

Adding Energy Efficiency To Openstack
Vojtech Cima, Bruno Grazioli, Seán Murphy, Thomas Michael Bohnert

ICCLab, Institute for Information Technnology (InIT),
Zurich Institute of Applied Sciences (ZHAW),

Winterthur, Switzerland.
Corresponding author (email): murp@zhaw.ch

Abstract— In this paper we consider how energy efficiency
aspects can be added to Openstack. With the objective of
devising an energy efficient resource manager for Openstack, we
first analyze resource and energy utilization on our cloud
resources. We observe that there is a large fixed cost associated
with server usage patterns and powering down servers is
necessary to achieve energy savings. Following this we consider
migration mechanisms which are necessary to perform load
consolidation: we find that hybrid live migration has the
necessary robustness to be part of a sophisticated load
management solution. Finally we discuss ongoing work on
realizing a load manager for Openstack based on these
observations.

Keywords—cloud computing; energy efficiency; green data
centres; smart cities.

I. INTRODUCTION
As the energy consumption of IT resources continues to

increase, there is increasing pressure within the industry to
ensure it maximizes its energy efficiency. While growth in
energy consumption in the broader IT sector, continues to
increase, driven by an increasing number of smart devices, the
line between dedicated ICT devices and non-ICT devices will
blur as we enter the IoT era.

One area within the IT sector which is very aware of energy
issues is the cloud and data center segment. While there is
some differentiation between these areas, there is also strong
overlap and as more and more of organization’s workloads
move to the cloud, the overlap will increase.

Currently, the Data Centre segment accounts for 2.8% of
energy consumption in Switzerland and slightly less –
approximately 2% - in both the US and Western Europe [1][2].
As a major energy consumer, the segment has achieved much
in terms of energy efficiency within the last decade, through a
combination of improved cooling solutions and more efficient
transformers on servers [3]. However, there is still more to be
done.

From an energy perspective, Data Centres are an interesting
use case, as they typically have substantial energy generation
and storage capabilities; further, they often have some
flexibility in how their workload is managed and how energy is
consumed within their facilities. Although the very large DCs
are often located in remote places, the vast majority of DCs are
located within urban environments and consequently they form
an important part of tomorrow’s Smart Cities.

Realizing energy efficiencies within Data Centres located
in Smart Cities is a complex, multi-faceted problem involving
understanding of municipal energy generation - including
renewables - and consumption, municipal energy policies,
energy distribution within cities, DC design and operations,
cooling systems and IT systems.

One mechanism to realize energy efficiencies in the DC
context is intelligent load management. Facebook has shown
that it can deliver energy savings of up to 15% of their total
energy bill using a mix of deferring work, backfilling servers
with time-insensitive work, powering down unnecessary
servers and shifting work to alternate DCs [4]. In this work, we
discuss how this can be realized in the context of Openstack - a
major open-source cloud computing stack targeted at both
public and private clouds and thus the large portion of the DC
segment which is less energy efficient.

The paper is structured as follows. In the next section, a
brief description of the GEYSER project is given, highlighting
the innovations within the project. Following this, there is a
section detailing active energy management solutions for cloud
contexts, with a particular emphasis on Openstack: this section
is divided into subsections focusing on understanding server
energy consumption in a cloud context, performance analysis
of innovative live migration techniques and some work on
developing an energy-based controller for Openstack. Finally,
the work is concluded in section 4.

II. THE GEYSER PROJECT
GEYSER [5] is an EU FP7 project which is focused on

increasing energy efficiency of DCs located in tomorrow’s
Smart Cities. A basic premise of the project is that the energy
picture within a Smart City will be more complex than today,
both in terms of generation and consumption. More
specifically, Smart Cities will comprise of many energy
generation options, a significant fraction of which will be
based on renewables and will contain a local marketplace in
which locally generated energy can be traded.

The Data Centre will be an important component in this
context, being able to act as a prosumer: providing energy
supply when necessary (with significant constraints) as well as
having some ability to reduce its consumption when necessary.

