
  

A Token Based Key Distribution Protocol 
for Closed Group Meetings  

Fuwen Liu, Hartmut Koenig 
Brandenburg University of Technology Cottbus 

Department of Computer Science 
PF 10 33 44, 03013 Cottbus, Germany 
{ lfw,koenig} @informatik.tu-cottbus.de  

Abstract. Many emerging interactive and collaborative applications use the 
peer-to-peer paradigm nowadays. In every-day life peer-to-peer meetings of 
small groups are dominant, e.g. for business talks. Confidentiality is of prim-
ary concern in this context to provide group privacy. To assure confidentiality 
the partners have to agree upon a secret group key for encrypting their commu-
nication. This requires a secure distributed group key exchange protocol which 
assures that only active, uniquely authenticated group members know the cur-
rent session key. In this paper we present a novel distributed key distribution 
protocol, called TKD, to efficiently support the key renewal in small dynamic 
peer groups. Performance comparisons show that TKD has a lower key re-
freshment delay compared to existing key exchange protocols.  

1 Introduction 

Nowadays modern group oriented applications tend to apply the peer-to-peer para-
digm to be independent of a centralized group server representing a single point of 
failure. Decentralized managed groups are more flexible. They better support sponta-
neity and mobility to ad hoc set up meetings at varying locations. Such settings 
though make new demands on group security. Especially applications such as audio/ 
video conferences have to provide group privacy and data integrity if they are de-
ployed in business meetings.  
    In order to assure confidentiality in a meeting the partners have to agree upon a 
common secret key for encrypting their communication. It is intuitive that a decen-
tralized key management protocol in which members themselves manage the group 
key should be deployed in peer-to-peer systems. In particular, real-time settings 
strongly require efficient decentralized key exchange protocols to minimize the inter-
ference period in group communication caused by the key refreshment, because in 
the asynchronous Internet hosts are usually unable to synchronously update their 
group key [1, 2].  
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   In this paper we present a novel distributed key distribution protocol, called TKD 
(token based key distribution) to efficiently support the key renewal in small dy-
namic peer groups. We focus on closed dynamic peer groups of less than 100 par-
ticipants here. The term closed indicates in this context that only current group mem-
bers are allowed to send messages to the group. The entrance into the meeting is by 
invitation like oral or written invitations in every-day life. Many of these meetings 
such as business talks, project meetings, consultations, teleseminars, multi-party 
games, and others have usually only a small number of participants. Larger group 
meetings are usually managed in a hierarchical way rather than peer-to-peer [26]. 
However, small group peer-to-peer meetings are the dominant kind of meeting in 
every-day life. Simple and efficient features are required for their implementation on 
the Internet.  

The paper is organized as follows. After addressing related work in Section 2 we 
describe the principle of the TKD protocol in Section 3. Next, Section 4 evaluates its 
performance compared to other key exchange protocols. In Section 5 we sketch how 
TKD fulfills the security demands. Some final remarks conclude the paper.  

2 Related work 

Group key management protocols can be generally classified into centralized and 
distributed protocols [3] depending on the fact whether the group key renewal is 
solely managed by a single entity (e.g. key server) or collaboratively performed by 
the group members themselves.  

The Group Key Management Protocol (GKMP) is the simplest centralized ap-
proach used for the group key management [4]. The key server agrees upon a secret 
key with each group member. It delivers the new group key to each member en-
crypted with the corresponding secret key whenever required. This scheme is not 
efficient, because it requires O(n) messages and O(n) encryption cost for a rekeying 
event. Wong et al. proposed the Logical Key Hierarchy (LKH) protocol [5] which 
reduces the number of rekeying messages and the number of encryption from O(n) in 
GKMP to O(log n). In this scheme the key server maintains a tree of keys so that for 
each group key refreshment the key server needs only to change the keys on the path 
from an affected leaf to the root. It is worth to mention that the rekeying efficiency of 
LKH mainly relies on a balanced key tree. After many rekeying operations the key 
tree may become imbalanced. To keep the efficiency of LKH it is necessary to rebal-
ance the key tree [6].   
    Distributed group key management protocols can be divided into two groups: 
group key agreement and group key distribution protocols [7]. Group key agreement 
protocols are based on the original two-party Diffie-Hellman key exchange protocol 
[8]. Their basic idea is that each group member has to contribute a share to generate 
the group key. When the group membership changes, a group member is selected to 
compute new intermediate keys and distribute them to the group. Based on these 
intermediate keys and its own share each group member can independently compute 
the group key. Examples of such protocols are BD [9], CLIQUES [10], and TGDH 
[11]. The latter proved to be the most efficient one among these protocols related to 
computational and communication overhead [7]. For each group key renewal in 
TGDH, a defined group member, the so-called sponsor, generates the new interme-
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diate keys and distributes them to the group over public channels. Each member 
computes the new group key using these intermediate keys and its own share. 
    In contrast to group key agreement protocols, group key distribution protocols 
dynamically select a group member to generate and distribute the new group key. 
Examples of such protocols are DTKM [12] and the proposal of Rodeh et al. [13]. 
The latter is more efficient than the DTKM protocol, because it only needs two com-
munication rounds to complete the key renewal, while DTKM demands log2n 
rounds. In the Rodeh protocol all used keys are arranged in a key tree. The leaves of 
the tree correspond to group members. The left-most leaf is defined as the tree 
leader. When renewing the key the tree leader generates the new group key and 
sends it to the subtree leaders over secure channels. The subtree leaders forward the 
new group key to their respective subtree members.   

