Multi-Party Metering: An Architecture for
Privacy-Preserving Profiling Schemes

Cettina Barcellona!, Pietro Cassara?, Giuseppe Di Bella!, Jovan Goli¢?, Ilenia Tinnirello!
IUniversita degli Studi di Palermo, Italy
2Telecom Italia, Italy
3ISTI CNR of Pisa, Italy.

Abstract—Several privacy concerns about the mas-
sive deployment of smart meters have been arisen
recently. Namely, it has been shown that the fine-
grained temporal traces generated by these meters can
be correlated with different users behaviors. A new
architecture, called multi-party metering, for enabling
privacy-preserving analysis of high-frequency metering
data without requiring additional complexity at the
smart meter side is here proposed. The idea is to allow
multiple entities to get a share of the high-frequency
metering data rather than the real data, where this
share does not reveal any information about the real
data. By aggregating the shares provided by different
users and publishing the results, these entities can
statistically analyze the consumption data, without dis-
closing sensitive information of the users. In particular,
it is proposed how to implement a user profiling clus-
tering mechanism in this architecture. The envisaged
solution is tested on synthetic electricity consumption
data and real gas consumption data.

I. INTRODUCTION

Several public utility systems (such as the electricity,
the gas, and the water distribution systems) are recently
deploying smart meters for improving the management of
the distribution network and offering better services to
the users. Smart meters differ from conventional meters in
that they can provide user consumption data to authorized
parties (e.g. utility providers) not only in cumulative
terms, but also in fine-grained temporal traces which can
bring benefits to different actors.

Consider for example the electricity case. The service
providers, i.e., the companies that purchase and sell elec-
tricity to consumers, can offer more advanced billing
schemes (e.g., for reducing the user demand when the
electricity cost is higher) and reduce operational costs due
to manual readings. The operators of the transmission
and distribution systems can reduce the energy wastes by
knowing the exact load demand in different location areas,
which itself facilitates the carbon reduction. Finally, end-
users can become more aware of their energy consumption
(thus developing new energy-saving habits) and can ben-
efit from new billing schemes by exploiting local energy
production from renewable sources.

However, despite of these benefits, several concerns
about privacy issues have emerged recently. In [1], [2], it
is discussed how the load signatures techniques can be
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applied to energy demand traces of users for revealing
different users behaviors, such as the time intervals in
which they are not at home, the usual awaking time, the
frequency of the shower usage, the time spent in front
of the television, etc.. This information can be used for
different purposes, from target advertising, to detecting if
users are not at home during a sick leave, and even to
understanding the user religion (e.g., if the user minimizes
the load demand on a specific day of the week).

In order to respond to these concerns, different solu-
tions have been proposed for avoiding leakage of personal
data in smart metering. These privacy issues especially
arise for high-frequency meter readings (typically, with
a granularity of a reading every 5-15 minutes), while a
cumulative reading in a month or longer intervals reveals
much less information. In [3], the authors distinguish be-
tween high-frequency and low-frequency data and propose
a new architecture for smart meters, based on the use of
pseudonyms for reading the high-frequency data in a given
location area, without binding the data to a specific user.
A different approach, based on the addition of a random
noise [4] or exploitation of storage/production energy [5]
systems have been proposed for changing the user-created
load demand, thus hiding the load behavior to the load
signature schemes. Other solutions exploit homomorphic
cryptography for allowing some operations on the user
data without disclosing the information related to a given
user. In this case, sophisticated, time-consuming protocols
between the meters and the providers can be required
for certifying that the final bill of the user is evaluated
according to the desired tariff policy, such as protocols for
supporting zero-knowledge proof as proposed in [6].

In this paper, we propose to exploit the existence of
multiple providers (dealing with the same utility or with
different utilities) and the availability of data networks
independent from the utility distribution network for pro-
cessing the user data in an aggregated form, without
accessing the fine-grained data of single users. In partic-
ular, due to its market importance, we focus on the user
profiling operations, i.e., on the possibility of classifying
the users according to the utilization habits for a given
utility, while also discussing how the framework can easily
support other operations (such as aggregation of the total
demand in a given location area). The approach is based on
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Fig. 1.  Our reference scenario: smart meters are connected to the
utility distribution network and to an independent data network.

a multi-party implementation of known clustering schemes
working on secret shares of the user data [7], [8] in a
privacy-preserving way. The scheme can be supported by
the proposed architecture without requiring significant
additional complexity at the smart meter side. Finally, we
also show some profiling results that have been obtained by
applying the proposed framework to simulated electricity
data and actual gas metering data.