Although Data Centres are very heterogeneous - different
requirements, different locations, different sizes, different
cooling solutions, different networking options, different
security solutions etc - they can generally be classified into
private or public and public can be further subdivided into co-

978-3-901882-70-8 ©2015 IFIP

location or cloud. While much of the sector today is private,
the move to cloud is clear and with increasing maturity of
hybrid cloud solutions, more and more of the work will move
to public cloud [6]. For this reason, a significant amount of
energy within GEYSER is focused on the cloud use case.

The basic objective of GEYSER, then, is to realize a
flexible, adaptive DC - or network of DCs - within a Smart
City which can match the available energy supply with the
available workload in an energy efficient fashion.

At the heart of GEYSER is an advanced Data Centre
Management and Control system which can span multiple
DCs. This can leverage a number of control actions within the
DC such as activating, deactivating chillers, changing the
operating temperature, increasing/decreasing the system
workload or – in the case of networked cloud DCs – shifting
some of the workload to another DC.

As the context for GEYSER is the Smart City context, an
important aspect of GEYSER is how it integrates with the
Smart City. Specifically, this means that the DC can share its
energy generation options and indeed energy storage options
with the Smart City but of course this must be done in a very
controlled way such that it has no negative impact on the DC
operator’s business. Another aspect of the Smart City context
that is assumed is a dynamic energy marketplace – specifically,
in GEYSER it is envisaged that there are multiple markets
operating over different timescales which offers the DC
another dimension of flexibility in terms of its energy
consumption. As renewable energy is an important
consideration in GEYSER, forecasting is important. With
much renewable energy depending on weather, weather
forecasts can be used to infer availability of energy or almost
equivalently, energy costs.

Figure 1: The GEYSER High Level Context [7]

The GEYSER architecture, then consists of many
components ranging from data collection within the DC to
control systems within the DC to interfaces with local energy
marketplaces to interfaces to local weather forecasts. Clearly,
then, it is a complex system and indeed one of the challenges
within the project is striking the appropriate level of
complexity – complex enough that it can incorporate all of this
information in a useful manner, but not excessively complex
that it will not be a realistic candidate for deployment in the
DC context. (The GEYSER context is illustrated in Figure 1 –
the system architecture is too detailed for inclusion here).

The cloud related aspects of GEYSER essentially focus on
intelligent load management, generally in a networked DC
cloud context. Specifically, this means that the cloud workload
can be adapted depending on the prevailing energy conditions
– if energy is available at a low price, then the cloud operator
has an incentive to maximize resource usage; conversely, if
energy is available at a high energy price, then the cloud
operator has an incentive to reduce resource consumption by
shifting workload in time or space. Workload can be increased
by incentivizing customers of the service to increase their
usage – generally, this can be done via price mechanisms.
Time shifting workload typically involves deferring it, such
that it can be executed at a time when there is lower utilization
of the system and/or energy costs are lower; space shifting
workload typically involves moving workload from one data
centre to another. The latter is a tool which must be applied
judiciously – in many cases, it is not straightforward to move
work from one DC to another as, for example, data might be
stored in a specific DC; also the process of moving from one
DC to another is non-trivial and care must be taken.

In general, the above ideas are not new – they have been
studied in an abstract context as well as in the context of more
concrete technologies such as Eucalyptus and Open Nebula
and indeed concrete supports for this have been developed in
those contexts. However, support for Openstack has not been
developed as yet: with Openstack being the cloud stack that is
currently receiving the most attention in the marketplace, the
focus here is on adding such capabilities to Openstack.

Given this context, then, we outline the mechanisms we are
using within GEYSER to enable cloud based DCs to adapt in
dynamic energy contexts.

III. ACTIVE ENERGY MANAGEMENT IN OPENSTACK
The objective of this work is to add sophisticated energy

management supports to Openstack. In the context of
GEYSER, this includes supports for increasing load and time
and space-shifting load in response to the prevailing conditions
and signals received from other components within GEYSER.
These aspects, however, are still a work in progress and
consequently the main focus here is on more rudimentary
supports for energy management which focus on powering
down servers when they are not required.

To develop an active energy management system, it was
first necessary to have an understanding of load and energy
consumption within cloud resources. Following this, we
focused on a fundamental mechanism which is necessary to
perform load consolidation – an important component of the
energy management solution. Following that, we describe the
work we have done on developing a basic energy management
system for Openstack.

