Building a Network Coded Storage Testbed
for Data Center Energy Reduction

Ulric J. Ferner, Qian Long, Marco Pedroso, Luis Voloch, and Muriel Médard

Abstract—The energy consumption of data centers
(DCs) worldwide is approaching that of countries such
as Argentina. This paper builds upon the analytical
work presented in [1], which showed that reductions in
blocking probability, using algorithms such as network
coded storage (NCS), can significantly reduce DC en-
ergy consumption. We demonstrate that NCS can be
deployed in a DC management software with a commer-
cial grade feature set, without interference. We develop
a simple method to estimate blocking probability DC
networks, and present preliminary blocking results for
a single-server single-drive node. The next step of this
project is to use the insights gained herein to develop
more accurate queueing models for delay and blocking
characteristics of DC servers and drives.

Index Terms—Blocking probability; data centers; en-
ergy efficiency; network coded storage; storage area
networks; testbeds.

I. INTRODUCTION

ROJECTIONS indicate that the worldwide DC in-

dustry will require a quadrupling of capacity by
the year 2020 [1]. DCs are designed with the goal of
serving large numbers of content consumers concurrently,
while maintaining an acceptable user experience. One
aspect of maintaining a quality user experience is keeping
blocking probability small, or the probability that content
is unavailable when requested. This paper builds upon
the analytical work presented in [1], which showed that
reductions in blocking probability, using algorithms such
as NCS, can significantly reduce DC energy consumption.
We are implementing a testbed to refine the DC network
models, and to get early estimates of potential energy
savings. This paper outlines the testbed design and select
preliminary results. In particular, the contributions of this
paper are:

o We demonstrate that NCS can be deployed in DC
management software with a commercial grade fea-
ture set using exclusively HTTP GETSs for communi-
cation;

This material is based upon work supported by the Jonathan Whit-
ney MIT fellowship, Alcatel-Lucent under award #4800484399, the
Air Force Office of Scientific Research under awards #FA9550-09-1-
0196 and #FA9550-13-1-0023, Georgia Institute of Technology under
award #RA306-S1, and France Telecom S.A. under award #018499-
00. U. J. Ferner and M. Médard are currently with, and Q. Long,
M. Pedroso, and L. Voloch were with the Research Laboratory for
Electronics, Massachusetts Institute of Technology, Room 36-512,
77 Massachusetts Avenue, Cambridge, MA 02139 (e-mail: uferner,
qlong, marco_p, voloch, medard@mit.edu).

978-3-901882-56-2 (©2013 IFIP

o« We develop a simple method to estimate blocking
probability in real systems; and

e We provide preliminary blocking probability results
for a single-drive single-server system.

The next step of this project will be to develop

more accurate queueing models for the delay and
blocking characteristics of typical servers and drives, as a
function of incoming traffic. Potential follow-on from this
project include demonstrating that NCS can improve the
quality of service of data centers under normal operating
conditions, and translate to significant energy savings.

II. PRELIMINARIES
A. An Intuitive Ezample

This example is adapted from [2]. Consider Fig. 1 which
depicts content with two segments f; and f; and compares
two four-drive systems. System (1) is a replication system
storing f1, f1, f2, f2, and System (2) is a coding system
storing f1, f2, f1+ f2, f1 — fo. Assume a user requests both
f1 and f5. In System (1), the user will not be blocked if
they access at least one of the top two drives storing f1,
and at least one of the two drives storing fs. In System
(2), the user be will not be blocked if they access and are
able to decode any two drives.

B. Theoretical Background

We give a brief overview of the theoretical background
presented in [1]. Consider a DC storing one or more copies
of file f composed of T chunks f = {fi,..., fr}, where
fi is the ith chunk. All incoming user requests for content
arrive at an assembler server S in the DC network, where S
is connected to a number of drives through an internal DC
network. In the uncoded storage (UCS) scheme, each drive
stores a subset of the chunks {f;}7 ;. In the NCS scheme,
each drive stores coded versions of {f;}7_; as follows. Let
cl(-k) , 1 € B; be the coded chunk corresponding to the kth
replica of f;, contained in the Ith block!. Coded chunk
¢'®) is some linear combination of all uncoded chunks in

K3
the same block that contains f;,

k k
o =3 ol 1)

pEB;

where a;ki)

)

is a column vector of coding coefficients drawn

from a finite field F, of size ¢ [3], and where f,S’” is

IFile f is divided into equal-sized blocks, where each block is a
group of r chunks.