II. MULTI-PARTY METERING ARCHITECTURE

Although meters are under the complete control of
utility providers and no tampering operations are allowed
to the users, we envision a scenario in which the meters can
support by design new privacy-preserving functionalities.
We assume that the usual metering operations, such as
the low-frequency readings of the cumulative consumption
data, are not sensitive information for the users and can be
signaled to the provider by usual means, e.g., by manual
readings or remote readings through a data network. We
also assume that, despite the fact that the network for
reading the data in some cases can be physically built on
top of the utility distribution network, as in the case of
power line transmissions in the electric grid, each smart
meter can access an independent public data network (i.e.
the Internet), either because it is integrated with a DSL
modem or because there is a local network between the
meter and the modem.

Figure 1 summarizes the envisioned scenario and the
involved actors: users are generally connected to multi-
ple utility networks (energy, gas, water), and for each
network multiple providers offer differentiated services by
exploiting a distribution system under the control of one or
multiple operators. (For simplicity, the figure indicates two
operators.) All the actors (users, providers, and operators)
are also connected to an independent data network. A
different smart meter is usually required for each user
utility, as in current deployments, but with the additional

capability to be connected to the data network. While
low-frequency data still belong to a single party, i.e., the
provider to which the user has contractually subscribed,
high-frequency data are sampled by the meter, but are
not directly accessible to the service provider. Since these
data are important to all providers (e.g., for offering better
tariff policies) and operators (e.g., for minimizing the
distribution network inefficiencies), the smart meter can
send to each of them a share of the reading value rather
than the value itself. For high-frequency measurements,
the smart meter thus behaves as a multi-party meter,
i.e., a meter available to multiple independent entities by
providing shares of the measurements. We assume that
independent providers and operators, who are in principle
competitors, are motivated to cooperate for computing
the desired aggregate public statistics, as linear functions
of the shares. In other words, the entities reading the
high-frequency shares of metering data are assumed to
behave as in the honest but curious model, i.e., they
work as prescribed by the multi-party profiling protocol
described in the following section, but they can try to
extract information from their data.

Different use cases of exploiting the fine-grained in-
formation provided by the high-frequency meter shares
can be enabled in this scenario. For example, by simply
summing all the shares read by each entity in a given
location area and by publishing the results, it is possible to
estimate the temporal behavior of the total utility demand
in that area. Moreover, more sophisticated aggregations
allow one to profile the user behaviors by clustering, for
offering new service policies, for integrating the services
offered by different utility networks, or for facilitating the
entrance of new providers in the market.

III. USErR PROFILING

In this section, we show how to exploit our architecture
for profiling the users in a privacy-preserving manner. User
profiling is based on data mining techniques known as
classification and clustering, for which several algorithms
are available in the literature. They are able of grouping a
set of elements according to the similarity of their features,
which is measured by using a distance metrics. Ideally,
the distance metrics should be minimized within the same
profile and maximized between different profiles.

Both clustering and classification schemes can work
in multiple iterations. For example, hierarchical schemes
attempt to organize data into a hierarchical structure,
merging the clusters (profiles) found in previous steps,
while the partitioning schemes work by splitting the pro-
files in successive iterations. Clustering schemes can be
divided into hard and soft schemes: the hard schemes
impose that an element belongs to one cluster only, while
the soft schemes allow an element to belong to all clusters
with different membership values.

Although our framework can support different clustering
and classification solutions where the aggregate statistics



to be computed are linear, we here show how to imple-
ment the multi-party clustering operations by referring
to a specific well-known clustering scheme called Fuzzy
C-Means (FCM), which is an evolution of the basic K-
means algorithm. We will define the clustering operations
and multi-party implementation by representing user data
as a vector, with integer-valued individual components
representing different data features. The user profiles are
then represented as vectors, whose size is equal to the data
size, specifying the centroids of each cluster.

A. Fuzzy C-Means Algorithm

Let n be the number of m-dimensional data vectors to
be profiled into ¢ different clusters. If d; € R1*™ is the
i-th data vector and c¢; € R™ is the j-th profile/cluster
centroid vector, then the classical metric to be minimized
in a hard clustering scheme, such as the K-means scheme,
is given as the sum of the L2-norm distances between each
data vector and the centroid vector of the cluster it belongs

to, i.e., as: .
DD lldi =l (1)

j=1d;€C;j

where C} is the j-th cluster.