A. Understanding Server Energy Consumption
To understand the energy consumption of cloud resources,

we added instrumentation to our own Openstack deployment.
This is a modest deployment comprising of 13 servers – 10
Lynx Calleo 1240 servers with two Xeon processors and 3
IBM x3550 M4’s, also with two Xeon processors. The systems
are mid-range systems which have built in energy meters and
dual power supplies for redundancy. The purpose of this work

was to combine information on usage of our cloud resources
with energy consumption information to understand how usage
impacts energy consumption.

1) Empirical Measurement of Server Energy Consumption
To understand the energy consumption of our servers, a

basic tool was developed which incorporated information from
the built-in energy meters and the Openstack resource usage.

The basic tool was built on the Kwapi [8] energy data
collection components which are part of the larger Openstack
ecosystem1. Kwapi provides support for collecting energy data
from disparate energy meters – these could be meters built in to
servers or standalone meters with IP addresses (which could be
either wired or wireless). Kwapi provides meter registration
and polling mechanisms: specific meters require drivers to be
written which enable Kwapi to collect the data using the simple
interface defined.

Figure 2: Architecture of Kwapi-based Energy Collection System

The servers in our systems had two different mechanisms
to support energy collection. The Lynx Calleo servers provide
energy information via the IPMI interface; the IBM servers
facilitate access to the energy consumption information inside
the host Linux OS. In the former case, Supermicro tools were
used to obtain the information from the IPMI interface while in
the latter case, it was necessary to install the libaem2 module.
The available energy collection mechanisms (IPMI and via
host OS), necessitated functionality to be installed on two
different networks – the IPMI control network and the network
connecting the hosts. The jump host is connected to both the
IPMI network and the rest of the network and hence this was
used as the point where all the energy data for the Lynx servers
was collected and published to Kwapi. In both cases, it was
necessary to develop a simple driver which supports data
collection in Kwapi.

Once the data is collected via Kwapi, the data is published
to Ceilometer3, the Openstack data store. There, it is stored

1 Kwapi is currently hosted on launchpad which is a peripheral part of the

openstack ecosystem.
2 Libaem is part of the IBM Active Energy Manager suite.
3 Ceilometer has been renamed Telemetry in later versions of Openstack, but
the Ceilometer moniker is still in widespread use.

alongside the other data that is commonly collected from an
operating Openstack deployment, including significant events
in the system such as when a new VM is launched, when a
volume is created etc as well as regular updates on current
consumption, eg how much load on a particular VM.
Ceilometer also offers a straightforward programmable
interface; it is essentially a database with a simple API
wrapper. Consequently, it is relatively straightforward to write
applications which leverage Ceilometer data to gain a better
understanding of the usage of the resources.

Figure 3: Screenshot from Energy Monitoring Tool

Figure 4: Variation of aggregate server energy consumption with

time from Nov 2014-Jan 2015.

Given this, we developed an open-source tool4 which can
enable us to visualize energy consumption information and
correlate it with resource usage in the system. A screenshot
from this basic tools is shown in Figure 3 above. This enabled
us to understand basic parameters relating to both the energy
consumption of our servers as well as the usage of our servers.
In particular, from this tool, we could see that the usage on our
system was such that there was often low utilization followed
by a significant spike as some larger data processing jobs were
started on the systems (see Figure 4).

The operating range of the servers – from 150W-300W is
an important point. Clearly, there are high fixed energy costs in

4 https://github.com/icclab/arcus-energy-monitoring-tool

current server designs associated with having a server active
and idle; naturally, this points at powering down servers when
idle as a means to achieve power savings.

Figure 5: Variation of energy consumption for 2 servers in our
system

Server energy consumption varies most with CPU
utilization – sensitivity to disk or network usage is low.
Consequently, we performed a basic experiment to understand
how server energy consumption varies with CPU usage.

The experiment was performed on one of the IBM x3550
servers running a new version of Linux. The synthetic load was
generated using the stress5 tool. Specifically, the load on the
processor was increased every interval, by increasing the
amount of workers performing parallel computation tasks
controlled by stress. (To stress CPU, stress performs repeated
calculations of π). The energy consumption information was
taken directly from the sensors on the server and CPU
utilization was as taken from the server.

