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Abstract— In this paper we consider how energy efficiency 
aspects can be added to Openstack. With the objective of 
devising an energy efficient resource manager for Openstack, we 
first analyze resource and energy utilization on our cloud 
resources. We observe that there is a large fixed cost associated 
with server usage patterns and powering down servers is 
necessary to achieve energy savings. Following this we consider 
migration mechanisms which are necessary to perform load 
consolidation: we find that hybrid live migration has the 
necessary robustness to be part of a sophisticated load 
management solution. Finally we discuss ongoing work on 
realizing a load manager for Openstack based on these 
observations. 

Keywords—cloud computing; energy efficiency; green data 
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I. INTRODUCTION 
As the energy consumption of IT resources continues to 

increase, there is increasing pressure within the industry to 
ensure it maximizes its energy efficiency. While growth in 
energy consumption in the broader IT sector, continues to 
increase, driven by an increasing number of smart devices, the 
line between dedicated ICT devices and non-ICT devices will 
blur as we enter the IoT era. 

One area within the IT sector which is very aware of energy 
issues is the cloud and data center segment. While there is 
some differentiation between these areas, there is also strong 
overlap and as more and more of organization’s workloads 
move to the cloud, the overlap will increase. 

Currently, the  Data Centre segment accounts for 2.8% of 
energy consumption in Switzerland and slightly less – 
approximately 2% - in both the US and Western Europe [1][2]. 
As a major energy consumer, the segment has achieved much 
in terms of energy efficiency within the last decade, through a 
combination of improved cooling solutions and more efficient 
transformers on servers [3]. However, there is still more to be 
done. 

From an energy perspective, Data Centres are an interesting 
use case, as they typically have substantial energy generation 
and storage capabilities; further, they often have some 
flexibility in how their workload is managed and how energy is 
consumed within their facilities. Although the very large DCs 
are often located in remote places, the vast majority of DCs are 
located within urban environments and consequently they form 
an important part of tomorrow’s Smart Cities. 

Realizing energy efficiencies within Data Centres located 
in Smart Cities is a complex, multi-faceted problem involving 
understanding of municipal energy generation - including 
renewables - and consumption, municipal energy policies, 
energy distribution within cities, DC design and operations, 
cooling systems and IT systems.  

One mechanism to realize energy efficiencies in the DC 
context is intelligent load management. Facebook has shown 
that it can deliver energy savings of up to 15% of their total 
energy bill using a mix of deferring work, backfilling servers 
with time-insensitive work, powering down unnecessary 
servers and shifting work to alternate DCs [4]. In this work, we 
discuss how this can be realized in the context of Openstack - a 
major open-source cloud computing stack targeted at both 
public and private clouds and thus the large portion of the DC 
segment which is less energy efficient. 

The paper is structured as follows. In the next section, a 
brief description of the GEYSER project is given, highlighting 
the innovations within the project. Following this, there is a 
section detailing active energy management solutions for cloud 
contexts, with a particular emphasis on Openstack: this section 
is divided into subsections focusing on understanding server 
energy consumption in a cloud context, performance analysis 
of innovative live migration techniques and some work on 
developing an energy-based controller for Openstack. Finally, 
the work is concluded in section 4. 

II. THE GEYSER PROJECT 
GEYSER [5] is an EU FP7 project which is focused on 

increasing energy efficiency of DCs located in tomorrow’s 
Smart Cities. A basic premise of the project is that the energy 
picture within a Smart City will be more complex than today, 
both in terms of generation and consumption. More 
specifically, Smart Cities will comprise of many energy 
generation options, a significant fraction of which will be 
based on renewables and will contain a local marketplace in 
which locally generated energy can be traded.  

The Data Centre will be an important component in this 
context, being able to act as a prosumer: providing energy 
supply when necessary (with significant constraints) as well as 
having some ability to reduce its consumption when necessary. 