FCM [9] is a soft partitioning algorithm according to
which the belonging relationship of data to clusters is fuzzy
rather than deterministic. Specifically, the scheme defines
a membership matrix U € [0, 1]"*¢, whose generic element
u;; is membership degree that the i-th data vector belongs
to the j-th cluster. The matrix U satisfies two conditions:
i) Yo ui; > 0, ie., each cluster j includes at least one
data element with non-zero membership degree, and ii)
25:1 u;; = 1, i.e., each data element 7 is contained in one
of the considered clusters with the maximal membership
degree 1. The function to be minimized by clustering is

given by:
SO ullld; — ¢ (2)

j=11i=1

where f is the fuzzification parameter affecting the shape
of the clusters in the range ]1, co[, which is typically set to
2.

Starting from a random initialization of the cluster
centroids c;(0),the scheme works at each step t as follows:

1) Update of the membership matrix: each data element
i is fuzzily assigned to each cluster j with the
membership degree computed as:

uqj(t) = - (3)
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2) Update of the cluster centroids: for each cluster j,
the cluster centroid is computed by minimizing the
objective function (2) as:

nw oy d,
c; (t) = i ui(t) -ds (4)

g wig (8)7

3) Convergence verification: if [|U(t) — U(t —1)| < e,
then the scheme is stopped.

B. Multi-Party Implementation

The clustering algorithm described in the previous sec-
tion is based on the knowledge of the private data vec-
tor d; for each user i € [1,n], where the membership
degrees are computed from these vectors and the public
cluster centroid vectors. The clustering scheme can be
implemented by using a trusted server which iteratively
computes (3) and (4) from the private data vectors. The
scheme can be implemented in a privacy-preserving way
by using homomorphic encryption in order to compute the
linear functions in (4) by the server, where 53) is computed
by individual users and the values of u;;(¢)’ and w;; ) dy
are sent encrypted to the server, in each iteration. Here,
d;; denotes the I-th coordinate of d;, [ € [1,m].

However, the homomorphic encryption is computation-
ally heavy. Instead, we here propose an implementation
of the same clustering scheme by using multi-party com-
putation based on linear threshold secret sharing. This
is possible since the functions in the nominator and de-
nominator of (4) are linear. The secrets are the private
data elements u;; (t)" and Uij(t)fdil used in (4). They are
computed by individual users (in our case, smart meters)
and each of them is split into shares and distributed to
K entities called nodes (in our case, utility providers and
operators and, eventually, an external profiling node, as
indicated in Section IT). For the proposed (K, K) threshold
scheme, it suffices [10] to represent each secret s as the
modular integer sum of K random shares rq, - - - rg, where
the modulus p is chosen to be larger than n times the max-
imum measurement value d;;. More precisely, shares are
generated by choosing K — 1 random values ry, -+ ,7x_1
from the range [0,p — 1] and by computing the last share
asTg =8—171— -+ —Tg_1 mod p.

One of the nodes serves as a profiler. In each iteration, it
collects the aggregated shares of the other nodes, computes
(4) in a privacy-preserving way, and then distributes the
cluster centroids to the smart meters. The user data cor-
respond to high-frequency smart meter readings captured
every x minutes in an interval of one day (i.e., the data
vector dimension is 24 - 60 min/x). Rather than sending
the data vector at the end of the day, in our approach,
the i-th meter sends K shares of the iteratively computed
high-frequency data to different nodes S times, S being
the number of iterations required to meet the convergence
criterion in the clustering algorithm.

More precisely, the multi-party implementation of the
clustering scheme works as follows. The profiler sends the
initial random centroids c; and the fuzzification parameter
f to all the smart meters, which locally evaluate their
vector ulf € R'*¢, with components u{j7 and their matrix
M,; = diT . u{ € R™*¢, with components u{jdil. The
iteration number ¢ is here omitted for simplicity. The
vector and the matrix are then randomized in K shares



ri(u/) € R and ry(M;) € R™*¢, k € [1,K], to be
sent to the K nodes. The k-th node, in turn, linearly
aggregates the shares of all the smart meters in a vector
=) . Tk (uf) mod p and a matrix My, = >0, r4 (M)
mod p, for each k € [1, K].

The profiler receives all the aggregated shares and ex-
ploits the linearity to evaluate the two sums in (4). Let
mi(j,1) = Y, rk(d“ulfj) mod p denote a component of
the aggregated matrix My, and let 7(j) = Y1, rk(u{j)
mod p denote a component of the aggregated vector Ty.
Then, by summing up modulo p all the aggregated shares
mg(j,1), the profiler recovers »_ -, diluzfj mod p. Similarly,
by summing up modulo p all k aggregated shares 7 (), it
recovers Z?:l u{] mod p. Now, under the condition that
p is larger than n times the maximum value of d;;, each of
the two modular sums reduces to the desired integer sum
in (4). Namely, the profiler computes the [-th component
of the j-th cluster centroid as:

Ci — Z,{;l m(j,l) mod p
Jl ﬁ;l 7r(j) modp °

(5)

The new centroids are then sent to all the smart meters in
order to update their membership degree vector u; and the
matrix M; and repeat the whole process in a new iteration.

The multi-party implementation of the scheme has some
overheads, both in terms of additional complexity and in
terms of additional bandwidth required to transmit the
data. However, the additional complexity is practically
negligible, being limited to the evaluation of the shares
to be performed by each meter, i.e., to the extraction of
K — 1 random variables and a computation of a modular
sum for mc + ¢ different secret components of M; and
u;. The bandwidth overhead for a single smart meter is
proportional to SK(mc + ¢), where S is the number of
iterations of the clustering algorithm.

A private data vector d; is represented by a public
cluster centroid c; that maximizes the membership degree
u;;. This cluster centroid may then be used for user
profiling by the utility providers. The main point of the
whole approach is that the user profile can be computed
by the smart meter without revealing the concrete private
data vector to other entities. This ensures the privacy,
provided that the number of clusters is reasonably small
with respect to the granularity of measurement data.

IV. PERFORMANCE EVALUATION

In order to assess the effectiveness of the proposed
approach, we simulated the proposed architecture in MAT-
LAB, by implementing the FCM clustering algorithm at
the profiler node, for both the scheme working on actual
data and the scheme working on data shares generated
by the smart meters. In both the cases, we obtained the
same profiling results. We want to remark that our main
goal is not providing numerical results for quantifying user
profiles, but rather demonstrating the operations and the
accuracy of clustering schemes working on data shares.

TABLE 1
PROBABILITY DISTRIBUTIONS OF CENTROIDS ALTERATION

<0.0045 | <0.0154 <20 | <

wt
(=

<1
K-Means 0 0 4 107 0.8

JUY .

FCM 0.5 0.7 1 1 1 1

For generating the user data, we used both simulated
data emulating domestic electricity consumption and real
data quantifying industrial gas consumption. The system
simulator has been used for better understanding of the
effects of different parameters to be tuned in the clustering
operations.

A. Tuning of the Algorithm Parameters

Different parameters have to be configured for running
the clustering scheme: the total number of clusters ¢, the
fuzzification parameter f, and the initial centroid c;(0)
of each cluster j. The scheme can be applied multiple
times to the same data, in order to identify the number
of clusters that better reflects different users behaviors.
Different indicators have been proposed in the literature
for comparing alternative clustering solutions applied on
the same data [11]. In particular, we chose the Davies-
Bouldin Validity index [12], because its definition can be
easily supported in our architecture and does not depend
on the clustering algorithm. It is important to emphasize
that in practice this index can be computed in a privacy-
preserving way, without revealing individual data vectors,
by a technique similar to the one explained in this paper.

We ran the clustering scheme for different ¢ values in
the interval [2,10] and for different fuzziness values in the
set [1.5,2,2.5,3]. The best clustering results have been
generally identified as the ones minimizing the clustering
validity index. In some cases, when data are natively
clustered in distant groups, we applied a hierarchical
optimization by finding the optimal number of sub-clusters
per each group.

We actually chose the FCM algorithm due to its low
sensitivity to the initial conditions. Such a feature has
also been verified in the numerical results by comparing
the variability of the final clustering results under different
initial centroid values. We also considered the sensitivity
results of the simpler non-fuzzy version of the scheme (i.e.,
K-means) for identifying the best complexity/accuracy
trade-off. Table I shows the cumulative probability distri-
bution of the distance between the centroids of the same
cluster obtained with different initial conditions for both
the FCM and the K-means scheme. The distance is always
lower than 1 KWh for the FCM scheme, while for the K-
means scheme can be higher than 20 kWh in the 20% of the
cases. These considerations justify the choice of the FCM
scheme with randomly chosen initial centroid values.

B. Numerical Results with Synthetic Data

The synthetic data used for testing our framework have
been obtained by using a simulator of electrical domestic
loads. For each smart meter, the simulator allows one to
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specify the energy class of the building and air condition-
ing system, the presence or absence of water heaters and
photovoltaic systems, and the number of people living in
the same unit. The switching-on probability of the domes-
tic appliances and the intervals in which the appliances
are kept active are modeled according to actual load traces
and differentiated between summer and winter seasons.

We considered a total number of 800 users, generat-
ing a random daily load demand in 30 different days
according to the configuration parameters of the relevant
domestic unit. Each load demand curve is sampled into
high-frequency meter readings, quantifying the energy
consumed in intervals of 15 minutes. From these readings,
we extracted two types of data to be clustered: a vector of
2 components, obtained from the previous one by consider-
ing the total daily consumption and the peak consumption,
and a vector of 24 components corresponding to the meter
cumulative readings in intervals of one hour.