The results obtained (see Figure 6) show a somewhat non-
linear relationship between total power consumption. Indeed
the relationship is somewhat concave with the energy
consumption saturating at approximately 50% CPU utilization.

The nature of the curve can be explained by understanding
the different components in the system and how work is
allocated to them. In general, energy consumption increases as
more and more of the components of the system are activated
and with the random allocation of work to CPUs performed by
the OS, there is a quite even distribution across the available
resources. In other experiments, we observed that there is
approximately a 20W jump in energy consumption when a
processor goes from idle to active (as measured by activity on
one of its cores). Also, we noted that there is a minimal
increase in energy consumption if the second thread in a
hyperthreaded core is activated. These factors combined result
in more significant increases in energy consumption as both the
processors and cores are activated in the 0-50% aggregate CPU
utilization range and a minimal increase in energy consumption
above this, as all circuits on the are already active. (Note that

5 http://linux.die.net/man/1/stress

we did not consider different CPU governors here – different
CPU governors may exhibit different behaviour).

Figure 6: Variation of server energy consumption with CPU

utilization

2) Modelling Server Energy Consumption
Although the results relating CPU utilization to energy

consumption above exhibit somewhat concave characteristics,
we wanted to understand how appropriate a linear model can
be in this context, as it is easier to work with from an analytical
point of view.

Consequently, we compared the CPU utilization for our
servers with the energy consumption of the servers. Given the
data that we had collected, it required a little effort to
determine the server energy consumption: the data collection
focused on the server utilization per VM and it was necessary
to map this to the host server utilization. This was done by
calculating the host server utilization as the weighted sum of
the utilizations per VM, normalized by the number of vCPUs
allocated to the VM. This total is then divided by the number
of CPUs in the system. More specifically

𝑢!!"# = (𝑢!" ∗ 𝑣𝐶𝑃𝑈!"
!"

)/𝐶𝑃𝑈!!"#

where 𝑢!!"# is the total utilization of the hose, 𝑢!" is the
utilization of the VM, 𝑣𝐶𝑃𝑈!" is the number of vCPUs
allocated to the VM and 𝐶𝑃𝑈!!"# is the number of available
CPUs on the host. The utilization parameters are measured in
percentage terms.

The CPU utilization determined as above was then plotted
with the energy consumption as shown in Figure 7 and Figure
8 above. The data was separated into the different server types
as it was observed that the different server types had slightly
different characteristics. Further, the data available for the
different server types was quite different as can be seen above.

As can be seen from the results, the data set for the Lynx
Calleo’s is reasonably substantive: although the data set is
clearly strongly weighted towards the low utilization (<20%)
and high utilization (>80%) states, there are sufficient data
points in the large 20-80% interval to conclude that the data set
is meaningful. The measure of correlation is 0.89 for this set
indicating that the linear model is quite accurate. It is worth

noting, however that the concave behaviour is clearly visible in
the data set with the quite steep rise in energy consumption for
many of the data points in the 0-10% range.

Figure 7: Curve fitting to construct linear relationship between

CPU utilization and energy consumption for Lynx Calleo servers

Figure 8: Curve fitting to construct linear relationship between
CPU utilization and energy consumption for IBM x3550 servers

The data set obtained for the IBM servers is not as rich.
Again, it has a small number of operating points, although this
time, the higher operating point is not saturation. A linear
model can be determined and indeed the correlation between
the empirical data and the linear model is determined as 0.98.
However, clearly the data is lacking significantly and the
validity of this linear model is questionable.

B. Live Migration: a flexible Load Management Tool
Having gained an understanding of real cloud energy

consumption, we then focused on one particular mechanism
which is important in management of cloud systems generally
and advanced resource management within cloud systems in
particular. This is live migration.

Live migration is a basic mechanism that is well established
in different hypervisors. Although it is established in different
hypervisors, support for cross-hypervisor migration does not

exist; consequently, when considering live migration, a specific
hypervisor must be considered. In Openstack, the natural
choice for hypervisor is Qemu/KVM as this is what most
Openstack deployment use. Openstack communicates with the
hypervisor through libvirt [9] which offers a uniform
hypervisor interface. Consequently, to perform live migration
on KVM hypervisors in Openstack, it must be done through
libvirt.

Libvirt understands the capabilities of the hypervisor
generally and, in particular, whether it supports live migration.
Further, the Openstack configuration files can specify some
specific flags that get passed to libvirt in certain circumstances
if specific hypervisor capabilities should be leveraged.

So, although live migration has existed for some time
within hypervisors, it is still relatively new in Openstack. The
Icehouse [10] release of Openstack in April 2014 was the first
release in which the Openstack community was confident that
the live migration supports are reasonably robust.

There are however, some different variants of live
migration – here, we describe the different forms of live
migration and provide information on how they perform.

1) Pre-copy, Post-copy and Hybrid Live Migration
Here, we describe three variants of live migration. The

main challenge in VM live migration lies in moving a
potentially large amount of memory in a short amount of time.
In general, the amount of memory to be moved relates to both
the size of the VM and the activity taking place within the VM.
Typically this can be some GB and it must be done in such a
ways so as to realize almost imperceptible VM downtime. The
problems when performing a live migration mostly relate to
changes in memory that happen in the active VM during the
migration process.

Figure 9: Basic mechanisms of pre-copy, post-copy and hybrid

live migration

The standard form of live migration which has existed for
some time now is so-called pre-copy live migration [11]. In the
basic pre-copy migration process, the destination VM is
created while the source VM continues to operate. The source
memory is copied to the destination en masse. Next, there is a
process in which any memory which has changed – so-called
‘dirty pages’ – since it was copied has to be sent to the
destination again. This process continues iteratively until all
the memory of the source has been copied to the destination
and then control is passed from the source to the destination.

Post-copy migration is an alternative approach in which the
control is moved from the source to the destination at the start

of the process. Then, the memory is moved from source to
destination on-demand: whenever the destination needs to
access memory that it does not have, it is requested from the
source.

Both pre-copy and post-copy have advantages and
disadvantages. In the pre-copy approach, the VM state remains
in the source until the destination is ready to take over. In
contrast, the post-copy approach is one in which VM state is
split between the source and destination. Having VM state split
between two nodes does introduce a risk that the VM state
could be lost entirely if there are networking errors. The pre-
copy mechanism repeatedly transfers changed memory from
source to destination: if there is intense memory activity during
the migration, then it is possible that the migration process
could end up repeatedly sending the changed memory data and
in the worst case fail to converge. In contrast, as the post-copy
mechanism only transfers memory on-demand, the amount of
memory that can be transferred is upper-bounded by the size of
the VM and the process cannot get into a loop in which it does
not converge.

As both approaches have advantages and disadvantages, a
natural approach is to consider a hybrid. The hybrid approach
is one in which there is a pre-copy phase which transfers most
of the memory followed by a post-copy phase during which
any modified memory is transferred.

Post-copy migration and hybrid migration have existed for
some time as experimental approaches in a Linux context [12].
Because they require enhanced supports from the Linux kernel,
they are still raw and have not been put into production. The
specific kernel supports required enable a segmentation fault to
be trapped and the associated memory requested from a remote
machine.

 Realizing hybrid live migration in Openstack is not trivial.
It requires combining patches to the latest Linux kernel with
patched versions of libvirt and then modifying some of the
configuration settings in the Openstack installation to instruct
libvirt to use hybrid live migration rather than the standard pre-
copy approach.

Before integrating it into our energy efficient control
solution, we needed to have some understanding of how it
behaved. Consequently, we analyzed its performance.

2) Live Migration Performance
Our performance analysis of live migration in Openstack

was carried out in on a very basic system – one comprising of
three physical nodes: a controller and 2 compute nodes. The
VMs were live migrated from one of the compute nodes to the
other. The servers used for the work were mid-range IBM
x3550’s with Gigabit Ethernet interfaces and a Cisco Catalyst
2960G with GigE interfaces.

The objective of the analysis was to understand the
capabilities of the different forms of live migration and how
they could be used in practice.

The software installed on the system was as follows:

• Openstack Juno

• Libvirt 1.2.11 (with the wp3-postcopy patch by
Cristian Klein6)

• KVM/QEMU 2.1.50 (wp3-postcopy patch by
David Gilbert7)

• Ubuntu 14.04 with modified 3.18 rc3 kernel

o The patch for handling memory page
faults in user space by Andrea Arcangeli8

The testing focused on the downtime of the VM, the
migration time of the VM and also the amount of data
transferred where relevant.