Although Data Centres are very heterogeneous - different 
requirements, different locations, different sizes, different 
cooling solutions, different networking options, different 
security solutions etc - they can generally be classified into 
private or public and public can be further subdivided into co-
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location or cloud. While much of the sector today is private, 
the move to cloud is clear and with increasing maturity of 
hybrid cloud solutions, more and more of the work will move 
to public cloud [6]. For this reason, a significant amount of 
energy within GEYSER is focused on the cloud use case. 

The basic objective of GEYSER, then, is to realize a 
flexible, adaptive DC - or network of DCs - within a Smart 
City which can match the available energy supply with the 
available workload in an energy efficient fashion.  

At the heart of GEYSER is an advanced Data Centre 
Management and Control system which can span multiple 
DCs. This can leverage a number of control actions within the 
DC such as activating, deactivating chillers, changing the 
operating temperature, increasing/decreasing the system 
workload or – in the case of networked cloud DCs – shifting 
some of the workload to another DC. 

As the context for GEYSER is the Smart City context, an 
important aspect of GEYSER is how it integrates with the 
Smart City. Specifically, this means that the DC can share its 
energy generation options and indeed energy storage options 
with the Smart City but of course this must be done in a very 
controlled way such that it has no negative impact on the DC 
operator’s business. Another aspect of the Smart City context 
that is assumed is a dynamic energy marketplace – specifically, 
in GEYSER it is envisaged that there are multiple markets 
operating over different timescales which offers the DC 
another dimension of flexibility in terms of its energy 
consumption. As renewable energy is an important 
consideration in GEYSER, forecasting is important. With 
much renewable energy depending on weather, weather 
forecasts can be used to infer availability of energy or almost 
equivalently, energy costs. 

 
Figure 1: The GEYSER High Level Context [7] 

The GEYSER architecture, then consists of many 
components ranging from data collection within the DC to 
control systems within the DC to interfaces with local energy 
marketplaces to interfaces to local weather forecasts. Clearly, 
then, it is a complex system and indeed one of the challenges 
within the project is striking the appropriate level of 
complexity – complex enough that it can incorporate all of this 
information in a useful manner, but not excessively complex 
that it will not be a realistic candidate for deployment in the 
DC context. (The GEYSER context is illustrated in Figure 1 – 
the system architecture is too detailed for inclusion here). 

The cloud related aspects of GEYSER essentially focus on 
intelligent load management, generally in a networked DC 
cloud context. Specifically, this means that the cloud workload 
can be adapted depending on the prevailing energy conditions 
– if energy is available at a low price, then the cloud operator 
has an incentive to maximize resource usage; conversely, if 
energy is available at a high energy price, then the cloud 
operator has an incentive to reduce resource consumption by 
shifting workload in time or space. Workload can be increased 
by incentivizing customers of the service to increase their 
usage – generally, this can be done via price mechanisms. 
Time shifting workload typically involves deferring it, such 
that it can be executed at a time when there is lower utilization 
of the system and/or energy costs are lower; space shifting 
workload typically involves moving workload from one data 
centre to another. The latter is a tool which must be applied 
judiciously – in many cases, it is not straightforward to move 
work from one DC to another as, for example, data might be 
stored in a specific DC; also the process of moving from one 
DC to another is non-trivial and care must be taken. 

In general, the above ideas are not new – they have been 
studied in an abstract context as well as in the context of more 
concrete technologies such as Eucalyptus and Open Nebula 
and indeed concrete supports for this have been developed in 
those contexts. However, support for Openstack has not been 
developed as yet: with Openstack being the cloud stack that is 
currently receiving the most attention in the marketplace, the 
focus here is on adding such capabilities to Openstack. 

Given this context, then, we outline the mechanisms we are 
using within GEYSER to enable cloud based DCs to adapt in 
dynamic energy contexts. 

III. ACTIVE ENERGY MANAGEMENT IN OPENSTACK 
The objective of this work is to add sophisticated energy 

management supports to Openstack. In the context of 
GEYSER, this includes supports for increasing load and time 
and space-shifting load in response to the prevailing conditions 
and signals received from other components within GEYSER. 
These aspects, however, are still a work in progress and 
consequently the main focus here is on more rudimentary 
supports for energy management which focus on powering 
down servers when they are not required. 

