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Abstract The vast literature on the wireless sensor research community contains
many valuable proposals for managing energy consumption, the most important
factor that determines sensors lifetime. Interesting researches have been facing this
requirement by focusing on the extension of the entire network lifetime: either by
switching between node states (active, sleep), or by using energy efficient routing.
We argue that a better extension of the network lifetime can be obtained if an effi-
cient combination of management mechanisms can be performed at the energy of
each single sensor and at the load distribution over the network. Considering these
two accuracy levels (i.e., node and network), this paper presents a new approach
that uses cost functions to choose energy efficient routes. In particular, by mak-
ing different energy considerations at a node level, our approach distributes routing
load, avoiding thus, energy-compromised hotspots that may cause network discon-
nections. The proposed cost functions have completely decentralized and adaptive
behavior and take into consideration: the end-to-end energy consumption, the re-
maining energy of nodes, and the number of transmissions a node can make before
its energy depletion. Our simulation results show that, though slightly increasing
path lengths from sensor to sink nodes, the proposed scheme (1) improves signifi-
cantly the network lifetime for different neighborhood densities degrees, while (2)
preserves network connectivity for a longer period of time.

1 Introduction

Context. Self-configuring wireless sensors are revolutionizing the way to integrate
computing in our daily environment. This is mainly due the fact that they make pos-
sible to gather and to process information in ways not previously possible [7]. Be-
side this feature, they include data accuracy, flexibility, cost effectiveness, and ease
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of deployment characteristics. As a consequence, sensor-based networks play an im-
portant role in the design of applications whose aim is surveillance, data-gathering,
or monitoring. It consists in deploying a large number of sensors to execute a deter-
mined task in a specified geographic area. The task can be the monitoring of specific
events or the tracking of targets within the area of interest. Sensor-based networks
have thus, attracted the attention of civil, medical, and military domains, justifying
the numerous research in the wireless sensor area.

It is usual to consider application scenarios where sensors are deployed in regions
of difficult access, and/or human intervention is not feasible. In this scenarios, self-
organization is a particularly important attribute for the autonomy dimension of the
network. This requires the network to be able to organize/configure by its own self
in order to solve problems such as routing, load balancing, or energy consumption.

Motivation. Despite the recent advances in electronics, numerous constraints are
still imposed on sensors devices and especially on their energy. This fact makes
the proposal of energy optimization mechanisms an important requirement. In this
context, an important question raises: how energy consumption can be managed in
order to increase network lifetime? This is the topic addressed in the paper.

The vast literature on the wireless sensor research community contains many
valuable proposals for managing energy consumption. Recently, interesting re-
searches have been facing this requirement by focusing on the extension of the entire
network lifetime. In a global point of view, these researches :

• switch nodes’ energy level between sleep and awake states [4, 2, 6, 15, 11] or
• by keeping nodes in the active state, perform power control [9, 3, 1] or energy-

aware routing [10, 13, 8, 5, 14, 16].

Despite having clearly defined outlines and presented good solutions, those
works deal with the network lifetime’s extension problem (1) by reducing the energy
consumption at each single sensor (i.e., at a node accuracy level) or (2) by assuring
a homogeneous load distribution over the network (i.e., at a network accuracy level).
Section 2 gives a detailed review of these works.

Contributions. Instead, our approach takes into account both: the overall energy
consumption and the load distribution over the network. By considering those two
accuracy levels (i.e., at the node and at the network scope), this paper presents a
new approach that uses cost functions to determine energy efficient routes. By mak-
ing different energy considerations at a node level, our approach distributes routing
load, avoiding thus, energy-compromised hotspots that may cause network discon-
nections. In addition, the end-to-end energy consumed when sending a packet is
minimized. So, different from the previous approaches, cost functions group what
is needed to increase network lifetime.

In summary, the contributions of this paper are twofold:

• an intelligent method allowing to (i) determine energy efficient paths between
nodes in the network, (ii) distribute routing load over the network, and (iii) avoid
energy-compromised hotspots nodes;
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• a set of self-configuring cost functions used to determine energy efficient routes
and to optimize energy consumption.

