) type of

structured peer-to-peer system. The basic idea is that within the entire system,
each different data type forms a separate data compartment. A data compart-
ment represents a logical unit for data management, like network compartments
or realms form logical network units. Data items and queries are in each data
compartment routed independently of other data compartments. Furthermore,
the system supports multi-attribute data and range queries.

One of the challenges in deploying such a fully distributed system that relies
on cooperation of every node in looking up and storing data is that these nodes
can have significantly different amounts of resources available, such as CPU,
storage space, or energy. The amount of available resources depends on the one
hand on the device itself, e.g. mobile devices have scarce resources compared to
desktop computers, and on the other hand, on the current workload caused by
MCIS and other services and applications running on that node. A single over-
loaded node can negatively impact the performance of the overall system. Thus,
there are potentially several bottlenecks in the system in form of overloaded
nodes. Therefore, in order for such a system to perform well, nodes should avoid
overload situations by dynamically adjusting the resource consumption imposed
by the information sharing system.

In this paper, we describe the design of MCIS enhanced with such an au-
tomated resource adaptation mechanism. MCIS is designed in such a way that
for handling multi-attribute data there are so called hubs created separately for
each attribute which route data and queries independently. These hubs introduce
replication of data in order to gain performance in query processing. We take
advantage of this design in the resource adaptation mechanism so that there is
a trade-off in the level of replication and the query processing efficiency, against
resource consumption and the number of active hubs. We introduce a utility
metric to identify those hubs where leaving has the most positive effect on the
query processing efficiency.

We evaluate the performance and behavior of the resource adaptive MCIS by
storing and retrieving real Internet traffic traces from CAIDA[12]. The evaluation
results do not only demonstrate the feasibility of resource adaptation in MCIS,
but also the superior performance of a resource adaptive MCIS compared to a
non-adaptive MCIS. This work is done as part of the ANA project and the MCIS
source code is available at the project website (http://ana-project.org/).

The remainder of this paper is structured as follows. Section 2 introduces
MCIS. A detailed description of the resource adaptation scheme is given in Sec-
tion 3. In Section 4, we evaluate the system behavior. Finally, in Section 5, we
draw conclusions and explaining future work items.

2 Multi-Compartment Information Sharing

MCIS is a fully distributed store and query system. It is based on Mercury[1]
which is a DHT-based system that supports multi-attribute range queries, such
as size < 100 MB, type = MPEG and name = * when looking up MPEG video

content with any name and size smaller than 100 MB. As a DHT-based system,
MCIS is fully decentralized.

Each different data type is a separate logical data compartment formed by an
individual instance of a Mercury system. A data type is represented as several
attribute value pairs like int size = 37, string type = AVI and the specification
of the collection of these attributes is called a schema. Each data type forming
a data compartment consists of attribute hubs which are, similarly to Chord,
logical ring structures, one per attribute. These hubs organize, manage, and
route the data and queries related to the specific attribute independently from
each other as follows. Data elements are replicated and inserted into all hubs
while a query is only forwarded to the hub where it is expected to be executed
most efficiently, which depends on the specified ranges for each attribute. For
example, a wild card attribute implies that the query would need to be evaluated
at each node in the hub corresponding to that attribute, while a small range for
another attribute narrows the search down to only few nodes in that attribute
hub. In this way, replication is introduced for the sake of efficiency of query
processing. Fig. 1 shows how a data item is inserted into all attribute hubs and
how a potential query could retrieve the data from one of the hubs.

Fig. 1. MCIS hub structure

It should be noted that hubs do not necessarily need to be actively used
for all the attributes in the schema, but they help to decrease hop count in a
system with a large number of nodes. In other words, hubs can be joined or left
at any time in order to reduce resource consumption, but with the expense of
potentially heavier query processing and longer query response times. This is the
trade-off our resource adaptation mechanism relies on. Furthermore, not every
node of a specific data compartment needs to participate in each active attribute
hub. As shown in Fig. 1, there are four nodes in the system. All of these nodes
participate in Hsize, but only three of them participate in the two other hubs.

On top of the data compartments there is a special meta-data compartment,
also a Mercury instance, which enables looking up specific data compartments.

This meta-data compartment is the glue that binds the different data compart-
ments together. For example, when a node wishes to lookup data of a specific
type, it makes a lookup in the meta-data compartment with attribute constraints
specifying the data type. As a result, the node will receive the indentifiers of the
matching data compartments.

