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Abstract. Input data for communication network design/optimization
problems involving multi-hour or uncertain traffic can consist of a large
set of traffic matrices. These matrices are explicitly considered in prob-
lem formulations for link dimensioning. However, many of these matrices
are usually dominated by others so only a relatively small subset of ma-
trices would be sufficient to obtain proper link capacity reservations, sup-
porting all original traffic matrices. Thus, elimination of the dominated
matrices leads to substantially smaller optimization problems, making
them treatable by contemporary solvers. In the paper we discuss the
issues behind detecting domination of one traffic matrix over another.
We consider two basic cases of domination: (i) total domination when
the same traffic routing must be used for both matrices, and (ii) ordi-
nary domination when traffic dependent routing can be used. The paper
is based on our original results and generalizes the domination results
known for fully connected networks.
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1 Introduction

Input data for optimization problems related to communication network design
and planning can consist of a large set of traffic matrices. This is the case for
example when multi-hour traffic or uncertain traffic is considered [1, 9, 11]. By
using a set of matrices rather than a single traffic matrix, it is possible to take
into account the non-coincidence of the peak load hours in different parts of the
network, or to use a large set of measured matrices when the traffic is hardly
predictable. In consequence, a set of traffic matrices is explicitly used in problem
formulations in order to dimension the network links. However, many of the input
matrices are usually dominated by others, and in effect only a relatively small
subset of them can be sufficient to obtain proper link capacity reservations, sup-
porting all original traffic matrices. Thus, elimination of the dominated matrices
leads to substantially smaller optimization problems, making them treatable by
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the optimization solvers. Moreover, the domination relation between traffic ma-
trices is of interest not only for identifying and then removing the dominated
traffic matrices. In [7] it was shown that the domination can also be exploited
to devise more efficient planning algorithms under multi-hour or uncertain traf-
fic demand, introducing a small “upper bound” set of artificial traffic matrices
dominating the entire set of the original traffic matrices and yet yielding a very
good approximation of the true optimal solution.

In the paper we discuss the issues behind detecting domination of one traffic
matrix over another. We consider two basic cases: total domination (when the
same traffic routing must be used for both matrices – in this case we in fact
consider domination of a set of traffic matrices over one additional traffic matrix),
and ordinary domination (when traffic-dependent routing can be used). The
paper is based on our original results presented in [2, 8].

Given a network graph G(V,E), and two traffic matrices ĥ and h, ĥ totally
dominates h (ĥ � h in short) if for each link capacity reservation u : E → R+

and for each flow pattern f : P → R+ (where P is the set of routing paths) such
that (u, f) supports matrix ĥ, the solution (u, f) does also support matrix h.

The definition of ordinary traffic domination is slightly different. We say
that ĥ ordinarily dominates h (ĥ |= h) if for each link capacity reservation
u : E → R+ for which there exists a flow pattern f̂ : P → R+ such that (u, f̂)
supports matrix ĥ, there exists a (in general different) flow pattern f : P → R+

such that (u, f) supports matrix h. Obviously, total domination implies ordinary
domination, i.e., ĥ � h implies ĥ |= h.

The known result (due to Gianpaolo Oriolo [6]) on total domination is as
follows: in a complete graph ĥ � h if, and only if ĥ ≥ h component-wise. In [8] we
have given a complete characterization of total domination which we describe in
Section 2 below. In fact, total domination is discussed in a more general setting
that examines when a set of traffic matrices dominates one additional traffic
matrix.

For ordinary domination the known result (also due to [6]) states that in a
complete graph ĥ |= h if, and only if, matrix h can be routed in the network
with link capacities equal to the elements of ĥ. This result, however, cannot be
extended to arbitrary graphs simply because in an incomplete graph there may
no direct links between the end nodes of some demands, making the Oriolo result
not applicable. Consequently, in Section 3, we present a different kind of general
necessary and sufficient condition for ordinary domination in an arbitrary graph,
using findings of [2].