The proposed cost functions have completely decentralized and adaptive behav-
iors and take into consideration: the end-to-end energy consumption, the remaining
energy of nodes, and the number of transmissions a node can make before its en-
ergy depletion. Our simulation results show that, though slightly increasing path
lengths from sensor to sink nodes, the proposed scheme (1) improves significantly
the network lifetime for different neighborhood densities degrees, while (2) pre-
serves network connectivity for a longer period of time.

Outline. The paper is organized as follows. In Section 2, we present a review of the
main related works by providing a general classification of existent approaches. Af-
ter introducing our system model in Section 3, we present our proposal by introduc-
ing the cost functions in Section 4. Performance results are presented in Section 5.
Finally, Section 6 concludes this paper and discusses future works.

2 Related Work

This section discusses the works in the literature related to the energy management
in wireless sensor networks. Moreover, at the following sub-sections, we provide a
general classification of these works into three different categories. These categories
are the following: energy efficient routing, power control, and the management of
nodes activity by state switching.

2.1 Energy efficient routing

We discuss here the works that, in order to increase the network lifetime, proposes
to perform routing by considering the energy consumed by nodes in the network. In
particular, they intend to determine paths that optimize this energy.

In [10], Kwon et al. propose a routing protocol to find a route that minimizes the
energy consumption of a flow. They thus calculate, for each link in the network, the
increment ∆E in energy dissipation resulting from the routing of a flow. A route be-
tween two nodes is calculated using a shortest path algorithm with the increment ∆E
as the weight of the links. This proposal, however, does not guarantee an end-to-end
energy optimization, as one of our cost functions do (presented in Section 4.2.1),
and does not take into account the remaining energy of nodes (described in Sec-
tion 4.2.2).

Authors in [13, 5], propose a reactive and multi-routing protocol that uses the
remaining energy in the node to improve network lifetime. In [13], routes are se-
lected using a cost that depends on the remaining energy of intermediate nodes. The
probability of using a route for a flow is inversely proportional to its cost. Thus,
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contrarily to our approach, authors do not take into account the energy dissipated
by interferences, which makes it not realistic. In [5], each node constructs a vector
containing the remaining energy of every intermediate node, being a route consid-
ered shorter than another if it contains a node with minimal remaining energy. An
energy efficient route is the longest route that avoids using nodes with low energy.
This method requires, however, a centralized management in order to be properly
implemented, which is not always feasible in wireless sensor networks.

In [16], authors introduce a query-based protocol that searches for the route with
nodes having maximal remaining energy. Therefore, a source node sends a route
request with an energy threshold, all intermediate nodes with higher energy reply
to this request. If no route is found, the threshold is decreased and the same proce-
dure is repeated until a route is found. This protocol presents a problem when the
threshold is not properly chosen, which consequently generates multiple flooding.

2.2 Power control

Some approaches deal with the problem of increasing the network lifetime by
changing each node transmission power. They then look for the decrease of the
consumed energy in data transmission, while assuring network connectivity.

In [9], authors show that reducing the transmission power of nodes will not neces-
sarily minimize the energy consumption, since it will increase the number of hops.
They proved that at a certain radius range, the energy consumed for communica-
tion is minimal. Nevertheless, the optimal radius for global diffusion differs from
the optimal radius for point to point communications. Changing the radius for each
communication type makes this solution difficult to implement.

In [3] the paper presents an algorithm to obtain a strongly connected topology by
adjusting the transmission power of every node in the network. The Hitch-Hiking
mechanism is used for that. This approach enables every node to locally choose
its transmission power by using the available information about its 1- and 2-hop
neighbors.

In [1] the authors use a closed loop for power control. For this, the destination
node embeds in each answer (CTS for RTS or Acks for DATA) the reception power
and the minimal threshold required for a good reception. The source receiving the
response can then adjust its energy. This approach presents a problem when the
MAC layer does not receive a response for a CTS or Ack due to an interference: the
transmission power of the source will be incremented without any real need.

2.3 Management of nodes activity by state switching

The approaches in this category propose to alternate the activity level of nodes into
sleep or awake modes.
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In [2], the approach divides the network into disjoint set of sensors such that ev-
ery set covers all the monitored targets. These sets are activated successively such
that at any instant, one set is active and all the other sets are in the sleep mode.
Although to significantly improve network’s lifetime, it requires a centralized man-
agement.