=

=

Not blocked if can access
one of the f; nodes

and one of the fo nodes

7
BODD

o

System (1)

tl.
SN

(

=

(

Not blocked if can access

any two nodes

T11

5

i+ f2

== @ fi=r

System (2)

Fig. 1. Adapted from [2]. Intuition behind the system presented in
this paper. Assume a user requests both fi and f2. System (2), has
a great number of ways to service both the information in f; and fa
than System (1).

treated as a row vector of elements from IF,. We assign
coding coefficients that compose each agfi) with a uniform
distribution from [F,, mirroring random linear network
coding (RLNC) [4]. In this paper we assume that the
arrival of user requests does not prompt the update or
cycling of coded chunk coefficients. In the NCS scheme,
coded chunk ¢; provides the user with partial information
on all chunks in its block window. When a read request
a(rlf)ives for a coded chunk, the relevant drive transmits both

¢; as well as the corresponding coefficients {a;’fg }.

ITII. TESTBED DESIGN & IMPLEMENTATION

This section first discusses the NCS library design and
parameters. Second, it details the techniques used to
estimate blocking probability.

A. Testbed Structure

(a) Network hardware architecture: There are
three types of machines in our testbed, as per Fig. 2.
DC network nodes communicate exclusively using HTTP
GETs.

o User node: External to the DC network. A user node
represents one or more users, where each user requests
either file f or a file chunk f; with a single HTTP
GET request. A single user node has been built using
an Intel Core 2 Quad CPU at 2.83 GHz machine
with 2.7GiB RAM. It has a single 100Gb/s ethernet
card, generating up to 64 000 simultaneous unique
user requests.

o Assembler: A member of the DC network. Assembler
node S stores no content and is connected to K
fetcher nodes. It receives user node GET requests
and coordinates loading of content from one or more

fetchers. When users request f, it combines chunks
from fetchers into a contiguous file stream for each
user. Each assembler has been implemented as a
Amazon Web Services (AWS) micro-instance, with a
single core 64-bit 613 MiB machine.

o Fetcher: A member of the DC network. A fetcher
stores and services file chunks based on HTTP GET
requests from assemblers. The file chunks can be
stored as either UCS or NCS chunks. For simplicity,
each fetcher has only a single hard drive. Each fetcher
has been implemented as a AWS micro-instance, with
a single core 64-bit 613 MiB machine.

(b) User node software: The user node uses the
open source curl loader package written in C to generate
an application load of thousands of HTTP clients [5].
We use fresh connections for each user, and each user
is assigned a unique IP address or port number. A user
requesting content makes an HTTP GET request with
filename {e.}filename.b, where the optional prefix e., if
present, denotes NCS and the .b postfix denotes the file
block number of interest for filename.

(c) Assembler & fetcher software: Each server runs
commercial-grade DC management software with the NCS
library written in C++. The software is a modified version
of Vidscale’s Mediawarp software under academic license
[6]. Mediawarp has a commercial DC management feature
set which includes transparent caching, rate throttling and
real-time content caching based on hot and cold content.
All machines run Linux Fedora 16, and the DC network
nodes run a lighttpd webserver. The json spirit and
poco v1.4.1 open source packages are used. The academic
version of Mediawarp that runs on each computer is
composed of three programs running simultaneously:

e Conductor: Receives HTTP GET requests, parses

headers, and finds content;

o Provisioner: Manages content placement, with the
ability to duplicate content onto multiple hard drives
if content is under high demand;

o Relayer: When redirecting user requests, caches con-
tent locally as it is being streamed to the user from a
particular node

B. NCS Library

The NCS library is designed to divide large files into
chunks and to then encode those chunks using block-based
RLNC. This includes both (a) the encoding of files into
chunks and storing those coded chunks on the server drive;
and (b) decoding a number of coded chunks back into the
original file.