To develop an active energy management system, it was 
first necessary to have an understanding of load and energy 
consumption within cloud resources. Following this, we 
focused on a fundamental mechanism which is necessary to 
perform load consolidation – an important component of the 
energy management solution. Following that, we describe the 
work we have done on developing a basic energy management 
system for Openstack. 

A. Understanding Server Energy Consumption 
To understand the energy consumption of cloud resources, 

we added instrumentation to our own Openstack deployment. 
This is a modest deployment comprising of 13 servers – 10 
Lynx Calleo 1240 servers with two Xeon processors and 3 
IBM x3550 M4’s, also with two Xeon processors. The systems 
are mid-range systems which have built in energy meters and 
dual power supplies for redundancy. The purpose of this work 



 

was to combine information on usage of our cloud resources 
with energy consumption information to understand how usage 
impacts energy consumption. 

1) Empirical Measurement of Server Energy Consumption 
To understand the energy consumption of our servers, a 

basic tool was developed which incorporated information from 
the built-in energy meters and the Openstack resource usage. 

The basic tool was built on the Kwapi [8] energy data 
collection components which are part of the larger Openstack 
ecosystem1. Kwapi provides support for collecting energy data 
from disparate energy meters – these could be meters built in to 
servers or standalone meters with IP addresses (which could be 
either wired or wireless). Kwapi provides meter registration 
and polling mechanisms: specific meters require drivers to be 
written which enable Kwapi to collect the data using the simple 
interface defined. 

 
Figure 2: Architecture of Kwapi-based Energy Collection System 

The servers in our systems had two different mechanisms 
to support energy collection. The Lynx Calleo servers provide 
energy information via the IPMI interface; the IBM servers 
facilitate access to the energy consumption information inside 
the host Linux OS. In the former case, Supermicro tools were 
used to obtain the information from the IPMI interface while in 
the latter case, it was necessary to install the libaem2 module. 
The available energy collection mechanisms (IPMI and via 
host OS), necessitated functionality to be installed on two 
different networks – the IPMI control network and the network 
connecting the hosts. The jump host is connected to both the 
IPMI network and the rest of the network and hence this was 
used as the point where all the energy data for the Lynx servers 
was collected and published to Kwapi. In both cases, it was 
necessary to develop a simple driver which supports data 
collection in Kwapi. 

Once the data is collected via Kwapi, the data is published 
to Ceilometer3, the Openstack data store. There, it is stored 

                                                             
1 Kwapi is currently hosted on launchpad which is a peripheral part of the 

openstack ecosystem.  
2 Libaem is part of the IBM Active Energy Manager suite.  
3 Ceilometer has been renamed Telemetry in later versions of Openstack, but 
the Ceilometer moniker is still in widespread use. 

alongside the other data that is commonly collected from an 
operating Openstack deployment, including significant events 
in the system such as when a new VM is launched, when a 
volume is created etc as well as regular updates on current 
consumption, eg how much load on a particular VM. 
Ceilometer also offers a straightforward programmable 
interface; it is essentially a database with a simple API 
wrapper. Consequently, it is relatively straightforward to write 
applications which leverage Ceilometer data to gain a better 
understanding of the usage of the resources. 

 
Figure 3: Screenshot from Energy Monitoring Tool 

 
Figure 4: Variation of aggregate server energy consumption with 

time from Nov 2014-Jan 2015. 

Given this, we developed an open-source tool4 which can 
enable us to visualize energy consumption information and 
correlate it with resource usage in the system. A screenshot 
from this basic tools is shown in Figure 3 above. This enabled 
us to understand basic parameters relating to both the energy 
consumption of our servers as well as the usage of our servers. 
In particular, from this tool, we could see that the usage on our 
system was such that there was often low utilization followed 
by a significant spike as some larger data processing jobs were 
started on the systems (see Figure 4). 

The operating range of the servers – from 150W-300W is 
an important point. Clearly, there are high fixed energy costs in 
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current server designs associated with having a server active 
and idle; naturally, this points at powering down servers when 
idle as a means to achieve power savings. 

