A Context Middleware Using an Ontology-based
Information Model

Iris Hochstatter', Michael Duergner?, and Michael Krause®
! Munich Network Management Team, Information Systems Laboratory (IIS),
University of Federal Armed Forces Munich, 85577 Neubiberg, Germany,
Iris.Hochstatter@Qunibw.de
2 Ludwig-Maximilians-Universitat Miinchen, Michael. Duergner@stud.ifi.lmu.de
3 BearingPoint, Miinchen, Michael Krause@ifi.Imu.de

Abstract. For the adaptation of services to the current situation of a
user, the services are in need of specific context information. The acqui-
sition of context in highly dynamic environments is a complex process
as the appropriate context sources are not known in advance. Moreover,
to realize Mark Weiser’s vision of ubiquitous computing, many services
on the one hand and a good deal of context information on the other
hand have to be combined. Hence, we follow a middleware approach to
automate context retrieval for services. For the exchange over domain
boundaries, services in need of and services offering context information
have to agree on a common description of the information. Therefore,
a flexible and extensible information model is a basic requirement. This
paper describes in detail the integration of those two important founda-
tions of context-aware computing.

1 Introduction

In highly dynamic environments with a multitude of mobile entities, it is impor-
tant for (i) context-aware services to find and for (ii) context information services
to provide context information to many other systems. A restaurant finder ser-
vice for example looks for venues close to the user’s location and may depend
on many other information describing the user’s situation. Which context infor-
mation services, i.e. context sources it has to query will not be known until the
actual query is made. On the other hand, context information about any entity,
as for example the user’s location can be used in many different context-aware
services. To relieve context-aware services of the intricacies of context retrieval
and composition as well as to facilitate the reuse of context information at the
same time, in [1] we proposed infra-structural services, namely the CoCo In-
frastructure. Context information is exchanged over domain boundaries, thus
all involved actors have to agree on how to express and interpret context in-
formation. Therefore, an information model has to balance expressiveness and
inferential efficiency. In [2] we introduced a modeling approach based on ontolo-
gies that takes into account the special characteristics of context information.

Context-aware
Service

1.request

4.receive (CoCo Graph)
Context
Knowledge 2.analyse
Base 2b.process |
Context —| CoCo
Processor Controller
Itﬂigdel 3.compdse 2al.query
2a2.quer;
- &' Context |
w Retriever
2a3.query 2a4.query
CoCo
Infrastructure

2a6.receive 2a5.request

Context Information
Service (CIS)

Fig. 1. Middleware: The CoCo infrastructure

In this paper we will go into details about the integration of this ontology-based
information model into our context middleware.

The paper is structured as follows: section 2 and 3 presents the basic building
blocks CoCo Infrastructure and Context Meta-Model. Section 4 discusses the in-
tegration of the ontology-based information model into the context middleware.
We conclude the paper with a short summary and an outlook to future work.

2 The CoCo Infrastructure

The CoCo Infrastructure (see fig. 1) acts as a broker between context-aware ser-
vices (CAS) that request context information and context information services
(CIS) that provide context information. It therefore relieves the context-aware
services from the burden of discovering context information services, data trans-
formation, or derivation of high-level context information from low-level context
information.

CoCo stands for Composing Context. The CoCo Infrastructure does not only
support the request for a single piece of context information (like ’the current
position of Alex’) but also the request for composed context information (like
"the temperature at the place where Alex currently is’). This requires the ability
to describe such compositions. Therefore, we have developed a language that
describes the request for composed context information in so-called CoCo graphs
[1]. The graph-like structures are expressed in XML.

Basically a CoCo Graph is made out of two types of nodes: Factory Nodes
describing the requested piece of context information and Operator Nodes con-
taining instructions how to process one or several pieces of context information.
The procedure is as follows: (step 1) First, the request in form of a CoCo graph,
is sent from the context-aware service to the CoCo infrastructure where it is
(step 2) analyzed by the CoCo Controller.

For every Factory Node it sends (step 2al) a request for context information
to the Context Retriever, which at first queries the Context Cache (step 2a2),
whether it already has got the requested information. In case it is not available
there, the CIS Cache is asked whether it already knows an appropriate con-
text information service to retrieve the information from (step 2a3). If not it
then instructs the CIS Locator to find appropriate context information services
(step 2a4), to which the retriever sends related context requests. After having
received context information for each request (step 2ab and step 2a6) the re-
triever matches this information against the request of the controller, selects the
most appropriate piece of context information and returns it to the controller.