In [4] the authors use a localized method to switch the nodes state between active
and sleep. For this, the proposed method chooses a dominant set of nodes that are
not energy constrained to stay active and all the other nodes are in the sleep state.
This set must keep the network connected and the surveillance zone covered. The
periodic execution of the algorithm makes the dominant set dynamic and avoids that
certain nodes loose their energy early. This methods requires a good knowledge of
the overall network. In a similar way, authors in [11] propose to switch nodes en-
ergy state into sleep, forwarding, or sensing-only. The proposed method relies on a
distributed probing approach and on the redundancy resolution of sensors for get-
ting energy optimizations. Contrarily to [4], this method does not require any global
network knowledge, but, for some particular cases, it fails to guarantee network
connectivity.

In [12] every node detecting that two of his neighbors cannot communicate using
an active node, becomes active. The duration of the active state is subject to the
remaining energy of the node and the number of nodes it can connect together. This
rule permits the node to switch between the active and the sleep state and optimizes
the energy consumption. This method requires nodes to change their neighborhood
lists in order to correctly activate nodes.

In [15] the network is divided into virtual grids using node positions given by a
GPS. All nodes in a grid are equivalent in terms of routing and packet forwarding.
A node in the active or discovery state becomes inactive when it determines that
another node in the same grid can do the routing. The lifetime of the network is
optimized by activating one node in each grid. The choice of this node is based on
its remaining energy. This method requires a GPS embedded in every node which is
unfeasible in large scale networks.

3 System Model

We will target a general application scenario where the n sensor nodes are randomly
deployed in a zone of interest difficult to access and/or where human intervention is
not feasible. The considered scenario has then, a finite set of n nodes, each uniquely
identified. We consider that sensors form at the begging, a connected network.

Nodes are all equal, in the sense that they have the same attributes, i.e. compu-
tational, memory, and communication capabilities. We do not consider Byzantine
failures, so nodes may only go out of the system when their battery goes off. Re-
garding energy, a node may only be in the active state. That is all the nodes in the
network are active until their depletion and they all have the same energy when they
are deployed.
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Each node has the same radio communication range r that allows it to commu-
nicate by broadcasting messages. Thus, a node i is able to directly communicate
wirelessly with a subset of nodes that are located in the transmission range ri, and
no obstacles interfere with the communication – we refer to that subset as the neigh-
bors of the node i. We assume bidirectional communications: for any nodes i and
j, if i can communicate with j, then j can communicate with i. We consider that
sensing and communication ranges are equal. No synchronization is required.

Table 1 Parameters summary.
Parameter Description

ET X Energy consumed at a packet’s transmission by source nodes.
ERX Energy consumed at a packet’s reception by 1-hop neighbors.
EI Energy consumed due the interference caused by a 2-hop neighbor

transmission.
Er(i) Remaining energy at the node i.

Our energy model uses the parameters described at the Table 1. In particular, we
consider a 2-hop interference model. When a node i transmits a packet, it consumes
an energy ET X to code and transmit the packet. All the nodes existing 1-hop away
from the emitting node i, i.e. neighborsi, receive the packet and decode it. The nodes
in neighborsi that are not the destination, receive the packet, consume ERX energy
to decode it, and then, discard the packet. The 2-hop neighbors of the transmitting
node, receive an non-intelligible signal. This reception makes these nodes to con-
sumes EI energy.

4 Our proposal

In sensor network, the nodes use batteries with limited energy as their source of
energy. In large-scale sensor networks, nodes are often deployed in hostile envi-
ronment. If nodes batteries deplete, the possibility of their replacement is almost
impossible. Moreover, in case the nodes are accessible, replacing their battery is
not always feasible if large networks are considered. In this case, the optimization
of nodes’ energy consumption is essential to extend network’s lifetime. To change
nodes states between active and sleep seems interesting but presents a major chal-
lenge in decentralized systems like WSNs, in other words: how to determine the duty
cycle of nodes and still guarantee connectivity without requiring a global knowledge
of the network?