  

Figure 5: Variation of energy consumption for 2 servers in our 
system 

Server energy consumption varies most with CPU 
utilization – sensitivity to disk or network usage is low. 
Consequently, we performed a basic experiment to understand 
how server energy consumption varies with CPU usage. 

The experiment was performed on one of the IBM x3550 
servers running a new version of Linux. The synthetic load was 
generated using the stress5 tool. Specifically, the load on the 
processor was increased every interval, by increasing the 
amount of workers performing parallel computation tasks 
controlled by stress. (To stress CPU, stress performs repeated 
calculations of π). The energy consumption information was 
taken directly from the sensors on the server and CPU 
utilization was as taken from the server. 

The results obtained (see Figure 6) show a somewhat non-
linear relationship between total power consumption. Indeed 
the relationship is somewhat concave with the energy 
consumption saturating at approximately 50% CPU utilization.  

The nature of the curve can be explained by understanding 
the different components in the system and how work is 
allocated to them. In general, energy consumption increases as 
more and more of the components of the system are activated 
and with the random allocation of work to CPUs performed by 
the OS, there is a quite even distribution across the available 
resources. In other experiments, we observed that there is 
approximately a 20W jump in energy consumption when a 
processor goes from idle to active (as measured by activity on 
one of its cores). Also, we noted that there is a minimal 
increase in energy consumption if the second thread in a 
hyperthreaded core is activated. These factors combined result 
in more significant increases in energy consumption as both the 
processors and cores are activated in the 0-50% aggregate CPU 
utilization range and a minimal increase in energy consumption 
above this, as all circuits on the are already active. (Note that 

                                                             
5 http://linux.die.net/man/1/stress 

we did not consider different CPU governors here – different 
CPU governors may exhibit different behaviour). 

 
Figure 6: Variation of server energy consumption with CPU 

utilization 

2) Modelling Server Energy Consumption 
Although the results relating CPU utilization to energy 

consumption above exhibit somewhat concave characteristics, 
we wanted to understand how appropriate a linear model can 
be in this context, as it is easier to work with from an analytical 
point of view. 

Consequently, we compared the CPU utilization for our 
servers with the energy consumption of the servers. Given the 
data that we had collected, it required a little effort to 
determine the server energy consumption: the data collection 
focused on the server utilization per VM and it was necessary 
to map this to the host server utilization. This was done by 
calculating the host server utilization as the weighted sum of 
the utilizations per VM, normalized by the number of vCPUs 
allocated to the VM. This total is then divided by the number 
of CPUs in the system. More specifically 

𝑢!!"# = ( 𝑢!" ∗ 𝑣𝐶𝑃𝑈!"
!"

)/𝐶𝑃𝑈!!"#   

where 𝑢!!"# is the total utilization of the hose, 𝑢!" is the 
utilization of the VM, 𝑣𝐶𝑃𝑈!"  is the number of vCPUs 
allocated to the VM and 𝐶𝑃𝑈!!"# is the number of available 
CPUs on the host. The utilization parameters are measured in 
percentage terms. 

The CPU utilization determined as above was then plotted 
with the energy consumption as shown in Figure 7 and Figure 
8 above. The data was separated into the different server types 
as it was observed that the different server types had slightly 
different characteristics. Further, the data available for the 
different server types was quite different as can be seen above. 

As can be seen from the results, the data set for the Lynx 
Calleo’s is reasonably substantive: although the data set is 
clearly strongly weighted towards the low utilization (<20%) 
and high utilization (>80%) states, there are sufficient data 
points in the large 20-80% interval to conclude that the data set 
is meaningful. The measure of correlation is 0.89 for this set 
indicating that the linear model is quite accurate. It is worth 



 

noting, however that the concave behaviour is clearly visible in 
the data set with the quite steep rise in energy consumption for 
many of the data points in the 0-10% range. 

 
Figure 7: Curve fitting to construct linear relationship between 

CPU utilization and energy consumption for Lynx Calleo servers 

 
Figure 8: Curve fitting to construct linear relationship between 
CPU utilization and energy consumption for IBM x3550 servers  

The data set obtained for the IBM servers is not as rich. 
Again, it has a small number of operating points, although this 
time, the higher operating point is not saturation. A linear 
model can be determined and indeed the correlation between 
the empirical data and the linear model is determined as 0.98. 
However, clearly the data is lacking significantly and the 
validity of this linear model is questionable. 