2 Total domination

2.1 Definition

Consider an undirected network graph G = G(V,E) with the set of nodes (ver-
tices) V and the set of undirected links (edges) E. A path p between nodes s and
node t in graph G is given by a sequence of nodes v1 = s, v2, v3 . . . , vn−1, vn =
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t), vi ∈ V, i = 1, . . . , n, such that vivi+1 ∈ E, i = 1, 2, . . . , n− 1. Path p is called
elementary if all the nodes are different, and in effect an elementary path can be
treated as a subset of links: p ⊆ E. Link capacity reservation u : E → R+ will
be identified with vector (ue, e ∈ E) where ue = u(e).

Let D denote the set of (undirected) traffic demands in the considered net-
work. Each demand d ∈ D is characterized by its end nodes a(d) and b(d), (a(d) 6=
b(d)), and its traffic volume hd. The vector h = (hd, d ∈ D) is referred to as traf-
fic vector. (We prefer to use the notion of the traffic vector instead of the traffic
matrix used in the introduction.) For each demand d ∈ D we specify a set of its
candidate paths Pd – a subset of all elementary paths between nodes a(d) and
b(d) that are selected for carrying traffic of demand d. We assume that there is
at most one demand between any two nodes so that the path sets Pd, d ∈ D are
mutually disjoint (in the sequel a demand d between nodes s and t will sometimes
be denoted, somewhat informally, by d = st ∈ D). Finally, we put P =

⋃
d∈D Pd

– the set of all admissible paths. Having the predefined path set P , for each link
e and demand d we can define Qed ⊆ Pd – the set of all candidate paths for
demand d that contain link e: Qed = {p ∈ Pd : p 3 e}. The length of path p ∈ P
with respect to a given vector of link metrics (weights) π = (πe, e ∈ E) will be
denoted by |p|π.

Given graph G(V,E), set of demands D, and set P of candidate paths, we
define a static (fixed) flow allocation pattern as a vector f = (fp, p ∈ P ), where
for each d ∈ D and p ∈ Pd, the entity fp represents a fraction (0 ≤ fp ≤ 1) of
traffic volume of demand d ∈ D assigned to path p.

Consider a finite set of traffic vectors H = {ht : t ∈ T} to be supported by
the network, and one additional traffic vector h = (hd, d ∈ D) outside set H. Set
H can represent |T | different traffic hours, or a set of observed realizations of a
random traffic vector. For every ht, t ∈ T , its traffic volume for demand d ∈ D
is denoted by ht

d so that ht = (ht
d, d ∈ D).

We say that a capacity reservation vector u and a flow allocation pattern f
support H with respect to the given path set P if (u, f) satisfies the following
linear constraints:∑

p∈Pd

fp = 1 d ∈ D (1a)

∑
d∈D

∑
p∈Qed

ht
dfp ≤ ue e ∈ E, t ∈ T (1b)

fp ≥ 0 p ∈ P. (1c)

Constraint (1a) assures that each demand is satisfied, while constraint (1b) –
that each link must support the load induced by any vector from H. Constraint
(1c) ensures non-negativity of flows (and hence of capacity reservations, provided
each link is in at least one path).

In the sequel we shall assume that the network graph G(V,E) and the set of
demands D are fixed. Then, for a given path set P and a set of traffic vectors
H, the feasible set (1) will be abbreviated by PP (H). Note that PP (H) is a
polyhedron in R|E|+|P |

+ .
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Now, we are ready to introduce a formal definition of total domination, ex-
tending the one from [6] to a set of traffic vectors H and a traffic vector h defined
for a demand set D.

Definition 1. Let P be a given set of candidate paths for D in a network with
arbitrary graph G. We say that H totally dominates h with respect to P (H �P h
in short) if, and only if, each feasible solution in PP (H) is also a feasible solution
in PP (h), i.e., PP (H) ⊆ PP (h).

(In the sequel we will skip subscript P in PP and in �P when the path set P is
fixed.)

2.2 A sufficient condition and a necessary condition for total
domination

Consider a network with an arbitrary graph G, arbitrary demand set D and the
corresponding traffic vectors H and h.

Proposition 1. ∃ ĥ ∈ conv(H), ĥ ≥ h ⇒ H �P h.