Instead, our proposal considers that nodes are always in the active state. In addi-
tion, to optimize the energy consumption in the network, our proposal implements
an energy efficient routing that chooses routes based on energy-related weight as-
sociated to links. At the following, we briefly describe this routing mechanism and
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then provide a detailed description of how links are associated to energy-related
weight.

4.1 Energy efficient routing

The proposed routing algorithm is in fact, a modified shortest path algorithm, be-
ing energy efficiency gotten through energy-based cost functions. The values given
by these functions represent the weight of the link between a node and his 1-hop
neighbors. Thus, once weight of links are computed, routing is performed by fol-
lowing the routes that minimizes the total energy consumed to send a packet from
the source to the destination.

The next sections introduce three different cost functions to associate weights to
links. Each of them considers distinct but dependent nodes’ energy-related param-
eters. Since the links’ weights are updated each time a transmission is performed,
routing load is distributed among links that present better energy levels. In addi-
tion, energy-compromised hot spots are detected and consequently avoided, before
packet transmissions.

4.2 Energy-based cost functions

This section presents and discusses the three proposed cost functions, named:

• Eθ1(i): considers the amount of energy consumed by a emitting node i and its 1-
and 2-hop neighbors, when i performs a packet’s transmission.

• Eθ2(i): considers the remaining energy of node i and its 1- and 2-hop neighbors.
• ω(i): considers the maximal number of transmissions that node i can perform

before node i, or one of its 1- or 2-hop neighbors dies.

4.2.1 Considering consumed energy – 1st cost function:

When a node transmits, all its 1-hop neighbors will consume energy to decode the
packet. Therefore, energy consumption for a transmission is proportional to the
number of neighbors. Having this in mind, we introduces cost function Eθ1 which
avoids the participation of nodes with a lot of neighbors in the routing process. This
is due the fact that their energy consumption after a transmission, may represent a
significant amount for the network lifetime. thus, This Eθ1 is used to assign weights
between a node and his 1-hop neighbors: the weight of the link (i, j) between i and
any 1-hop neighbor j is equal to Eθ1 of node i. Eθ1 is thus, defined as:
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Eθ1(i) = ET X + ∑
n1∈N1(i)

ERX + ∑
n2∈N2(i)

EI (1)

, where

• N1(i) is the set of 1-hop neighbors of node i;
• N2(i) is the set of 2-hop neighbors of node i;
• and ET X , ERX , and EI are described at the Table 1.

In fact, cost function Eθ1 calculates the impact a node’s transmission will have
on the energy of the network, i.e., the amount of energy consumed by the emitting
node and his 1- and 2-hop neighbors.

One important point to remark here is that the total energy consumed for routing
a packet p from a source to a final destination is additive, representing the amount
of energy consumed by the network to route the packet p. Thus, since Eθ1 is the
energy consumed for a packet’s transmission, the whole energy consumed to route
the packet to its final destination is the sum of the link weights (Eθ1 ) forming the
route. Therefore, a simple shortest path algorithm using Eθ1 as a metric, can easily
find an energy efficient route. The weight of a route between two nodes exchanging
packets is the sum of intermediate links weight forming this route. The route having
a minimal sum of weights is then, the optimal route given by the modified shortest
path algorithm.

Moreover, Eθ1 enables the shortest path algorithm to avoid nodes that, if used for
routing, will waste a lot of energy in the network. Looking at the formula of Eθ1 , it
is evident that Eθ1 gives a high weight for the nodes with a lot of neighbors, which
can be seen in the following part of the formula: ∑n1∈N1(i) ERX and ∑n2∈N2(i) EI . In a
dense area, the weight of these two factors will be high and the routing protocol will
not route through nodes with high neighbors’ density. In this situation, the routing is
biased toward using nodes deployed at the borders because they possess a minimal
number of neighbors which reduces energy consumption in the network.

Despite having the interesting property of minimizing network disconnections,
the presented cost function does not consider the remaining energy of nodes. In par-
ticular, Eθ1 only considers the energy consumed for transmission ET X . This means
that a node with a remaining energy that is insufficient for performing one packet’s
transmission can still be selected as next-hop.