B. Live Migration: a flexible Load Management Tool 
Having gained an understanding of real cloud energy 

consumption, we then focused on one particular mechanism 
which is important in management of cloud systems generally 
and advanced resource management within cloud systems in 
particular. This is live migration. 

Live migration is a basic mechanism that is well established 
in different hypervisors. Although it is established in different 
hypervisors, support for cross-hypervisor migration does not 

exist; consequently, when considering live migration, a specific 
hypervisor must be considered. In Openstack, the natural 
choice for hypervisor is Qemu/KVM as this is what most 
Openstack deployment use. Openstack communicates with the 
hypervisor through libvirt [9] which offers a uniform 
hypervisor interface. Consequently, to perform live migration 
on KVM hypervisors in Openstack, it must be done through 
libvirt.  

Libvirt understands the capabilities of the hypervisor 
generally and, in particular, whether it supports live migration. 
Further, the Openstack configuration files can specify some 
specific flags that get passed to libvirt in certain circumstances 
if specific hypervisor capabilities should be leveraged. 

So, although live migration has existed for some time 
within hypervisors, it is still relatively new in Openstack. The 
Icehouse [10] release of Openstack in April 2014 was the first 
release in which the Openstack community was confident that 
the live migration supports are reasonably robust. 

There are however, some different variants of live 
migration – here, we describe the different forms of live 
migration and provide information on how they perform.  

1) Pre-copy, Post-copy and Hybrid Live Migration 
Here, we describe three variants of live migration. The 

main challenge in VM live migration lies in moving a 
potentially large amount of memory in a short amount of time. 
In general, the amount of memory to be moved relates to both 
the size of the VM and the activity taking place within the VM. 
Typically this can be some GB and it must be done in such a 
ways so as to realize almost imperceptible VM downtime. The 
problems when performing a live migration mostly relate to 
changes in memory that happen in the active VM during the 
migration process. 

 
Figure 9: Basic mechanisms of pre-copy, post-copy and hybrid 

live migration 

The standard form of live migration which has existed for 
some time now is so-called pre-copy live migration [11]. In the 
basic pre-copy migration process, the destination VM is 
created while the source VM continues to operate. The source 
memory is copied to the destination en masse. Next, there is a 
process in which any memory which has changed – so-called 
‘dirty pages’ – since it was copied has to be sent to the 
destination again. This process continues iteratively until all 
the memory of the source has been copied to the destination 
and then control is passed from the source to the destination. 

Post-copy migration is an alternative approach in which the 
control is moved from the source to the destination at the start 



 

of the process. Then, the memory is moved from source to 
destination on-demand: whenever the destination needs to 
access memory that it does not have, it is requested from the 
source. 

Both pre-copy and post-copy have advantages and 
disadvantages. In  the pre-copy approach, the VM state remains 
in the source until the destination is ready to take over. In 
contrast, the post-copy approach is one in which VM state is 
split between the source and destination. Having VM state split 
between two nodes does introduce a risk that the VM state 
could be lost entirely if there are networking errors. The pre-
copy mechanism repeatedly transfers changed memory from 
source to destination: if there is intense memory activity during 
the migration, then it is possible that the migration process 
could end up repeatedly sending the changed memory data and 
in the worst case fail to converge. In contrast, as the post-copy 
mechanism only transfers memory on-demand, the amount of 
memory that can be transferred is upper-bounded by the size of 
the VM and the process cannot get into a loop in which it does 
not converge. 

As both approaches have advantages and disadvantages, a 
natural approach is to consider a hybrid. The hybrid approach 
is one in which there is a pre-copy phase which transfers most 
of the memory followed by a post-copy phase during which 
any modified memory is transferred. 