Proof. Consider a set of scalar coefficients αt ≥ 0, t ∈ T ,
∑

t∈T αt = 1 defining
the convex combination ĥ =

∑
t∈T αth

t ∈ conv(H). Let (u, f) ∈ PP (H). Then
(u, f) is also a feasible solution of (1) for the convex combination ĥ ((u, f) ∈
PP (ĥ)), because the convex combination of constraints (1b) for PP (H) with the
above defined coefficients αt, t ∈ T yields constraint (1b) defining polyhedron
PP (ĥ).

Now suppose that ĥ ≥ h. This implies that for the given (u, f) ∈ PP (ĥ),
constraint (1a) is satisfied also for PP (h) which means that (u, f) supports h. �

Fig. 1. A two-link network.

The sufficient condition for total domination formulated above is in general not
necessary, as illustrated in Fig.1. The figure shows a 3-node, 2-link graph with
three demands 13, 12, 23, and with the set of admissible paths P = {{123}, {12}, {23}}.
Assume H = {ĥ}, ĥ = (1, 0, 0) (ĥ13 = 1, ĥ12 = ĥ23 = 0), and h = (0, 1, 1)
(h13 = 0, h12 = h23 = 1). Certainly, since the network is a tree, only one flow
allocation pattern exists. It is obvious that every capacity vector u supporting
traffic vector ĥ (i.e., u ≥ (1, 1)), also supports h (and, in fact, vice versa). Then,
ĥ totally dominates h with respect to P (and vice versa). Still, it is not true
neither that ĥ ≥ h nor that h ≥ ĥ.

Below we give a (technical) property of the path set P under which the
condition ∃ ĥ ∈ conv(H), ĥ ≥ h holds is also necessary for the total domination.
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Proposition 2. Let G, H, h be as in Proposition 1 and let P =
⋃

d∈D Pd. Sup-
pose that there exists a link ê ∈ E (the so called enabling link) with the following
property:

∀ d ∈ D (∃ p ∈ Pd, ê ∈ p) ∧ (∃ p ∈ Pd, ê /∈ p), (2)

Then, if H totally dominates h wrt P , then there exists a ĥ ∈ conv(H) such that
ĥ ≥ h:

H �P h ⇒ ∃ ĥ ∈ conv(H), ĥ ≥ h. (3)

Proposition 2 is proved in [8] using the means of the LP dual theory. In the next
two subsections we will use property (2) to find a general characterization of
total domination.

2.3 Two-connected networks

Graph G(V,E) is called 2-connected if it has at least three nodes and does not
contain any cut vertex, i.e., any vertex v ∈ V such that G\v has more connected
components than G. (Below, we follow definitions and results given in [3].)

Proposition 3. Suppose that a network graph is 2-connected (or composed of
one link) and that for each demand st ∈ D its set of candidate paths is composed
of all elementary st-paths. Then

H � h ⇔ ∃ ĥ ∈ conv(H), ĥ ≥ h. (4)

Proof. 2-connected graphs enjoy the two following properties: (i) G is 2-connected
if, and only if, any two nodes v, w ∈ V are connected by two node disjoint paths
[3], and (ii) G is 2-connected if, and only if, for any two nodes v, w ∈ V and link
e ∈ E there exists an elementary path between v and w containing link e [3].

These properties imply that in a 2-connected graph each link ê ∈ E is en-
abling for any demand set D (provided Pd contains all elementary paths between
its end nodes). Consider an arbitrary demand st ∈ D. There must be a path
p ∈ Pd such that ê /∈ p. Otherwise, all elementary st-paths would contain ê,
contradicting property (i). Also, by property (ii), there must be a path p′ ∈ Pd

such that ê ∈ p′. Trivially, property (4) is valid also for graphs composed of just
one link (and its end nodes). �

2.4 General characterization of total domination

In this section we will present the main result of Section 2 – a general necessary
and sufficient condition for total domination in a network with an arbitrary con-
nected graph and path sets Pd containing all elementary paths for each demand
d ∈ D. For simplifying the considerations, we assume (without loosing general-
ity – we can assign the zero traffic volume to non-existing demands) that the
network contains demands corresponding to all node pairs, i.e., D = V |2| (A|2|

denotes the family of all two-element subsets of set A).
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A connected graph G(V,E) containing cut vertices is called separable. The
maximal induced subgraphs of G that are not separable are called blocks. A
block is either 2-connected or is formed by just one link. The blocks of a graph
are unique. Any two blocks intersect in at most one node and this node must
be a cut vertex. Two nodes s and t are in the same block if, and only if, they
are connected by a path not traversing a cut vertex. Finally, any cycle must be
contained in a block (see [3]).