To deal with this problem, we use the remaining energy of the 1-hop neighbors
and Eθ1 of the source node to calculate the weight of a link. Thus, our new approach
to assign weights for links is the following: the weight of a link (i, j) is equal to c f ×
Eθ1 (i)
Er( j) where c f is a weighting factor and Er( j) is the remaining energy of the 1-hop

neighbor j. This approach permits the routing protocol to distinguish between two
neighbors of i having different energy remaining: the neighbor with greater energy
remaining will form the link with i. The new approach let the routing protocol avoids
the nodes with low neighbors density (i.e. small Eθ1 )and remaining energy.

Next section presents the second cost function Eθ2 , which explicitly considers
the reaming energy in the cost function.
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4.2.2 Considering remaining energy – 2nd cost function:

The second cost function Eθ2 takes into account the remaining energy of a node and
of its 1- and 2-hop neighbors. The cost function Eθ2 is as follows:

Eθ2(i) = min{(Er(i)−ET X ),
minn1∈N1(i)(Er(n1)−ERX )
minn2∈N2(i)(Er(n2)−EI)}

(2)

, where

• Er(i) is the remaining energy of the node i emitting the packet;
• Er(n1), Er(n2) are the remaining energy of the 1-hop and 2-hop neighbors af-

fected by the transmission of node i;
• ET X , ERX , and EI are the consumed energy as described at the Table 1.

As for the 1st cost function, the function Eθ2 is used to calculate links’ weights
between a node and his 1-hop neighbors, thus, for a link (i, j) where j can represent
any 1-hop neighbor of i, the weight is equal to Eθ2(i). By considering the emitting
node’s remaining energy after a transmission, i.e., (Er(i)−ET X ), we avoid the case
where a node with a minimum remaining energy participates in the routing of a
packet. By consequence, only links with the highest weights (i.e., nodes with highest
level of remaining energy) will compose the determined route. The others factors
of the cost function (2) gives the minimum remaining energy at 1− and 2− hop
neighbors after a transmission.

In summary, the use of Eθ2 to assign a weight for a link between two nodes,
allows us to find a route that uses nodes with a high level remaining energy. This
insures an homogeneous consumption of nodes energy, preventing the case where
some nodes deplete their batteries before others. Nevertheless, Eθ2 does not consider
neither the overall energy consumption of the route selected by the algorithm nor
the number of hops. As a consequence, it may result in longer routes, consuming by
consequence, a high level of energy for the routing of a packet.

Since the remaining energy is not an additive metric, routes that maximizes the
sum of the weights resulted from Eθ2 can not be considered at the energy efficient
route’s computation. Therefore, a shortest-widest route algorithm (widest in term of
remaining energy) is used.

The optimal route between two nodes is the route where the minimum remaining
energy among intermediate nodes is maximal. To find the optimal route, a modi-
fied shortest-widest route algorithm is used. The shortest widest algorithm chooses
among all the routes between a source and a destination, the one where the minimum
remaining energies of intermediate nodes is maximal. More specifically, the weight
of a route is the minimum weight among intermediate links connecting the source to
the destination and the shortest-widest route is the route with the maximum weight.
If multiple routes have the same maximum weight, the shortest-widest route algo-
rithm chooses the one with the minimum number of hops. In this way, the algorithm
tries to minimize the number of hops from the source to the destination and still
keeps a maximal gain in remaining energy.
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Despite this, the number of hops is not considered at the weight computation of
Eθ2 . This imposes long routes to the shortest-widest route algorithm. Longer routes
result in more transmissions in the network which increase the energy consumption
and consume the remaining energy of nodes.

The next section introduces a third cost function that tries to solve this problem.

4.2.3 Considering number of transmissions – 3rd cost function:

Despite to also consider the remaining energy of nodes, the third cost function ω(i)
uses a strategy different from the previous functions. ω(i) calculates the weight of
a link (i, j) between two nodes as following:

ω(i) = min{Er(i)
ET X

,

minn1∈N1(i)
Er(n1)

ERX

minn2∈N2(i)
Er(n2)

EI
}

(3)

, where Er(x), ET X , ERX , and EI represent the energy level as previously explained
for the Equation 2.