3 Resource Adaptation

Distributed systems like MCIS can have a high degree of churn, and one rea-
son for this is failing nodes[8]. There is a risk that one failing node can harm
the entire system, and even with data replication, the overall performance de-
creases with node failures. The main problem in distributed systems is that
the number of simultaneous users becomes too high for the system to handle
and that this becomes a bottleneck. Our approach to solve this problem is with
self-optimization, which in case of MCIS means to automatically detect certain
changes in the individual nodes and adapt to these changes in order to improve
the service.

The amount of available resources for MCIS changes continuously. Available
memory and processing power are critical system resources that vary depending
on all running processes on the machine. A possible strategy for self-optimization
is to identify when resource consumption is at a level where MCIS is unable to
function properly or to service its users, make internal changes to adapt to this,
and consequently improving performance. It is also possible to adapt to variance
in other resources as well, such as storage space or energy. We call this resource
adaptation. It consists of two distinct functions in addition to the actual MCIS
application:

– The resource consumption is measured in order to determine when the con-
sumption is at a critical level. We focus on CPU load, but any other node
resource could be measured.

– The measurement data is analyzed, and attribute hubs are joined or left
when thresholds are reached.

Fig. 2. Feedback control system

Fig. 2 shows our feedback control system for resource adaptation of MCIS.
The two resource adaptation modules dictate how many attribute hubs each
data compartment in MCIS has, based on CPU load and pre-defined thresholds.

The System monitor inspects system resources at fixed intervals and makes
the obtained information available to the Decision maker. We choose proces-
sor load as the resource adaptation trigger, because calculating query routes in
the attribute hubs is a CPU intensive task. Without sufficient available CPU
capacity, the queries will not be issued. The load is calculated based on CPU
queue length, i.e. the number of processes in the waiting queue. We normalize
this measure by factor 100 such that an idle computer has a load of 0 and a fully
utilized CPU has a load of 100.

The adjustment made in each MCIS node is whether an attribute hub should
be joined or left. This is not a coordinated event, but made on a per machine
basis. Individual nodes can leave a hub while the remaining nodes can continue
to use it if they have enough resources. Leaving an attribute hub on a machine
leads to less routing calculation, but could potentially lead to more hops. By
minimizing calculations of where to retrieve data we expect that the MCIS node
is able to answer more queries. This kind of optimization is especially valuable
for resource constrained devices like PDAs or systems where resource demanding
applications use a large percentage of the available CPU.

We choose which hub to join and leave based on what we call a utility score.
The utility score ranks the different hubs based on how profitable they are when
performing queries. Data elements are always replicated and sent to each hub,
but queries are only forwarded to the most selective hub, which is then responsi-
ble for providing results. Finding the optimal hub can therefore minimize routing
and improve performance. MCIS calculates the utility score for each hub in the
following way: If a hub stores a data element, its utility score is decreased by one,
but if it answers a query, the score is reset to zero. The result of this formula is
that hubs that answer many queries will have a utility score close to zero, while
less utilized hubs have negative scores. When MCIS is told to leave a hub, it
chooses the hub with the lowest score. The reasoning behind this strategy is to
first get rid of those hubs that add to resource usage by only routing data items,
but never route queries.

Hub T0 T1 T2 T3 T4

Hname 0 -3 -3 -5 0
Hsize 0 -3 0 -2 -2
Htype 0 -3 -3 -5 -5

Table 1. Example time-line of utility scores

Table 1 shows an example of how utility scores would be calculated in a given
situation. At T1, 3 data elements are stored and all the hubs decrease their score.
At T2, a query is forwarded to Hsize making it reset its score to 0 while the
other two remain -3. At T3, 2 new data elements are stored. At T4, a query is
forwarded to Hname giving the three hubs three different utility scores. The most
important hub at this point in time is Hname. Hsize is less important, while
Htype is least important and will be the first hub an overloaded node leaves.

4 Evaluation

The objective of our evaluation is to investigate the differences between MCIS
with and without self-optimization and see if MCIS can perform better when
adapting to system resource consumption in form of CPU load. The desirable
outcome of our evaluation is higher efficiency and an increased number of queries
performed when resource adaptation is applied. The number of simultaneous
queries that MCIS can perform is known as throughput rate and is expressed as
queries per time unit. We choose to evaluate our system based on throughput
as it reflects the demands and requirements that applications using MCIS have
for performance.

The number of hubs in MCIS is one of the key parameters in our studies.
It varies automatically according to resource consumption and influences how
query routing is performed. External load is also an important parameter in our
evaluation. We use synthetic load to have total control over the span and when
the load is applied. The external load is generated by two programs with the
purpose of using a predetermined amount of CPU.

We aim at keeping our evaluation realistic and choose data and queries that
represent real world use-cases. The data we use in our studies are real Internet
traffic traces gathered by CAIDA[12], and a typical investigation on these traces
is anomaly detection. One example of our queries is locating traffic on a range of
ports, known to be used by malicious programs. These queries also invoke route
calculations and might not be issued if the CPU load becomes too high.