For each Operator Node, the controller instructs the Context Processor to
execute its operation (step 2b), e.g. adaptation, selection or aggregation. Context
Processor and Context Cache are part of the Context Knowledge Base, which also
includes the Model Lib. The Model Lib contains the ontology-based information
model the middleware is based upon, this will be discussed in the next section.

3 The Context Meta-Model

To facilitate a common understanding and a uniform representation of context,
we developed an information model as foundation for context interoperability.
This model was introduced in [2]. Context information poses special require-
ments on an information model as literally every information can be used as
context information. It is therefore not sufficient to have a single context model
but we propose a Context Meta-Model (CMM) that can be used by applica-
tion developers to design their own application specific context models, reuse
existing models and combine both possibilities. We base our information model
on ontologies and thus gain the possibility to perform reasoning and an impor-
tant formal basis. Description logics are a set of logic-based formalisms used to
specify ontologies. They identify a subset of first order logic that offers a good
trade-off between expressiveness on the one hand and determinable and efficient
inference on the other. To account for flexibility, the CMM incorporates rules
that are based on Horn formulae.

Basic building blocks for representing (context) knowledge in our context
meta-model are entity classes, datatype classes, and properties with their asso-
ciated quality classes (see figure 2):

— Entity class: base construct for representing a group of entities (persons,
places, things, events etc.) that belong together because they share some
properties

— Datatype class: base construct for representing a datatype (temperature,
noise level, position etc.)

— Property: base construct for representing a type of relationship between an
instance of an entity class and an instance of either an entity or a dataype
class. An example for a property as a relation between two entities on the
model layer is: Person ”"owns” MobilePhone. Person "hasPhoneNumber”

1..% <<metaclass>> « -
% ®
O

o <<metaclass>> <<metaclass>> <<metaclass>>
ContextInformationClass AbstractDataStructure 1..%| DatavalueClass
[T+
iva — subContext— |
a%‘{{[‘e‘lem int’umm_tinn 1Y
Information ClassOf
Class <<metaclass>>
Literal Type
L.*
<<metaclass>> <<metaclass>> <<metaclass>>
EntityClass DatalypeClass Quaht_\, Class
equivalent— subEntity— equivalent— ubDMmpe— equna]em— L.* subQuality—
EntityClass ClassOf® DatatypeClass QualityClass ClaSsOf
hasQuality

Fig. 2. The Context Meta-Model

PhoneNumber relates an entity with a datatype (more details are given in
the next subsection).

— Quality class: base construct for representing specific quality aspects of dy-
namically acquired information (certainty, precision, resolution etc.) also
known as Quality of Context.

In order to represent temporal history information, for every property the
acquisition time is captured as a timestamp. It is a mandatory quality class for
every property. Dependencies between properties are expressed as rules in the
form of Horn clauses. Each rule expresses an implication between an antecedent
and consequent: whenever the conditions specified in the antecedent hold, the
conditions specified in the successor must also hold. This allows to specify con-
sistency conditions as well as derivation rules. Conditions can reference entity
classes and datatype classes as well as properties and their associated quality
classes. This way a rule can take into account quality information and also specify
the quality of the deduced properties.

In addition, there are two special constructs for the semantically rich specifi-
cation of datatypes: datavalue properties and transformation rules. A Datavalue
Class is a base construct for specifying data structures, i.e. datatype classes
and quality classes. Each datavalue class associates a data structure (Abstract-
DataStructure) with a literal type and thus allows to compose complex data
structures from literals. E.g. the coordinates for a position are composed from
longitude and latitude. The Transformation is the base construct for repre-
senting a transformation from values of one data structure to values of another
data structure. An example is the transformation between a position in Gauss-
Krueger coordinates into a WGS-84 format, the transformation function itself is
given or described in form of a rule on class level in the Rules and the identifier
for the rule is given in the model itself.

Further modeling constructs are specialization-relations that may be speci-
fied between two classes of the same kind in order to organize them in (separate)
specialization hierarchies. Finally, there are equivalence-relations. Their seman-

tics is that the first node represents the equivalent concept or role as the second
node and should therefore be interpreted equivalently. They are useful for map-
ping context models that have been developed separately in order to enable
interoperability.

4 Integrating the Context Meta-Model into the CoCo
Infrastructure

As context information services and context-aware services as well as a context
composition middleware will be operated by different providers, who may not
even know each other directly, the main goal behind the implementation was
to enable the use of different context models nearly automatically to facilitate
interoperability. This can only be achieved if the middleware does not care about
the specific context model it deals with at the moment. CoCo itself operates in
most parts just within the structure given by the context meta model (CMM).
This allows an easy integration of new context models into CoCo on-the-fly
at runtime without even stopping the service. Furthermore it should enable us
to delegate the retrieval of context model specific code to either a third-party
service or maybe even use in Java integrated mechanism.