ω(i) uses the ratio Er(i)
ET X

to determine the remaining energy level of a node. Thus,

besides indicating the energy of the node, the ratio Er(i)
ET X

also represents the maximal
number of transmissions that the node can perform. For example, a ratio equal to
n means that the node remaining energy is n×ET X and that it can still transmit n
packets before having its battery off. In the same way, the ratio Er(n1)

ERX
indicates the

number of packets a node can receive before its depletion . And finally, the ratio
Er(i)

EI
determines the number of non-intelligible packets a node can receive before

depleting all his energy.
Combining these three ratios and computing their minimum will give the ω(i)

metric. The final result of this cost function is then, to give the minimum number of
transmissions a node can execute before it or a node in its 1- or 2-hop neighborhood
looses all their energy.

The weight of a route between two nodes is thus, the minimum weight among in-
termediate nodes forming this route. As described in Section 4.2.2, to find an energy
efficient route between a source and a destination, we use the modified shortest-
widest route algorithm with ω(i) as the cost function. The use of ω(i) allows an
homogeneous load distribution over the network by avoiding nodes with low re-
maining energy.

Nevertheless, ω(i) does not consider the energy consumed to route a packet. It
only insures an homogeneous energy consumption in order to prevent the deple-
tion of some nodes’ batteries before others. Thus, like the previous cost function
Eθ2 , ω(i) will give routes with a significant remaining energy but will not take into
consideration the energy consumption for routing packets from the source to the
destination.
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5 Performance evaluation

We have performed some experiments by simulation in order to better evaluate the
proposed cost functions. In our experiments, we use a homemade C++ simulator.
Our simulator takes into consideration the energy consumed by a node due to inter-
ferences, in particular, the energy consumed by the 2-hop neighbors of an emitting
node. For every experiment, the network is composed of 20, 50, 70, 100, 200, 300
and 400 fixed nodes randomly distributed over a square area of 100 meters on a
side. The detection range of a node is 20 meters and all nodes possess the same
initial power. We consider that at any time only one event can occur in the network.
The model of interference is the one described in Section 3.

Our simulator, is a discrete time-based engine in which the network lifetime is
considered as a series of rounds. A round represents the arrival of an event in the
network which is implemented by the routing of the packet generated by a source
to a destination. We consider that all nodes have the same initial remaining energy
estimated to 5000 unities (u). The power consumption for each node state is shown
in Table 2. A single event is generated per round of simulation over the network
and no wireless routing protocol is implemented. To evaluate the connectivity of
the network, we choose arbitrarily a source and a destination and try to find a route
between these two nodes. The energy of the nodes in the network is updated after
the routing of each packet. The simulation stops when the first node in the network
depletes its energy.

Table 2 Energy consumption

Node state Energy consumption
Transmission 1.3u

Reception 0.9u
Interference 0.4u

Figure 1 compares the different cost functions with Dijkstra’s algorithm. The
figure shows for different network sizes, the number of round a network can support
before the depletion of the first node. We vary the number of nodes in the network
between 20,50,70,100,200,300,400, which represents different nodes densities.

The results show that for all node densities, the shortest path algorithm gives
low performance compared to the results obtained with Eθ1 . This is expected be-
cause Eθ1 finds the route that consumes the minimum energy in contradiction with
Dijkstra which minimizes the number of hops. Since Dijkstra’s algorithm uses the
minimal number of hops to attend a destination, it tends to put the major load on the
nodes situated in the center of the network. Consequently, this depletes the energy
of nodes located in dense regions, violating the homogeneous distribution of the en-
ergy consumption and increasing the probability of network partition. Instead, Eθ1
increases the lifetime of the network by:
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Fig. 1 Network lifetime with different cost functions and node densities.

• avoiding nodes that make the network consumes a lot of energy (nodes with large
number of neighbors);

• minimizing the sum of the energy used to route the packet from source to desti-
nation.

For low node density (N = 20,50,70,100,200), it can also be observed that Eθ2
and ω(i) slightly increase the lifetime of the network when compared to Dijkstra.
In addition, for a very low node density (i.e., for N = 20), Eθ2 and ω(i) surpass Eθ1 .