Post-copy migration and hybrid migration have existed for 
some time as experimental approaches in a Linux context [12]. 
Because they require enhanced supports from the Linux kernel, 
they are still raw and have not been put into production. The 
specific kernel supports required enable a segmentation fault to 
be trapped and the associated memory requested from a remote 
machine.  

 Realizing hybrid live migration in Openstack is not trivial. 
It requires combining patches to the latest Linux kernel with 
patched versions of libvirt and then modifying some of the 
configuration settings in the Openstack installation to instruct 
libvirt to use hybrid live migration rather than the standard pre-
copy approach. 

Before integrating it into our energy efficient control 
solution, we needed to have some understanding of how it 
behaved. Consequently, we analyzed its performance. 

2) Live Migration Performance 
Our performance analysis of live migration in Openstack 

was carried out in on a very basic system – one comprising of 
three physical nodes: a controller and 2 compute nodes. The 
VMs were live migrated from one of the compute nodes to the 
other. The servers used for the work were mid-range IBM 
x3550’s with Gigabit Ethernet interfaces and a Cisco Catalyst 
2960G with GigE interfaces. 

The objective of the analysis was to understand the 
capabilities of the different forms of live migration and how 
they could be used in practice. 

The software installed on the system was as follows: 

• Openstack Juno 

• Libvirt 1.2.11 (with the wp3-postcopy patch by 
Cristian Klein6) 

• KVM/QEMU 2.1.50 (wp3-postcopy patch by 
David Gilbert7) 

• Ubuntu 14.04 with modified 3.18 rc3 kernel 

o The patch for handling memory page 
faults in user space by Andrea Arcangeli8 

The testing focused on the downtime of the VM, the 
migration time of the VM and also the amount of data 
transferred where relevant. 

The downtime of the VM was determined rather crudely – 
ping tests with 100ms intervals were used and the downtime 
was determined from the amount of lost ping packets: if 3 
packets were lost, the downtime was considered 300ms. 
VM Type vCPUs Memory (MB) Disk (GB) 
Tiny 1 512 0 
Small 1 2048 20 
Medium 2 4096 40 
Large 4 8192 60 
Extra large 8 16384  80 
Table 1: Characteristics of the different VMs – these are defaults 

in Openstack 

The migration time was determined as the time between the 
start and end of the migration process. The start of the 
migration process occurred when the VM was spawned on the 
destination, using the timestamp of the appropriate message in 
the log files; the end of the migration was defined as the time 
when the log files on the source contain an entry that the 
migration has completed. Naturally, the nodes were NTP 
synchronized which typically gives accuracy of some µs on a 
wired LAN; in any case, the measurements were of the order of 
seconds or 10s of seconds, so NTP accuracy is sufficient.  

First, we performed basic experiments to understand the 
difference between pre-copy migration and hybrid migration 
on an idle system. (Note that we did not consider post-copy 
live migration here at all – as hybrid live migration combines 
the benefits of pre-copy and post-copy we just considered this). 
The results are shown in Figure 10 and Figure 11. There it can 
be seen that the migration time in all cases is modest, typically 
taking less than 10s and there is little difference between pre-
copy and the hybrid approach. The migration time can be 
accounted for by the amount of memory allocated by the guest 
OS – as the VM is simply a Linux OS with no activity on it, 
the amount of memory that needs to be used is just the amount 
of memory required to run the OS. While this increases 
somewhat with larger VMs, the difference is not so significant, 
certainly in relation to the difference in VM size (see Table 1 
for the characteristics of the VMs). 

                                                             
6 https://git.cs.umu.se/cklein/libvirt/commits/wp3-postcopy 
7 https://github.com/orbitfp7/qemu/tree/wp3-postcopy 
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Figure 10: Migration time for unloaded VMs using both pre-copy 

and hybrid live migration 

 
Figure 11: Downtime for unloaded VMs using both pre-copy and 

hybrid live migration 

In the second set of tests, we performed, we considered 
VMs which were loaded. We used two memory load 
generation tools – the stress tool mentioned above and the 
appmembench tool as it offers more accurate control of the rate 
of change of memory. 