The identification of a specific context model and EntityClass or Context-
InformationClass of this model is performed on the XML layer by the names-
pace and the name of the XML tag, i.e. by its qualified name. The Model Lib
of CoCo therefore has an integrated mechanism to translate this qualified name
into a Java package name and class name to actually load the correct Plain Old
Java Object (POJO). The only prerequisite for this to work is, that the needed
classes have to be within the classpath of the CoCo service. This is right now
done by copying the JAR packages there but should be replaced by the possibil-
ity to automatically load the classes via the Internet directly from the vendor’s
location.

In this section, we will first give a detailed view on the process that is executed
in the CoCo middleware, we then describe the integration of the ontology-based
information model CMM into the CoCo Infrastructure and show the achieve-
ments of this work.

4.1 Parsing and Binding

The first action that takes place when the service is invoked is that it tries to
parse the submitted CoCo Graph and determines if it is syntactically and se-
mantically correct, as far as CoCo is able to understand the semantics. Parsing
is done in a two step approach, i.e. in the first step we create a DOM tree out
of the XML document and do the syntax checks here. The second one is to
parse this DOM tree and translate the elements to the appropriate POJOs, e.g.
a factory-node DOM element creates a FactoryNode Java object. Afterwards
one of the most important actions takes place, i.e. the different Input-, Factory-,

Operator- and OutputNodes are bound to each other according to the dependen-
cies specified by the user. E.g. the Factory Node which is responsible to retrieve
the temperature for the location where Axel is, is bound to the Factory Node
which gets Alex’s location as this location is a prerequesite for the other one.
As Factory Nodes normally are just bound to one other node OperatorNodes
may be bound to a theoretically nearly infinite number of other nodes. Due to the
structure of Operator Nodes there are also bindings within the OperatorNode
itself, e.g. the output of an Operator Node may be the outcome of a calculation
done inside the node or may be a fixed value depending on the outcome of the
calculation. The power and possibilities of Operator Nodes are not completely
visible at the moment as they depend closely on the context models available.

4.2 Starting and Running the Nodes

After the binding step is complete the CoCo Controller searches for these nodes
which are not bound to any other and starts them. Afterwards, the Node tries to
fulfill its task, i.e. either invoke the CoCo Retriever to fetch context information
in case of a Factory Node or to hand over to the CoCo Processor in case of an
Operator Node. In both cases the involved components report either the sucessful
execution or any error to the Node which has invoked them. In case of success
the result is returned, i.e. the outcome of the operation or the retrieved context,
and the Node is then responsible to inform all nodes which are bound to it about
the fulfillment of the task. If an error occured during execution, e.g. if there is
no way to retrieve the requested context information for whatever reasons, the
Node is responsible to inform the CoCo Controller about this problem which
afterwards has to deal with this issue.

This mechanism goes on as long as there are any nodes left that need to be
executed. In case the node is an OutputNode it either has the value already in
case of a fixed value, or it retrieves it from the node it is bound to and informs the
CoCo Controller that it is ready to return its value. After all output nodes have
reported to the CoCo Controller it is its task to compose the XML document
which is returned to the user.

4.3 Integrating Jena with the CoCo Infrastructure

The Jena framework [3] is a Java framework for developing Semantic Web [4]
applications. It implements the modeling languages RDF, RDFS and OWL, and
provides a rule-based inference engine. The Jena database system [5] uses the
JDBC to connect to a relational database like MySQL, Oracle or PostgreSQL.
RDF triples are stored with subject, predicate and object and each line corre-
sponds to one RDF statement. Jena allows to manage different RDF models
simultaneously by assigning an own triple table to each of the models. Jena also
includes a SPARQL engine (SPARQL Protocol And RDF Query Language) [6].
SPARQL is a data-oriented query language that searches the model and returns
relevant information as a graph or a set of variables. Its syntax is similar to an
SQL statement and supports four different request types. Jena is therefore well

suited for introducing our semantic information model to the CoCo Infrastruc-
ture and allows us to store context information persistently in a database while
retaining the semantics as it supports OWL DL.