Consider a network with a connected separable graph G = (V,E) and a
fixed traffic vector h. Suppose that graph G is composed of B blocks Gb =
(V b, Eb), b ∈ B, where B = {1, 2, ..., B}, and C is the set of cut vertices of G.
Clearly, each elementary path between a pair of nodes st traverses the same
sequence of blocks (the set of indices of these blocks will be denoted by B(st),
and the same sequence of cut vertices (denoted by C(st)). (Otherwise, there
would be a cycle not contained in a single block.)

We treat the blocks as separate networks with their own sets of demands Db =
(V b)|2| and the corresponding sets of candidate paths P b

d , d ∈ Db composed of
all elementary paths in Gb (P b =

⋃
d∈Db P b

d ). The traffic vector hb for each block
b ∈ B is induced by the traffic vector h. The volume hb

st of each demand st ∈ Db

is either left unchanged (when both s and t are not cut vertices) or adjusted to
account for the demands that have only one end node in the considered block
b (i.e., when s ∈ V b, t /∈ V b and b ∈ B(st)) or transit the block (i.e., when
s /∈ V b, t /∈ V b and b ∈ B(st)). More precisely:

hb
st = hst s, t ∈ V b \ C, s 6= t (5a)

hb
st = hst +

∑
{hsw : w /∈ V b, t ∈ C(sw)} s ∈ V b \ C, t ∈ V b ∩ C (5b)

hb
st = hst +

∑
{hvw : v, w /∈ V b, s, t ∈ C(vw)} s, t ∈ V b ∩ C, s 6= t. (5c)

Proposition 4. Consider a network with a connected graph G = (V,E) split
into blocks Gb, b ∈ B. Let H be a set of traffic matrices, and let h be an additional
traffic vector. For each b ∈ B, let Hb, hb denote the set of traffic vectors defined
for H and h in the way described by (5). Then,

H � h ⇔ ∀ b ∈ B ∃ ĥb ∈ conv(Hb), ĥb ≥ hb. (6)

Although Proposition 4 is quite intuitive, its detailed proof is a bit lengthy
and is omitted in this survey paper. The proof is given in [8].

In the example from Fig.1, the graph is split into two blocks with V 1 = {1, 2}
and V 2 = {2, 3}, and the adjusted traffic vectors are: ĥ1 = (1), h1 = (1), ĥ2 =
(1), h2 = (1). Hence, ĥ � h because ĥ1 � h1 on G1 and ĥ2 � h2 on G2 (and vice
versa, h � ĥ because h1 � ĥ1 on G1 and h2 � ĥ2 on G2).



On traffic domination in communication networks 7

3 Ordinary domination

3.1 Definition

Given graph G(V,E), set of demands D, and set P of candidate elementary
paths, we define a flow allocation pattern as a vector f = (fp, p ∈ P ), where
for each d ∈ D and p ∈ Pd, the entity fp represents a flow of demand d ∈ D
assigned to its path p. Note that this definition of a flow allocation pattern is a
bit different than the analogous definition in Subsection 2.1 which has involved
fractional flows while the current one involves absolute flows.

Consider a traffic vector h. We say that a capacity reservation vector u sup-
ports h if there exists a flow allocation pattern f such that (u, f) satisfies the
following linear constraints:∑

p∈Pd

fp = hd d ∈ D (7a)

∑
d∈D

∑
p∈Qed

fp ≤ ue e ∈ E (7b)

fp ≥ 0 p ∈ P. (7c)

Constraint (7a) assures that each demand is satisfied, while constraint (7b) –
that each link must support the load induced by the traffic vector h and flow f .
Constraint (7c) ensures non-negativity of flows (and hence of capacity reserva-
tions, provided each link is in at least one path).