The encoding and decoding of content is written in
C++ and uses log-lookup tables, with speed improvements
based on those presented in [7]. The package can use either
8 bit or 16 bit field sizes for network coding, i.e., a finite
field F, of size ¢ = 2% or ¢ = 2'%. The NCS library
was integrated into the Mediawarp software by writing a
package to take control of the software after the HTTP

Fetcher #1

?

User node Assembler S

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Fig. 2. The testbed is composed of three node types. One or
more user nodes that flood the single assembler S with HTTP GET
requests for subsets of {f;}7_;. Assembler S is connected to K fetcher
nodes. The assembler and fetchers form the DC network and run
content management software, as well as the NCS library. To allow
for future scalability, they are implemented in AWS.

GET header is parsed for each read request, and return
control prior to relaying or caching content. The search for
content and the redirecting of content between nodes are
done by the NCS library. The relaying of content to caches
is done by Mediawarp. Each time a single read request
arrives for filef Algorithm 1 is executed.

Algorithm 1 In the NCS scheme, each received user
request begins an instance of the following algorithm on
the assembler.

Parse the received HTTP GET header
Search system state file for requested content and gener-
ate multiple HTTP GET requests to fetchers for coded
chunks of file f;
Receive a degree of freedom (d.o.f.) filename.b.c from
a fetcher
Check if there are sufficient degrees of freedom to decode
Append b.c to the list of received chunks
if Degrees of freedom received is sufficient for user and
have not timed out then
Assemble file
Relay file back to user
else
Resend HTTP GET requests to all fetchers in cluster,
appending list of received chunks
end if

C. Blocking Probability Estimation

Measuring blocking probability directly in data centers
can be nontrivial since all measurements are for an instant
in time. In this paper we calculate an estimate of blocking
probability instead.

Definition Blocking probability estimate Py is the proba-
bility that a random user who has sent the DC an HTTP
GET at time ¢ does not receive any information back from
the DC by time ¢ + x, where z is measured in seconds.

In this paper we set * = 5 seconds. This is consistent
with studies that have shown that users begin to abandon
a video if it does not start within 2 seconds. Beyond
two seconds, each additional second of delay results in a
roughly 6% increase in abandonment rate [8]. Hence, our
system pins abandonment at approximately 18%, a sizable
portion of the user population. such as [9].

We estimate P as follows. We flood a server with
simultaneous user requests from remote machines. All
HTTP GETs are transmitted simultaneously to .S, and all
users request the same coded or uncoded video. A user is
blocked if they receive no response from the server within
x = Bs or if they receive an error message such as an HTTP
404 response.

IV. PRELIMINARY RESULTS

We present both preliminary speed test results for the
stand-alone NCS library for comparative purposes, and
blocking probability proxy results for a single fetcher node.

A. NCS Library

We performed encoding and decoding speed tests of the
NCS library. The speed differences between the 8 bit and
16 bit field sizes were found to be negligible in most cases.

The speed of encoding in most cases is not important
because encoding can be done offline prior to distributing
content to users. However, if decoding speeds cannot keep
up with transmission demands, then the feasibility of NCS
for streaming video comes into question.

We tested decoding speed on an Fedora 16 Linux ma-
chine with Intel Core 2 Quad CPU at 2.83GHz with
2.7GiB memory, a typical 1U server unit in a modern DC
rack. It was found that speeds were relatively consistent
between differently sized video files. All presented tests are
on a 62MB 153 second HD1080p movie trailer. Fig. 3(a)
demonstrates that, given a fixed block size, decoding
speeds are relatively stable across various chunk sizes. This
is comparable to the speeds attained in communication-
based network coding testbeds [10].

Fig. 3(b) shows the effect of changing block size, demon-
strating that a block size of 1-8 units provides near
maximum decoding speed. Decoding speed is significantly
degraded if block sizes are too large, e.g., greater than 32
chunks. Although overall decoding speeds are compara-
ble to communication-based network coding testbeds, to
maintain such speeds the typical chunk sizes may need to
be an order of magnitude larger, and the block sizes an
order of magnitude smaller.

B. Blocking Probability Estimation

Reference [1] showed that blocking probability is a func-
tion of the incoming user traffic. Using curl loader we
measure Py as a function of the number of users present in
the system n. For each n, 50 trials were run and confidence
intervals are calculated across all data points.