The parameters we vary are the number of inserted data elements (DE) and
the number of queries per minute (QPM). We choose these parameters because
they correspond well to the load of MCIS. In our experiments the data elements
are stored in MCIS before the queries are performed. By changing one or both
of these parameters we can investigate the implications and understand in which
situations, if any, resource adaptation can improve MCIS.

We conduct our evaluation experiments in two phases with one local and one
distributed test. In the first test, we use one MCIS node and experiment with
a wide range of parameters. This test is an attempt to narrow our parameter
values and prepare for the second, distributed test.

Fig. 3. Distributed evaluation setup

We use the same configuration on all the machines in our experiments to
ensure that queries are processed under the same conditions, independently of
which MCIS node they are forwarded to. The machines are Intel Pentium 4s
with 2.60 GHz and 1 GB of memory. In the distributed test, all the machines
are connected directly to each other through the same switch. There are two
MCIS nodes and one client node running, as shown in Fig. 3.

In the local test, we find that MCIS uses an average CPU load of 5 on the
given hardware. This means that if the CPU load is below 95, it is possible for
MCIS to get sufficient CPU time. We conclude that a CPU load of 95 should
be the trigger for leaving an attribute hub as this is the critical level where
MCIS can function properly. With different hardware specifications, the CPU
requirements will differ and the triggers must be adjusted accordingly. However,
the same concepts apply. We determine all our parameter values for inserted
data elements and queries per minute based on what MCIS can handle on our
machines.

MINIMUM MAXIMUM

Data elements 1000 2000
Queries per minute 100 300
External CPU load 100 100
Trigger thresholds 95 100

Table 2. Parameter values

Table 2 shows our findings in the local test and what parameter value ranges
we use in the distributed test. We perform one experiment for each of the vary-
ing query rates and number of inserted data elements with resource adaptation
disabled, and with resource adaptation enabled.

Throughput in MCIS is the number of performed queries, and it represents
the overall performance of the system. When comparing throughput between
the experiments with and without resource adaptation, it measures how well the
self-optimization works.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 150 200 250 300

P
E

R
C

E
N

T
A

G
E

 O
F

 P
E

R
F

O
R

M
E

D
 Q

U
E

R
IE

S

QUERIES PER MINUTE

3 x RA ENABLED

3 x RA DISABLED

1000 ELEMENTS
1500 ELEMENTS
2000 ELEMENTS

1000 ELEMENTS w/RA
1500 ELEMENTS w/RA
2000 ELEMENTS w/RA

Fig. 4. Throughput comparison

Fig. 4 shows that the experiments are almost equal when resource adaptation
is enabled, regardless of the number of stored data elements. MCIS is able to
perform close to 100% of all the queries when both 100 and 200 queries are made
per minute. This is not the case when adaptation is disabled. In the experiments
where resource adaptation is disabled, the number of queries performed drops
drastically when the rate is increased from 100 queries per minute to 200 queries
per minute. This is especially true for the experiments with 1000 and 1500 stored
data elements. In addition, we are unable to achieve consistent results when
trying to query MCIS without adaptation 300 times per minute because the
machines are fully saturated. Therefore, we decrease the maximum query rate
to 250 when resource adaptation is disabled.

Our analysis shows that resource adaptation has a positive effect on through-
put and that it significantly improves the performance of MCIS. Most improve-
ment is achieved when the number of stored data elements is large or when query
rate is high. As expected, when a sufficient amount of resources are available the
effect of resource adaptation is neglectable.

5 Related Work

Several scalable information systems that gather information about networked
systems have been proposed in the literature such as in [11, 13, 6]. The first
two approaches focus more on information aggregation aspects, while the last
approach exhibits some self-configuration properties regarding resource utiliza-
tion. InfoEye[6] is a self-configuring distributed information management system
where management nodes communicate with monitoring sensors located at each
overlay node in order to get information about the overlay nodes which execute
application tasks. This information is provided via a query interface to applica-
tions. Since collecting information about every attribute of each overlay node is
unfeasible in a large system, InfoEye self-configures in an optimal fashion the
way it gathers the information from monitoring sensors, e.g. which attributes,
from which nodes, and via push or pull mechanism. InfoEye with the central-
ized management nodes (one such node exists in [6]) is a quite different concept
from MCIS which is a fully distributed system in which nodes make independent
decisions.