The downtime of the VM was determined rather crudely –
ping tests with 100ms intervals were used and the downtime
was determined from the amount of lost ping packets: if 3
packets were lost, the downtime was considered 300ms.
VM Type vCPUs Memory (MB) Disk (GB)
Tiny 1 512 0
Small 1 2048 20
Medium 2 4096 40
Large 4 8192 60
Extra large 8 16384 80
Table 1: Characteristics of the different VMs – these are defaults

in Openstack

The migration time was determined as the time between the
start and end of the migration process. The start of the
migration process occurred when the VM was spawned on the
destination, using the timestamp of the appropriate message in
the log files; the end of the migration was defined as the time
when the log files on the source contain an entry that the
migration has completed. Naturally, the nodes were NTP
synchronized which typically gives accuracy of some µs on a
wired LAN; in any case, the measurements were of the order of
seconds or 10s of seconds, so NTP accuracy is sufficient.

First, we performed basic experiments to understand the
difference between pre-copy migration and hybrid migration
on an idle system. (Note that we did not consider post-copy
live migration here at all – as hybrid live migration combines
the benefits of pre-copy and post-copy we just considered this).
The results are shown in Figure 10 and Figure 11. There it can
be seen that the migration time in all cases is modest, typically
taking less than 10s and there is little difference between pre-
copy and the hybrid approach. The migration time can be
accounted for by the amount of memory allocated by the guest
OS – as the VM is simply a Linux OS with no activity on it,
the amount of memory that needs to be used is just the amount
of memory required to run the OS. While this increases
somewhat with larger VMs, the difference is not so significant,
certainly in relation to the difference in VM size (see Table 1
for the characteristics of the VMs).

6 https://git.cs.umu.se/cklein/libvirt/commits/wp3-postcopy
7 https://github.com/orbitfp7/qemu/tree/wp3-postcopy
8 http://lwn.net/Articles/604133/

Figure 10: Migration time for unloaded VMs using both pre-copy

and hybrid live migration

Figure 11: Downtime for unloaded VMs using both pre-copy and

hybrid live migration

In the second set of tests, we performed, we considered
VMs which were loaded. We used two memory load
generation tools – the stress tool mentioned above and the
appmembench tool as it offers more accurate control of the rate
of change of memory.

In Figure 12 and Figure 13 the relationship between total
data transferred and the amount of stressed memory is shown.
The total data transfer increases linearly with the amount of
stressed memory and clearly it can increase quite significantly
(from 2-16GB), depending on the intensity of the memory
activity. The migration time also increases, as would be
expected and in these more extreme cases, it can take minutes
for the migration to complete. It is worth noting that for these
higher levels of memory intensity, the pre-copy mechanism
failed to terminate – it is not suited to such workloads.

A similar set of tests were performed with appmembench.
In this case, it was possible to more explicitly define the
Memory Change Rate (MCR). As can be seen in Figure 14
convergence for pre-copy is again unreliable – it only
converges in the case that the memory change rate is low.
Hybrid live migration is much more robust even though it can
take longer to complete the migration task.

Other tests were performed to understand the impact of
network load (on the server network interfaces) and CPU load
on the migration process. The results of these tests indicate that
they do not have a great impact on the migration process – they
do introduce 20-30% delays for heavy loads but have not been

seen to impact the stability or convergence of the migration
process.

Figure 12: Data transfer for loaded VM – hybrid migration

Figure 13: Migration time for loaded VM – hybrid migration

The key observations from this analysis are the following:

• Live migration is a robust mechanism on which a
more advanced load management system can be
built

• Migration time for large VMs takes some 10s of
seconds on Gb/s hardware – we expect that for 10
Gb/s hardware this will drop by an order of
magnitude resulting in migration times of seconds
even for large VMs

• Downtime for VMs under live migration is
typically less than 1s which is very management
for most applications

C. Design of an Energy Management System for Openstack
Although all of the above work was performed in the

context of Openstack, it alone will not deliver any energy
efficiencies. The above work is an input to an energy
management system for Openstack which is in it initial stages.