To maintain quality of service, DCs manage both delay
and blocking probability. We measure the average delay

42.6 39.2

29.1 26.8

Decoding speed 23.9

(MB/sec)

2 4 8 16 32
Chunk size (sec)

(a) Effect of chunk size on NCS library decoding speed. The
block size is set to seven chunks. Chunk size is measured in
seconds of an HD1080p video.

493 431 43.7

Decode speed 24.1

20.1
(MB/sec) 0

1 2 4 8
Block size (No. chunks)

16 32 64 128

(b) Effect of increasing the number of chunks (block size)
on decoding speed, given a fixed 5MB block size. Tests were
performed on an 480p video.

Fig. 3. Effect of varying chunk and block size on decoding speed.

and Py for a single fetcher being flooded by the user
machine with a fetcher ping time of approximately 20ms.
The file chunks are small encoded text files of size 200KB.
Fig. 4(a) plots the average delay per chunk for all unblocked
user requests as a function of n. We make two observations.
First, the unblocked delay does not increase significantly
until n is close to 3 000. Second, the unblocked delay
per chunk is approximately bounded at 2.5 seconds by
the commercial-grade software. Now consider Fig. 4(b)
which plots Py as a function of n. Users begin to be
blocked at a smaller n than that which causes substantial
unblocked delay. This means that the fetcher is sacrificing
users to keep the delay bounded for a small number of
users. Blocking probability reaches about 50% prior to
seeing substantial unblocked delay. This motivates careful
future analysis of the relationship between unblocked delay
and blocking probability.

V. CONCLUSIONS

We are continuing to build software that helps analyze
DC performance. These results will enable us to under-
stand NCS DC energy reduction opportunities.

We have already shown that chunk and block size
selection can be markedly different from communication-
based network coding systems, and have implemented a
technique to estimate blocking probability. The next step
of this project involves developing statistical models for
the blocking characteristics of servers and drives. We are

2.4

2
Unblocked

Delay (sec)

1

0.34

1 2 35 10 20

n (000’s)

(a) Average NCS unblocked delay for one single-drive fetcher,
as a function of the number of users n.

1

/
Py 051 _i
’

1.2 2.4 34 4.2 6.0

— NCS
= - UCS

n (000s)

(b) NCS and UCS blocking probability estimates as a function
of the number of users n. Theory posits that there should be no
significant gain from NCS over UCS in the single-drive single-
server system [1].

Fig. 4. Fetcher delay and blocking probability estimates.

excited about the promise of demonstrating significant DC
energy efficiency gains through NCS.

REFERENCES

(1] U. J. Ferner, M. Medard, and E. Soljanin, “Toward sustainable
networking: Storage area networks with network coding,” in
Proc. Allerton Conf. on Commun., Control and Computing,
Champaign, IL, Oct. 2012.

2] U. J. Ferner, T. Wang, M. Médard,
“Resolution-aware network coded
http://arziv.org/abs/1805.6864, May 2013.

[3] R. Koetter and M. Médard, “An algebraic approach to network
coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782-795,
Oct. 2003.

[4] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger,
“A random linear network coding approach to multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413-4430, Oct. 2006.

[5] R. Iakobashvili and M. Moser, “Curl loader,” 2007. [Online].
Available: http://curl-loader.sourceforge.net/

[6] “Vidscale corporation,” 2012. [Online].
http://www.vidscale.com/

[7] C. Huang and L. Xu, “Fast software implementation of finite
field operations,” Washington University in St. Louis, Tech.
Rep., 2003.

[8] S. S. Krishnan and R. K. Sitaraman, “Video stream qual-
ity impacts viewer behavior: Inferring causality using quasi-
experimental designs,” in Proc. Internet Measurement Conf.,
Boston, MA, Nov. 2012.

[9] J. Nielsen, “Top ten mistakes in web design,” 1996. [Online].
Available: http://www.useit.com

[10] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli,
D. Leith, and M. Médard, “Network coded TCP (CTCP),”
CoRR, http://arziv.org/abs/1212.2291, Apr. 2013.

and E. Soljanin,
storage,” CoRR,

Available:

