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Abstract—Energy consumption in ICT is growing
annually by 4% despite efficiency gains in technology,
and it already has a carbon impact that is equivalent
to air travel. It is therefore important to study ways
to reduce energy consumption in ICT while preserving
acceptable levels of quality of service (QoS). Energy
consumption in computer systems is often related to
the operating load and will be increasing as systems
become more energy efficient. We examine the choice
of system load that offers the best trade-off between
energy consumption and QoS, and use measurements
to validate the results.

Index Terms—System Load; Measurements; QoS-
Energy Trade-Off

I. Motivation and Problem Setting

The simplest means of energy savings in ICT is to turn
off computers and network units that are not being used,
provided one can restart them rapidly when requests for
computation or communication services do arrive. In the
ideal case, a service system would only be consuming
energy during its busy periods. However, turning a system
on and off will in itself consume energy, as we will see in
the sequel. Thus this paper attempts to take a holistic
view so as to find the best system operating point with
regard to a composite metric that includes both energy
consumption and QoS. For a system with a load factor
(or processor utilisation) of ρ = λE[S], where λ is the
average arrival rate of jobs and E[S] is the average service
time, the average power consumption in watts, under ideal
operation when energy is only used when jobs are being
processed, is Π = ωρ and the energy consumption per job
in Joules would then be Jjob = Π/λ = ωE[S]. However, it
is not easy to wake up a server instantaneously as soon
as a job arrives for processing, and then to turn it off
right after the processing ends. There will always be some
energy consumption even if the processor is idle, and both
putting the system to sleep and waking it up will cause
additional energy expenditure.
Thus we first consider the case when the processor is

constantly on, and use a cost function that includes both
the response time to jobs, and the energy that is consumed
per job on average. We obtain the optimum value of
load which minimises the cost function. We will also use
measurements on a system with a synthetic workload to
estimate the power consumption parameters of the system,
the average processing time per job, and we validate
the theoretical results regarding the optimum load that

minimises the cost function. Then we study the case when
multiple such systems are being operated in parallel and
we need to share a flow of jobs to the system so as to
optimise a composite cost function similar to the previous
one, and derive the optimum share of load that must be
assigned to each of the sub-systems. We also consider a
system which can be tuned off and on intermittently with
a specific cost in power consumption associated with the
each off-on operation and with no power consumed when
the system is off. We again derive the value of the system
load which minimises the composite cost function that
includes both average response time and energy consumed
per job.

II. Combining Energy and QoS

The simple formulae given above do not take into
account the fact that the power consumption will depend
on the load [2], and that putting a server to sleep and
waking it up will take time and consume additional energy.
Without taking into account the power needs of complex
cooling equipment that is needed for large systems, a
simple but fairly realistic power consumption relation for
current processing units is Π = A + Bρ, where A is the
power consumption of the processing unit when it is idle.
A very efficient processor might have a very small value
of A, and B would correspond to the rate of increase in
power consumption as more more cores are turned on as
the load increases. Unfortunately, for much of the current
equipment A is still a significant part (often more than
50%) of the total processor power consumption when it is
idle. This includes the fact that the memory system and
the peripheral equipment and network connections need
to be powered even when no jobs are being processed, and
that the operating system can remain active (and hence
contributes to the energy consumption) even when there
are no external jobs that need to be processed. From Π we
obtain an expression for the energy consumption per job:

Jjob =
A

λ
+BE[S], (1)

which would justify the principle of concentrating com-
putation on a small number of processing units in order
to minimise the power consumption per job. However if
one also wishes to consider the resulting quality of service
(QoS) then it would be reasonable to examine the simple



cost function:

Cjob = aE[S]

[

1 +
ρ(1 + C2

S)

2(1− ρ)

]

+ bJjob, (2)

= aE[S]

[

1 +
ρ(1 + C2

S)

2(1− ρ)

]

+
bA

λ
+ bBE[S],

where a and b are the relative importance that is being
placed on the QoS for a job, and the energy consumption
per job, and the QoS represented in (3) is the average
response time computed from the well known Pollaczek-
Khintchine formula in (for instance) [4] per job, assuming
Poisson arrivals and general (experimentally measured)
service times in a single server queue.

A. Experimental Validation

To validate the energy-QoS metric and optimum load
model, we conducted a series of experiments using jobs
executing on a server class system having a quad-core Intel
Xeon 3430 (8M cache, 2.4 GHz), 2 GB RAM, single 150
GB SATA hard drive, and 2 on-board Gigabit Ethernet
interfaces. The system runs Linux (Ubuntu) with CPU
throttling enabled with the on demand governor, which dy-
namically adjust the cores’ frequency depending on load.
A client machine is attached to the server through a fast
Ethernet switch to generate the workload, and the client
machine also measures the system’s power consumption.

We measured power consumption when it is idle, i.e.
when it has no external jobs to execute, to be A = 69.5
Watts, which corresponds to the value of A in (1). We
then launched a sequence of synthetic jobs, where each job
consisted in calculating the real number π, using Machin’s
formula, to a desired level of precision. This level of
precision was used to provide a wide range in the execution
time and workload from one job to the next by choosing
the precision at random with a uniform distribution in the
range of 10 to 50 thousand digits. The job also included
sending the results back to the client through the network
connection. By recording the start and completion times
of each job at the server, we measured the average job
processing time to be 6.4235s, exclusive on any waiting
or queueing times at the server. We varied the job arrival
rate λ and the measured average response time for a job is
shown in Figure 1 as a function of load (ρ), together with
the average response time R predicted using a Poisson
arrival process and an exponentially distributed service
time. Figure 2 depicts the job service times.

Then we measured the average energy consumed by a
single job from observations obtained from serving a large
number of jobs (1000), the average power consumption and
the total running time of the experiment. The value of B
was measured to be 13.32 Watts per job on average. The
measured value of Jjob and the calculated results from (1)
using the experimentally estimated values of A and B are
shown in Figure 3.
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Fig. 1. Comparison of measured response time as a function of
load ρ = λE[S], against theoretical predictions that assume Poisson
arrivals.
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Fig. 2. Normalized histogram of service times.

B. Optimising Energy and QoS

A simple analysis allows us to compute the value of
the arrival rate λ that minimises the composite cost
function Cjob. As a consequence, the optimum setting of
the load ρ∗ = λ∗E[S] will depend on A (the idle power
consumption) and on the ratio b/a which is the relative
importance of energy consumption with respect to the
average response time of jobs:

ρ∗ =

√

2bA

a(1 + C2
S)

(

1 +

√

2bA

a(1 + C2
S)

)−1

(3)

The expression (3) gives us a simple rule of thumb for
selecting system load for optimum operation, depending
on how we weigh the relative importance of energy con-
sumption with respect to average response time or how
fast we are getting the jobs done.
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Fig. 3. Measured energy consumption per job (in KJoules) as a
function of load ρ compared to the value predicted by the expression
(1) using the experimentally measured values B = 13.32 and A =
69.5 Watts. The parameter b in (1) has been set to b = 1.4725×10−04
which is the inverse of the maximum energy consumption per job (in
Joules) that was measured during the experiments.

We also see that ρ∗ is an increasing function of the
ratio bA/a(1 + C2

S). This tells us how the optimum load
should increase as a function of the system’s idle power
consumption, and/or the relative importance that we place
on energy.
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measured, a=0.01b

theoretical, a=0.01b, ρ* = 0.98815

measured, a=b
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Fig. 4. The overall cost function as a function of load, when a varies
between 0.01× b to 100× b, for b = 1.4725e− 04 which is the inverse
of the maximum energy measured during the experiments.

III. Load Sharing in N Sub-Systems

In many cases, a data centre is composed of N heteroge-
neous sub-systems, and our analysis can provide guidelines
about how to share load among them, where each one has
an energy profile described by the parameters Ai and Bi

and with different processing capacity. The base system
will be system 1 in the sense that B1 ≤ Bi for i 6= 1.

The execution of a job on system i will take on average
time E[Si] = E[S1]/σi where σi is the speed-up factor for
system i 6= 1 with respect to the base system, and we do

not imply that the base system is the slowest one. When
λ jobs arrive per unit time and we assign a fraction pi to
the i − th sub-system, denote λi = piλ with

∑N
i=1 pi = 1.

The cost function:

Cjob =
N
∑

i=1

pi{
aE[Si]

1− λiE[Si]
+ bJ i

job} (4)

=

N
∑

i=1

pi{
aE[Si]

1− λiE[Si]
+

bAi

λi

+ bBiE[Si]}

is then minimised with regard to the flows assigned to each
sub-system, by computing:

∂Cjob

∂pi
= E[Si](bBi +

a

(1− ρi)2
) (5)

−E[S1](bB1 +
a

(1− ρ1)2
), 2 ≤ i ≤ N

where ρi = piλE[Si], so that to minimise the cost function
we need to set:

ρi = 1−

√

a
aσi

(1−ρ1)2
+ b[B1σi −Bi]

(6)

where σi = E[S1]/E[Si] is the speed-up factor of run-
ning a job on system i with respect to system 1. As a
numerical example, consider three systems with speed-up
factors σ = 1, 1.5, 2.0 (i.e, the second system is 50%
faster than the first and the third system twice as fast).
Assume that these systems have idle power consumption
A = 70, 85, 100 watts respectively and let the B values
be B = 10, 12.5, 15 watts; in this case higher computing
power also implies higher power consumption. From (6)
we obtain the optimum routing probabilities for the three
systems as a function of the job arrival rate λ, as shown in
Figure 5. Despite its higher power consumption, the faster
system is preferred at lower loads because it can produce
the lowest energy consumption per job. By assigning a
greater weight to the response time via the parameter a
in (5), the routing probabilities to the other two systems
will increase as would be expected.

IV. Systems that are Turned On and Off

In all the previous analyses we assume that the systems
are kept on all the time, and that power consumption
varies with load. Based on these assumptions, and using
a composite cost model that combines energy consumed
per job, and average response time to a job we have
tried to compute the load value (or operating point) that
minimises this cost function.
In this section we assume that the system is turned on

and off independently of its workload; when it is off we
assume that it does not consume energy, but the on-off
switching itself consumes an amount of energy γ in Joules,
and it will also degrade the QoS. Furthermore, when the
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Fig. 5. Optimum load-sharing probabilities that minimize the
Energy-QoS cost function for different values of a and b.

system is“asleep”, it still consumes some power atD watts.
Let F be the probability that this system is turned ON
and let f be the rate at which it is being turned off and
then on again. Using results such as [1] we obtain new cost
function per job:

C
I
job =

aE[S]

F − λE[S]
+ b

F (A−D) + γf +D

λ
+ bB

E[S]

F
. (7)

As a consequence, the optimum system load factor ρ∗I
becomes:

ρ∗I =

√

b[F (A−D)+γf+D)
a

1 +
√

b[F (A−D)+γf+D)
a

(8)

To experimentally evaluate the performance of this
scheme, we use system hibernation, rather than hard ON-
OFF system switching, because the system state which

is in RAM during normal operation must be stored to
hard disk during hibernation so that interrupted jobs may
resume execution after a system resumption. Although the
sleep mode is preferable to hibernation because putting
the system to sleep would be faster, the sleep mode was
not available in the system that we use for experiments, as
is the case with many server-class systems. The measured
power consumption of the server over time, while being
put into hibernation and during system resumption, is
shown in Figure 6. The measured time needed to hibernate
the system was 19.719sec, while system resumption took
47.375sec. These measurements allow us to estimate the
value of γ as being 5.268 KJoules.
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Fig. 6. System power consumption during (a) system resumption
and (b) hibernation.

To control the system state, we use a separate system
as a controller that issues ssh commands (pm-hibernate)
and wake-on-lan packets to the server under study. In
the experiments, the complete cycle of hibernation and
normal operation is set to 200 sec so that f = 0.005. The
probability that the system is in operation for job execu-
tion (i.e., excluding the hibernation-resumption times) was
measured to be F = 0.38631, and the power consumption
during hibernation was measured as being D = 15.17 W .
Figure 7 shows the measured (average) response time of
jobs compared to the model predictions with the same
set of jobs as in the previous experiment, except that
the result of each job is written to disk instead of being
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Fig. 7. Measured and theoretical average response time versus load,
for the system with ON-OFFs with f = 0.005.
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Fig. 8. Theoretical and measured energy consumption per job versus
load, in the system with ON-OFFs for f = 0.005.

sent over the network to a client. The average service
time was measured to be 5.7754 secs. Figure 8 shows
the average energy consumption per job and Figure 9
shows the measurements and theoretical predictions, for
the overall cost function including average response time
and energy per job.

V. Conclusions

We have shown that an optimum system load can be
selected to minimise a cost function that includes both
energy and QoS. Furthermore, putting a system intermit-
tently to sleep can reduce overall energy consumption as
shown in Figure 10, despite the energy wasted in switching
the system on and off, and the reduction in QoS.
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Fig. 9. Composite Energy-QoS cost metric versus load in the system
with ON-OFFs for f = 0.005.
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f=0.0025, F=0.3836 (measured)
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Fig. 10. Theoretical and measured energy consumption per job
versus load, in the system with ON-OFFs for different values of f .
We see that some energy can be saved if f is small and the “off” cycle
is long.
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