In the sequel we shall assume that the network graph G(V,E), the set of
demands D, and the set of candidate paths P are fixed. A capacity reservation
vector u = (ue, e ∈ E) is said to support a demand vector h if, and only if, there
exists a flow pattern f such that (7) is satisfied. Then, for a given traffic vector
h, the set of all supporting capacity reservation vectors will be abbreviated by
UP (h). Note that UP (h) is a polyhedron in R|E|

+ .
A formal definition of ordinary domination, extending the one from [6] to

networks with arbitrary graphs and demand sets D is as follows.

Definition 2. Let P be the set of all elementary candidate paths for D in a
network with arbitrary graph G. We say that ĥ ordinarily dominates h (ĥ |=P h

in short) if, and only if, each element u of the set UP (ĥ) (i.e., each capacity
vector u supporting ĥ) is also an element of the set UP (h) (i.e., u supports h),
i.e., UP (ĥ) ⊆ UP (h).

(In the sequel we will skip subscript P in UP (ĥ),UP (h) and in |=P when the path
set P is fixed. Also, we will sometimes call ordinary domination just domination.)

As already mentioned in the introduction, in an incomplete graph there may
no direct links between the end nodes of some demands, making the Oriolo result
for ordinary domination not applicable. This can be seen in the example of Fig.1
where ĥ |= h, still h cannot be routed in ĥ. On the other hand, note that ĥ can
be routed in h and hence h |= ĥ.
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3.2 Necessary and sufficient condition for ordinary domination

Consider a network with an arbitrary graph G, arbitrary demand set D, a given
fixed set P of candidate paths (for example the set of all elementary paths for
all demands in D), and two traffic vectors ĥ and h defined for D. Let Π denote
the set of all vectors π = (πe, e ∈ E) such that πe ≥ 0, e ∈ E and

∑
e∈E πe = 1.

Further, let λ(π) = (λd(π), d ∈ D) denote the vector of the lengths of the
shortest paths for the demands calculated for the link weights given by π.

Proposition 5. ĥ |= h if, and only if,

∀π ∈ Π, λ(π)(ĥ− h) ≥ 0. (8)

Proof. Consider the following allocation problem related to (7) with a fixed
capacity reservation vector u.

minimize z (9a)

[λd]
∑
p∈Pd

fp = hd d ∈ D (9b)

[πe]
∑
d∈D

∑
p∈Qed

fp ≤ ue + z e ∈ E (9c)

fp ≥ 0 p ∈ P. (9d)

Certainly, capacity vector u supports h if, and only if, the optimal solution z∗

of (9) is non-positive (z∗ ≤ 0). The problem dual to (9) reads:

maximize W (λ, π) =
∑
d∈D

λdhd −
∑
e∈E

πeue (10a)

λd ≤
∑
e∈p

πe d ∈ D, p ∈ Pd (10b)

∑
e∈E

πe = 1 (10c)

πe ≥ 0 e ∈ E. (10d)

Observe, that in any optimal solution (λ∗, π∗) we have that λ∗d is equal to the
length of the shortest path of demand d ∈ D with respect to link weights π∗,
i.e., λ∗d = λd(π∗). Since the optimal value of the dual function W ∗ (W ∗ =
W (λ∗, π∗)) is equal to z∗, we deduce that capacity vector u supports h if, and
only if, the optimal solution W ∗ of (10) is non-positive (W ∗ ≤ 0), i.e., when∑

d∈D λ∗dhd ≤
∑

e∈E π∗ue or, in the vector notation, λ∗h ≤ π∗u. Because (10) is
a maximization problem and because of (10b), the last condition is equivalent
to: ∀π ∈ Π, λ(π)h ≤ πu.