Since Eθ2 and ω(i) use the remaining energy in the calculation of links’ weights,
the network load is distributed over nodes with high remaining energies. This only
increases the lifetime in low dense networks because the extend in routes length
is not significant. For high node density (i.e., for N = 100,200,300,400) the route
length increases dramatically (as shown in Figure 2), which impacts the energy con-
sumption in the network and decreases its lifetime.

Figures 2 and 3 show the average number of hops and the average consumed en-
ergy per route for different nodes densities. The figures show high values (hop,energyconsumed)for
Eθ2 and ω(i) when the network size increases. This explains why they have a life-
time close to Dijkstra, as shows Figure 1.

More specifically, in Figure 2, for N = 400, the number of hops for Eθ2 and
ω(i) is very high compared to Dijkstra, which by consequence, explains the high
consumed energy showed in Figure 3 and decreases the lifetime of the network.
Therefore, it can be concluded that these two cost functions are better adapted for
networks with a small number of nodes. We have, however, verified that contrarily
to Dijkstra where the first node to die is in the center of the network (consequently,
in a dense region), for these two cost functions, the first node is closer to the border
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or on the border of the network. This is an interesting property to be considered,
specially in cases where network lifetime is considered as the maximum operational
time of the network before the first disconnection with any sink node happens.
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All these analysis lead us to the following conclusion: Eθ1 gives good results
but does not explicitly take into account the remaining energy of the nodes. Adding
the remaining energy of the node in the cost function avoids nodes depletion. Nev-
ertheless, cost function Eθ2 gives poor performance in terms of network lifetime
compared to the shortest path algorithm. Moreover, since the cost functions Eθ2 and
ω(i) use the shortest-widest algorithm to calculate the route between a source and a
destination, it results in long routes that dramatically increase the energy consump-
tion.

The results given by the cost function ω(i) prove that despite preventing the
depletion of nodes, the network lifetime is increased slightly and only for certain
node densities compared to the network using Dijkstra’s algorithm. ω(i) takes into
consideration:

• The remaining energy of a node by using the ratio of the residual energy and the
one needed for a transmission

• The remaining energy of a 1-hop neighbor by using the ratio of the energy of
1-hop neighbors divided by the energy needed for a good reception.

• The remaining energy of a 2-hop neighbor by using the ratio of the energy of
2-hop neighbors divided by the energy needed for decoding a non-intelligible
signal

, and chooses the minimum among them. This efficiently prevents node depletion.
Nevertheless, the results in Figure 3 indicate that a limit must be introduced on

the amount of energy consumed when choosing a route. We can notice this for
N = 400, where the energy consumption per route is very high when compared to
Dijkstra’s algorithm. The function ω(i) presents the same disadvantage as the 2nd
cost function because they both use the shortest-widest algorithm to find a route. In
order to choose the route with the maximum of the minimum ω(i) among all paths,
this algorithm tends to choose longer routes consuming more energy.

By benefiting from the results given by our simulations, we can see that insuring
a minimal number of hops per route is crucial for extending the lifetime of the
network. Therefore, we will intend to calculate the route between the source and the
destination using multiple constraints. A good improvement would be to combine
Eθ1 with the minimization of the number of hops in the calculation of routes.

6 Conclusion and future work

This paper presented an approach to distribute the routing loads in the network,
avoiding thus, the use of energy-compromised hotspots that may cause network
disconnections. A modified shortest path algorithm is proposed, where energy ef-
ficiency is gotten through energy-based cost functions that assigns energy-related
weights to links in the network. Three cost functions were presented and evaluated
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by simulations. Simulation results helped us to better understand the behavior of
each proposed function, and by consequence, to find future directions.

Our future work is based on the results of our simulations. The first cost func-
tion reduces the energy consumption considerably and increases network lifetime.
Therefore, we will use this cost function combined with another constraint on the
number of hops that seems very crucial to extend network lifetime. In particular, we
will use the cost function Eθ1 to calculate the weight of the link of a route, while
minimizing at the same time the number of hops of this route. This will preserve at
the same time the residual energy without using long route that consumes a lot of
energy.

We will also implement a method using three constraints. Thus, in future work,
we intend to solve the following problem: to minimize the energy consumption to
route a packet from the source to the destination while at the same time (1) to reduce
the number of hops between the source and the destination and (2) to maximize the
residual energy of intermediate nodes.
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