The key observations from the above work are that energy
savings can be made via load consolidation and powering
down servers; indeed for the usage data pertaining to our cloud,
there are clear energy savings to be made using this approach.

In our initial work, we have developed a basic system
which determines the load on servers in the cloud. If the
utilization is below a threshold, then it migrates VMs off these
servers. As live migration in Openstack accepts a host as the

destination, a host with a server utilization above the threshold
but below an upper threshold is chosen. If it is possible to
move all VMs off the lightly loaded server, then this server can
be powered down to realize energy savings.

Figure 14: Migration time for pre-copy and hybrid migration

with varying memory change rate

If the load on the system increases, then it may be
necessary to activate some of the servers which are powered
down. WakeOnLan is used to achieve this.

Figure 15: Variation of Energy Consumption in 3 node system

Figure 16: Variation in total system energy consumption in 3

node system

A basic variant of the system has been developed which
works with Openstack. As yet, it has only been tested within
the 3 node test environment described above. Initial results for
the very basic 3 node system are shown in Figure 15 and
Figure 16. In this simple example, there are 4 distinct phases:
no load on the nodes, load introduced on the nodes and
distributed evenly, load consolidation, and powering down
unused resources – as can be seen, after load consolidation and
powering down resources, the energy saving can be as high as
40%.

IV. CONCLUSIONS
In this work, we have considered how energy efficiencies

can be added to Openstack. This work is part of a larger EU
project focused on the much more complex problem of energy
efficient DCs within Smart Cities: our specific part focuses on
advanced Openstack cloud based load management to achieve
energy efficiencies.

To realize energy efficiencies in Openstack, we developed
an energy monitoring tool which enables a cloud operator to
view energy consumption on her system. Using the data
collected by this tool, we analyzed the energy consumption of
our cloud resources where we found that the relationship
between server utilization and energy consumption exhibits
some concave properties, but can be approximated by a linear
model.

Following this, we performed an analysis of different live
migration mechanisms to understand their performance. We
found that hybrid live migration is robust and can be used as
part of an advanced load management solution. Finally, we
identified how these findings can be used in an advanced
Openstack load manager.

ACKNOWLEDGMENT
This work was partially supported by European

Community under the SMARTCITIES-2013 call of the 7th FP
for RTD - project GEYSER, contract 609211. The Authors are
solely responsible for the content of this paper.

REFERENCES
[1] “Rechenzentren in der Schweiz - Energieeffizienz: Stromverbrauch und

Effizienzpotenzial” IWSB, August 2014 (in German).
[2] Bertoldi, Paolo. "A Market Transformation Programme for Improving

Energy Efficiency in Data Centres." (2014).
[3] “Uptime Institute: Data Centre Industry Survey 2013”, 2014.
[4] “Making Facebook’s software infrastructure more energy efficient with

Autoscale”, August 2014
https://code.facebook.com/posts/816473015039157/making-facebook-s-
software-infrastructure-more-energy-efficient-with-autoscale/

[5] I. Anghel, M. Bertoncini, T. Cioara, M. Cupelli, V. Georgiadou, P.
Jahangiri, A. Monti, S. Murphy, A. Schoofs, T. Velivassaki. GEYSER:
Enabling Green Data Centres in Smart Cities. In proceedings of 3rd
International Workshop on Energy-Efficient Data Centres, June 2014

[6] RightScale 2014 State of the Cloud Report, Rightscale Corporation,
April 2014.

[7] GEYSER framework and system specifications, GEYSER Deliverable
2.2, September 2014.

[8] Rossigneux, Francois, et al. "A Generic and Extensible Framework for
Monitoring Energy Consumption of OpenStack Clouds." The 4th IEEE
International Conference on Sustainable Computing and
Communications (Sustaincom 2014).

[9] Libvirt – the virtualiation API, http://www.libvirt.org.
[10] Openstack Icehouse Release notes,

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse, April 2014.
[11] Clark, Christopher, et al. "Live migration of virtual machines."

Proceedings of the 2nd conf. on Symposium on Networked Systems
Design & Implementation-Volume 2. USENIX Association, 2005.

[12] Hines, Michael R., Umesh Deshpande, and Kartik Gopalan. "Post-copy
live migration of virtual machines." ACM SIGOPS operating systems
review 43.3 (2009): 14-26.