Suppose that (8) is satisfied. By the above characterization, for each u ∈ U(ĥ)
we have that

∑
d∈D λdĥd ≤

∑
e∈E πeue for each π ∈ Π. By (8), λ(π∗)h ≤ λ(π∗)ĥ,

and hence λ(π∗)h ≤ π∗
eue which means that u ∈ U(h). Thus ĥ |= h.
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Now assume that ĥ |= h and take some π ∈ Π. We define a specific flow
f(π) and the corresponding capacity reservation vector u(π) ∈ U(ĥ) as follows.
For every demand d ∈ D, put the entire demand volume ĥd on one selected
path in Pd that is shortest with respect to π, and define ue(π), e ∈ E as the
resulting link loads. Consider the primal-dual solution pair (f(π), u(π); π, λ(π)).
It follows from the saddle point conditions (see for example [4]) that the primal
point (f(π), u(π)) is an optimal solution of (9), and the dual point (π, λ(π)) is an
optimal solution of (10), so λ(π)ĥ = πu(π). Since u(π) ∈ U(ĥ), by assumption we
have that u(π) ∈ U(h) and hence λ(π)h ≤ πu(π) = λ(π)ĥ. Thus, λ(π)(h−ĥ) ≤ 0
which means that (8) holds. �

It can be shown (we omit a formal proof here) that problem

minimize λ(π)(ĥ− h), π ∈ Π (11)

isNP-hard. This fact strongly suggests that the problem of determining whether
or not ĥ |= h is NP-hard as well.

3.3 Two special cases

In this section we will use the result of Proposition 5 to characterize domina-
tion in two important special cases. For the results discussed below we need an
assumption that the path lists Pd, d ∈ D contain all elementary paths between
a(d) and b(d) in the network graph G(V,E).

Case 1: ĥ directly routeable in G(V,E)

Assume that ĥ is directly routeable in G(V,E). By this we mean that when
ĥd > 0 then the network graph contains link a(d)b(d) (in other words, for any
demand d ∈ D with ĥd > 0, its end nodes a(d) and b(d) are connected by a link
in E). Define the capacity reservation vector û = (ûe, e ∈ E) as: ûe = ĥd if
e = a(d)b(d) and ĥd > 0, and ûe = 0, otherwise.

Proposition 6. ĥ |= h if, and only if, û supports h.

Proof. Suppose that ĥ |= h. Since (trivially) û supports ĥ, by Definition 2 û
supports h.

Now suppose that û supports h and consider any link metric vector π ∈
Π. For each pair of nodes v, w ∈ V define αvw as the length of the shortest
elementary path in graph G with respect to link metrics π (we can assume,
without loss of generality, that G is connected). Let π̂ = (π̂e, e ∈ E) be the vector
of link metrics given by π̂e = αvw where e = vw. Notice that π̂e ≤ πe, e ∈ E
and that λd(π) = αa(d)b(d), d ∈ D.

We will also show that λd(π̂) = αa(d)b(d), d ∈ D which means that λd(π̂) =
λd(π), d ∈ D, i.e., the lengths of the shortest paths in G calculated for metrics
π̂ do not change with respect to the lengths calculated for metrics π. To see this
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observe first that λd(π̂) ≤ λ(π) because π̂e ≤ πe, e ∈ E. Moreover, the strict
inequality λd(π̂) < λd(π) (for a d ∈ D) would imply (contrary to the definition
of λd(π)) that there exists an elementary path p between nodes a(d) and b(d)
with |p|π < λd(π) (recall that |p|π denotes the length of path p calculated for link
metrics π). Suppose that p̂ = {e1, e2, . . . , en} is a shortest path between a(d) and
b(d) with respect to metrics π̂ (|p̂|π̂ = λd(π̂)). Let p1, p2, . . . , pn be a sequence
of elementary paths in graph G between the end nodes of links e1, e2, . . . , en,
respectively, with |pi|π = π̂ei

, i = 1, 2, . . . , n. If λd(π̂) < λd(π) then the concate-
nation of the paths p1, p2, . . . , pn would contain an elementary path p between
a(d) and b(d) with |p|π ≤ λd(π̂). Hence, the strict inequality λd(π̂) < λ(π) would
lead to a contradiction.

By assumption û supports h which means that λ(π̂)h ≤ π̂û (the fact that π̂
is not normalized, i.e., that

∑
e∈E π̂e can be less than 1, does not matter here).

Hence, since π̂û = λ(π)ĥ we finally get λ(π)h ≤ λ(π)ĥ, and thus, by Proposition
5, ĥ |= h. �

The result of Proposition 6 was first proven in [6], but only for fully connected
network graphs.