Replication in distributed systems has been studied earlier. For example, a
popularity/size-adaptive object replication degree customization scheme is de-
scribed in [14]. In [3], the focus is on maximizing object availability in peer-
to-peer communities under space constraints. Together with an additional large
body of approaches, this work focuses on developing optimal models for replica-
tion in a system given certain constraints and objectives. Our scheme differs in
that there is no system wide coordination. Instead, individual nodes dynamically
and independently make adjustments depending on their system state.

The closest match to our work that we could find is the concept of Elastic
Routing Table (ERT)[9]. This mechanism is proposed to prevent overload sit-
uations at particular DHT nodes due to inherent load balancing problems in

DHTs, the heterogeneity of network nodes, and the non-uniform and time vary-
ing popularity of content. ERT uses variable size routing tables for DHT nodes
which are adjusted based on load at the particular node. The difference to our
work is that we consider impacting the replication degree of data instead of the
routing tables. In fact, ERT could be used as a complementary scheme in MCIS
to adjust each node’s routing tables for individual hubs.

6 Conclusions

In this paper, we presented a generic distributed information sharing system
which is able to dynamically adapt to resource consumption when necessary. This
property allows the system to be deployed among heterogeneous nodes while al-
leviating the problem of individual nodes to become bottlenecks, which would
hurt the performance of the entire system. Our evaluation results demonstrate
that with the use of resource adaptation, the system achieves higher through-
put than without resource adaptation. These results are also relevant for other
distributed systems, not only MCIS.

This paper presents our first results in our pursue towards a fully self-
organizing information sharing system. Hence, there are a number of challenges
that we would like to address in our future work. The current version of MCIS
attempts to avoid overload situations of individual nodes. We want to benefit
from the large body of analytical work on replication for high availability in or-
der to drive the design of MCIS towards optimal resource adaptation. This work
also includes replicating data through duplicate attribute hubs, which requires
changes to the design of the underlying Mercury system. In addition, we plan
to model the resource consumption to be able to evaluate the behavior of the
MCIS system with a large number of nodes through simulations. Specifically,
we are interested in understanding the quantitative impact of nodes leaving and
joining hubs to the query response time in a large system. We are also interested
in analyzing the trade off between the number of joined hubs and query hop
count.

References

1. Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. ACM SIGCOMM, 2004.

2. Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya Arianfar,
and Pekka Nikander. Lipsin: line speed publish/subscribe inter-networking. In
SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, pages 195–206, New York, NY, USA, 2009. ACM.

3. J. Kangasharju, K.W. Ross, and D.A. Turner. Optimizing file availability in peer-
to-peer content distribution. In INFOCOM 2007. 26th IEEE International Con-
ference on Computer Communications. IEEE, pages 1973–1981, May 2007.

4. Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun
Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond) network archi-
tecture. SIGCOMM Comput. Commun. Rev., 37(4):181–192, 2007.

5. X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and G. Iannaccone.
MIND: A distributed multi-dimensional indexing system for network diagnosis. In
Proceedings of INFOCOM 2006, pages 1–12, 2006.

6. Jin Liang, Xiaohui Gu, and Klara Nahrstedt. Self-configuring information man-
agement for large-scale service overlays. In INFOCOM, pages 472–480, 2007.

7. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. In Proceedings of SIGCOMM ’01, pages
161–172, 2001.

8. Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn
in a dht. In ATEC ’04: Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 10–10, Berkeley, CA, USA, 2004. USENIX Associa-
tion.

9. Haiying Shen and Cheng-Zhong Xu. Elastic routing table with provable perfor-
mance for congestion control in dht networks. In ICDCS ’06: Proceedings of the
26th IEEE International Conference on Distributed Computing Systems, page 15,
Washington, DC, USA, 2006. IEEE Computer Society.

10. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of SIGCOMM ’01, pages 149–160, 2001.

11. Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe:
A robust and scalable technology for distributed system monitoring, manage-
ment, and data mining. ACM Trans. Comput. Syst., 21(2):164–206, 2003.
http://doi.acm.org/10.1145/762483.762485.

12. Colby Walsworth, Emile Aben, kc claffy, and Dan Andersen. The caida
anonymized 2009 internet traces - equinix-chicago.dira.20090331-055905.utc.
http://www.caida.org/data/passive/passive 2009 dataset.xml.

13. Praveen Yalagandula and Mike Dahlin. A scalable distributed information man-
agement system. In SIGCOMM ’04: Proceedings of the 2004 conference on Ap-
plications, technologies, architectures, and protocols for computer communications,
pages 379–390, New York, NY, USA, 2004. ACM.

14. Ming Zhong, Kai Shen, and Joel Seiferas. Replication degree customization for
high availability. In Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, pages 55–68, New York, NY,
USA, 2008. ACM.