For the simple case in which the data vector has two
components only Figures 2 and 3 show the data collected,
respectively, in thirty different summer and winter days,
as well as the profiling results for ¢ = 4, which was the
number of profiles chosen by the simulator. We can see that
two profiles are affected by seasonal variations (namely,
the profiles corresponding to the lowest total and peak
consumptions), while the two other profiles are almost
unaffected. The profiles given by the coordinates of the
clusters centroids have been obtained by considering the
readings of the same meter on different days as different

users. According to this approach, the profiler has to store
the daily values of the aggregated shares sent by each
utility provider for collecting all the 30K shares. We also
implemented slightly different solutions (e.g., averaging
the centroids obtained every day in a window of 30 days)
and obtained similar results.

Figure 4a shows the user profiles obtained for the case
in which the data vector includes 24 different components.
Each profile is given by 24 different values of energy
demand in different intervals of the day. There are profiles
corresponding to a more uniform distribution of energy
demand along the day as well as profiles requiring energy
peaks of different durations. Figure 4b also shows the
components of four different data vectors classified under
the four clusters, respectively.

C. Numerical Results with Actual Data

The real data used for our tests are based on gas
consumption data. In this case, the data do not refer
to domestic users, but to important consumers such as
industries, companies or schools. Apart from the consump-
tion readings, the data also include additional information,
such as the temperature and pressure readings and the
longitude and latitude values of the smart meters.

As in the previous case, for plotting the profiles in
a bidimensional coordinate system, we considered the
total and peak value of the consumptions measured dur-
ing the day and night and different clustering crite-
ria for bidimensional data (e.g., day-time consumption
and its relative peak, day-time and night-time consump-
tions, minimum pressure/temperature and maximum pres-
sure/temperature, longitude and latitude, etc.). The data
vectors were obtained from 200 users for the first 100 days
of 2012. Since the data were real and no initial indication
about the cluster numbers was available, we identified
the best clustering solution by running multiple clustering
schemes, under different ¢ and f values. In many cases,
we also considered the hierarchical optimization of the
number of clusters, if the original data were clustered in
distant sets. Figure 5 shows a profiling example referring
to the day-time total and peak consumption. Data points
belonging to different clusters have been colored with
different gray scales. The figure has been plotted in a log-
arithmic scale to demonstrate that only a few data points
have a peak consumption lower than 10m? or higher than
100m?3. In this case, the optimization of the validity index
of the clustering solution corresponds to two clusters only.
However, for further differentiating the behaviors of the
majority of users, we applied a hierarchical optimization of
the most populated cluster, thus providing a final number
of nine different profiles.

V. CONCLUSION

Privacy concerns are very important for the future
deployment of smart metering, especially in view of the
fact that the amount of data collected in the future will
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be orders of magnitude more than the data collected from
current meters. This data can easily be mined for estimat-
ing different user behaviors, as widely demonstrated by the
application of load signature techniques.

In this paper, we address the smart metering privacy
issue by proposing a new architecture for reading the
high-frequency metering data. Rather than providing the
data to one service provider only, the idea is sharing
the readings among multiple independent parties that are
motivated to cooperate for analyzing the aggregated data.
In particular, we describe the multi-party implementation
of a user profiling scheme based on the FCM clustering
algorithm, which is able to work on random data shares,
due to the linearity of functions evaluated in the algorithm.
It enables the computation of data profiles without reveal-
ing the concrete metering data. Only if all the involved
parties sharing the data collude together, the original data
can be compromised. The scheme does not add significant
computational overheads, while the bandwidth required
for transmitting the data is proportional to the number of
involved parties and iterations of the FCM algorithm.

We are currently investigating simple extensions of the
scheme for optimizing different storage/complexity trade-
offs, by running the profiling operations with incremental
data, i.e., with multiple data samples generated by the
same users in different temporal windows. Further appli-
cation scenarios, based on more general utilities such as

User behavior

10
5
0

T T T
5 10 15 20 24

consumption/hour
(=1 5 =

0 5 10 15 20 24
10 T T T T T

' i e
. 0 e S N

0 5 10 15 20 24
20 T T T T T
12}» R ﬂ | i ﬁﬂ ™ ‘{

0 5 10 15 20 24

hour

(b)

User profiles defined on the basis of per-hour energy consumption values and examples of metering data for users belonging to

the queries of DNS servers are also under investigation.
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