Case 2: Ring networks

An important class of communication networks are ring networks whose graph
G(V,E) forms a cycle, i.e., a graph with n vertices (network nodes) and n edges
(network links), and with V = {v0, v1, . . . , vn−1} and E = {e0, e1, . . . , en−1}
where ei = vivi+1, i = 0, 1, . . . , n− 1 (in arithmetic modulo n).

We say that demand d ∈ D crosses an edge-cut {ei, ej} if one node of demand
d is in vj+1, vj+2, . . . , vi and the other node is in vi+1, vi+2, . . . , vj . Let h(ei, ej)
denote the load of cut {ei, ej} induced by demand vector h, i.e., the sum of
volumes hd for all demands d ∈ D that cross the considered cut.

A theorem of Okamura and Seymour [5], when specialized to a cycle G,
asserts that u supports h if, and only if, the edge-cut condition, that is,

∀ 0 ≤ i, j < n, h(ei, ej) ≤ uei
+ uej

(12)

holds (see [10]). Let ĥ(ei, ej) denote the load of cut {ei, ej} induced by demand
vector ĥ.

Proposition 7. ĥ |= h if, and only if,

∀ 0 ≤ i, j < n, ĥ(ei, ej) ≥ h(ei, ej). (13)

Proof. Implication ⇐ follows directly form the edge cut condition. Indeed, u ∈
U(ĥ) means that

∀ 0 ≤ i, j < n, ĥ(ei, ej) ≤ uei
+ uej

. (14)

Hence, by assumption (13), property (12) holds, that is, u ∈ U(h).
The inverse implication can be proved analogously to the corresponding im-

plication in Proposition 5. Let π(ei, ej) ∈ Π denote the vector of multipliers
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corresponding to cut {ei, ej} defined as follows: πe(ei, ej) = 1
2 if e = ei or

e = ej , and πe(ei, ej) = 0, otherwise. Observe that for a cut {ei, ej}, inequality
in (12) can equivalently be written as

λ(π(ei, ej))h ≤ π(ei, ej)u. (15)

Now assume that ĥ |= h and consider a cut {ei, ej}. We define a capacity reser-
vation vector u(ei, ej) ∈ U(ĥ) as follows. For every demand d ∈ D, put the
entire demand volume ĥd on a shortest path with respect to π(ei, ej) and for
each e ∈ E define ue(ei, ej) as the resulting link load. Note that the volumes
ĥd of the demands that do not cross cut {ei, ej} do not contribute to uei

(ei, ej)
nor uej

(ei, ej) since, by the definition of π(ei, ej), their shortest paths are of
length equal to 0. By the same argument the demands that cross the cut have
the shortest path lengths equal to 1

2 , and their demand volumes contribute to
uei

(ei, ej) + uej
(ei, ej). This means that ĥ(ei, ej) = uei

(ei, ej) + uej
(ei, ej) and

hence λ(π(ei, ej))ĥ = π(ei, ej)u(ei, ej). It follows that π(ei, ej) is the optimal
solution of the dual problem (10) for the capacity vector u(ei, ej). By assump-
tion, the capacity reservation vector u(ei, ej) supports also h so for any π ∈ Π,
λ(π)h ≤ πu(ei, ej). Thus, we finally see that

1
2
h(ei, ej) = λ(π(ei, ej))h ≤ π(ei, ej)u(ei, ej) = λ(π(ei, ej))ĥ =

1
2
ĥ(ei, ej) (16)

which means that ĥ(ei, ej) ≥ h(ei, ej). �

4 Concluding remarks

In the paper we have discussed necessary and sufficient (n-s) conditions for total
and ordinary traffic domination. For the first case (total domination) we have
presented a general n-s condition which can be easily checked in polynomial
time. For the second case we have found an n-s condition that gives a strong
evidence that checking for ordinary domination is NP-hard, except for the two
special cases we have been able to find. In fact, devising effective approximation
methods for checking for ordinary domination seems to be an important and
challenging research direction.

It should be noted that in Section 2 the results for total domination are given
for undirected network graphs are not generally applicable to directed (even
to bi-directed) graphs. On the contrary, the results for ordinary domination
presented in Proposition 5 and in Proposition 6 are valid for both undirected
and directed network graphs.
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