To integrate Jena with the CoCo Infrastructure, we added an interface Con-
textInformationCacheJena to the CoCo Infrastructure that includes the pro-
cedures insert and query. The Jena database subsystem uses the JDBC driver
to connect to a PostgreSQL database. After connecting to the database, a per-
sistent model has to be created with the ModelFactory. Whenever the Context
Retriever receives a request for context information, it first queries the Con-
text Cache via the new interface. The query procedure proceeds in five steps:
First, from a list of all available models the appropriate has to be chosen and
opened. Next, an ontology model is created from the model: the ontology model
also contains specification information regarding the ontology language, reasoner
and storage location. A SPARQL query searches for the entity and its relevant
context. As an entity can have multiple identities, it has to be looked for each of
them. When the right entity has been found according to its identity, the sought-
after context information can be retrieved in a next step. The result is a model,
that has to be converted to a DOM element. Usually the DOM parser should be
able to convert the model to a DOM element. Unfortunately, the parser could
not resolve namespaces, so in our case the query procedure calls a conversion
procedure and the model is first converted to a JDOM element and then to a
DOM element. The DOM element is finally returned to the Context Retriever.

If the query fails because the context information was not in the Context
Cache, the Context Retriever looks for an adequate context information service
and queries it. The response is then stored in the Context Cache via the insert
procedure. The insert procedure has an EntityClass object as parameter. This
object is first converted to a DOM object and then stored as an RDF model in
the database.

5 Related Work

Various approaches to infrastructural support of CASs as well as to context
modeling exist. In previous works on those topics, existing approaches to con-
text provisioning (cp. [1]) and context information models (cp. [7] and [8]) have
been evaluated thoroughly. In this paper, we present only the most important
findings from this extensive research regarding the modeling of context informa-
tion. In terms of expressiveness, there is no approach that captures all features
of context information so far. Most of the existing approaches restrict their gen-
erality by stipulating semantic categories and almost none provide constructs
to express meta information which is crucial to determine whether the given
context information is useful for a particular service. Many of the approaches, in
particular earlier ones, lack a formal foundation that is necessary to enable effi-
cient inference, extensibility and distribution of models. In addition, support for
interoperability is not explicitly given. Shortcomings in terms of expressiveness
and structure result in difficult applicability of an approach in practice.

6 Conclusion

The complex task of brokering context information between all involved actors
has been discussed in this paper. Based on the description of a middleware and
an ontology-based information model, the concrete integration of both has been
described in great detail. Due to the combination of relatively new technologies it
has to be dealt with unexpected challenges but the approach shows the feasibility
and with proceeding development, the advantages will be even more substantial.

Though this conceptual change in the CoCo Infrastructure works quite well
there remains room for improvement. At the moment, context information is
stored in the database but never erased or moved. While historical context infor-
mation surely is useful, databases will get out of hand without a fitting algorithm
to clear the database possibly relying on the Quality of Context. Secondly, with
the improvement of OWL databases and inference engines a lot more efficient
solutions will be possible.

Acknowledgments. The authors wish to thank the members of the Munich
Network Management (MNM) Team for helpful discussions and valuable com-
ments. The MNM Team founded by Prof. Dr. Heinz-Gerd Hegering is a group
of researchers of the University of Munich, the Munich University of Technol-
ogy, the University of Federal Armed Forces Munich and the Leibniz Supercom-
puting Centre of the Bavarian Academy of Sciences. Its web-server is located
at http://www.mnm-team.org. This work has been performed partially in the
framework of the EU IST Network of Excellence EMANICS Management of
Internet Technologies and Complex Services (IST-NoE-026854).

References

1. Buchholz, T., Krause, M., Linnhoff-Popien, C., Schiffers, M.: CoCo: Dynamic Com-
position of Context Information. Proceedings of the First Annual International Con-
ference on Mobile and Ubiquitous Computing (MobiQuitous), August 2004

2. Fuchs, F., Hochstatter, I., Krause, M., Berger, M.: A Meta—Model Approach to Con-
text Information. Proceedings of 2nd IEEE PerCom Workshop on Context Model-
ing and Reasoning (CoMoRea) (at 3rd IEEE International Conference on Pervasive
Computing and Communication (PerCom 2005)), March 2005

3. Jena Semantic Web Framework. http://jena.sourceforge.net/

World Wide Web Consortium: Semantic Web. http://www.w3.org/2001/sw/

5. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and Re-
trieval in Jena2. Proceedings of VLDB Workshop on Semantic Web and Databases,
pages 131-150, 2003

6. World Wide Web Consortium: SPARQL Query Language for RDF.

7. Fuchs, F.: A Modeling Technique for Context Information Master’s Thesis, Ludwig
Maximilian University Munich, 2004

8. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. Proceedings of the
Workshop on Advanced Context Modeling, Reasoning and Management, 2004

e~