In Figure 12 and Figure 13 the relationship between total 
data transferred and the amount of stressed memory is shown. 
The total data transfer increases linearly with the amount of 
stressed memory and clearly it can increase quite significantly 
(from 2-16GB), depending on the intensity of the memory 
activity. The migration time also increases, as would be 
expected and in these more extreme cases, it can take minutes 
for the migration to complete. It is worth noting that for these 
higher levels of memory intensity, the pre-copy mechanism 
failed to terminate – it is not suited to such workloads.  

A similar set of tests were performed with appmembench. 
In this case, it was possible to more explicitly define the 
Memory Change Rate (MCR). As can be seen in Figure 14 
convergence for pre-copy is again unreliable – it only 
converges in the case that the memory change rate is low. 
Hybrid live migration is much more robust even though it can 
take longer to complete the migration task. 

Other tests were performed to understand the impact of 
network load (on the server network interfaces) and CPU load 
on the migration process. The results of these tests indicate that 
they do not have a great impact on the migration process – they 
do introduce 20-30% delays for heavy loads but have not been 

seen to impact the stability or convergence of the migration 
process. 

 
 

Figure 12: Data transfer for loaded VM – hybrid migration 

 
Figure 13: Migration time for loaded VM – hybrid migration 

The key observations from this analysis are the following: 

• Live migration is a robust mechanism on which a 
more advanced load management system can be 
built 

• Migration time for large VMs takes some 10s of 
seconds on Gb/s hardware – we expect that for 10 
Gb/s hardware this will drop by an order of 
magnitude resulting in migration times of seconds 
even for large VMs 

• Downtime for VMs under live migration is 
typically less than 1s which is very management 
for most applications 

C. Design of an Energy Management System for Openstack 
Although all of the above work was performed in the 

context of Openstack, it alone will not deliver any energy 
efficiencies. The above work is an input to an energy 
management system for Openstack which is in it initial stages. 

The key observations from the above work are that energy 
savings can be made via load consolidation and powering 
down servers; indeed for the usage data pertaining to our cloud, 
there are clear energy savings to be made using this approach. 

In our initial work, we have developed a basic system 
which determines the load on servers in the cloud. If the 
utilization is below a threshold, then it migrates VMs off these 
servers. As live migration in Openstack accepts a host as the 



 

destination, a host with a server utilization above the threshold 
but below an upper threshold is chosen. If it is possible to 
move all VMs off the lightly loaded server, then this server can 
be powered down to realize energy savings. 

 
Figure 14: Migration time for pre-copy and hybrid migration 

with varying memory change rate 

If the load on the system increases, then it may be 
necessary to activate some of the servers which are powered 
down. WakeOnLan is used to achieve this. 

 
Figure 15: Variation of Energy Consumption in 3 node system 

 
Figure 16: Variation in total system energy consumption in 3 

node system 

A basic variant of the system has been developed which 
works with Openstack. As yet, it has only been tested within 
the 3 node test environment described above. Initial results for 
the very basic 3 node system are shown in Figure 15 and 
Figure 16. In this simple example, there are 4 distinct phases: 
no load on the nodes, load introduced on the nodes and 
distributed evenly, load consolidation, and powering down 
unused resources – as can be seen, after load consolidation and 
powering down resources, the energy saving can be as high as 
40%. 

IV. CONCLUSIONS 
In this work, we have considered how energy efficiencies 

can be added to Openstack. This work is part of a larger EU 
project focused on the much more complex problem of energy 
efficient DCs within Smart Cities: our specific part focuses on 
advanced Openstack cloud based load management to achieve 
energy efficiencies. 

To realize energy efficiencies in Openstack, we developed 
an energy monitoring tool which enables a cloud operator to 
view energy consumption on her system. Using the data 
collected by this tool, we analyzed the energy consumption of 
our cloud resources where we found that the relationship 
between server utilization and energy consumption exhibits 
some concave properties, but can be approximated by a linear 
model. 

Following this, we performed an analysis of different live 
migration mechanisms to understand their performance. We 
found that hybrid live migration is robust and can be used as 
part of an advanced load management solution. Finally, we 
identified how these findings can be used in an advanced 
Openstack load manager. 
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