Key tree based protocols like LKH have been proven to be an appropriate solu-
tion for a centralized group key management, also for small groups [5]. Several dis-
tributed protocols like TGDH and the Rodeh protocol borrowed the key tree concept. 
Is the key tree based protocol an appropriate approach for small groups? In the se-
quel we propose an alternative approach for small dynamic peer groups and show 
that it is more efficient than key tree based one.   

3    TKD Protocol  

In this section we give an overview of the basic principle of the TKD approach. First 
we introduce the system architecture assumed for TKD.   
 
System architecture. TKD assumes a three-layer architecture which consists of an 
application layer, a security layer, and a group communication layer (see Figure 1).  

 
 
 
 
 
 
 
 
 
 
                                                                                
 
                                          Fig. 1. System architecture 
 

   The application layer is not further specified here. We assume that it contains the 
control modules of the given application such as QoS management or floor control 
modules. 
   The security layer consists of two parts: the encryption/decryption module for data 
and media exchange, and the TKD protocol which distributes the group key used in 
the encryption/decryption function and authenticates joining members. The security 
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layer is closely connected with the group communication layer which assures the 
consistency of the group data.   
   The group communication layer forms the basis for reliable, collaborative peer-to-
peer applications. In our model we assume that the group communication layer indi-
cates all changes in the group composition (join, leave, or failure of peers) to the 
upper layers to equally keep the membership consistent. Thus all peers have the 
same view on the actual group state and can uniquely decide all group related issues 
by themselves, e.g. QoS parameter settings, floor assignment, or key refreshment. To 
achieve this goal the group communication protocol should provide virtual syn-
chrony [14] which assures that all recipients of the same group membership reliably 
receive messages in the same order as they are sent. This requires that a group com-
munication protocol should be reliable to ensure that no data is lost, ordered to en-
sure that data are delivered in the order as they are sent, and atomic to ensure that all 
peers are updated equally. There are several protocols which meet these require-
ments like RMP [15], the Totem Protocol [16], Ensemble [17], Spread [18], and 
GCP [19]. Decentralized key management protocols heavily depend on the virtual 
synchrony property of the group communication protocol for refreshing the group 
key [9, 5, 11]. If this property is not provided, members may have a different view 
on the group membership when a key renewal is required. This may lead to confu-
sions in the group key renewal process, since more than one member may be selected 
to generate the group or intermediate keys, respectively. Therefore, we assume like 
other decentralized key management protocols that a group communication protocol 
with virtual synchrony is applied in the communication layer.   

We further assume that the group management, which executes the invitation 
procedure, is contained in this layer. Furthermore, all participants belong to an iden-
tical trust infrastructure or namespace. The group is set up by an initiator which in-
vites the partners. Later further partners can join the group if desired. The decision to 
invite new partners is based on social agreement of all partners.  

 

Principle of TKD. TKD is a token based protocol. The group members form a logi-
cal ring based on the group membership list generated in the group communication 
layer. The token determines the group member that generates a new group key and 
initiates the key distribution procedure. The group key is renewed whenever the 
group composition changes. The token principle was chosen to select the member 
responsible for the group renewal process in this dynamic group configuration. For 
smaller groups, as assumed here, the token approach is efficient enough. The token 
holder is also the group member who authenticates the joining partners. We further 
assume that an authenticated member in a closed group meeting is trustworthy, i.e. 
he/she does not actively attempt to disturb the system and to disclose the group key 
to non-members. No assumptions are made on the trustworthiness of partners after 
leaving. These assumptions correspond to practical security applications. Other de-
centralized group key protocols as discussed above rely on similar assumptions. The 
initiator of the group creates the first token. After renewing the group key the token 
holder hands the token over to the next group member in the ring. The token shift is 
part of the rekeying message which is multicast to the whole group. Thus each group 
member knows the current token holder at any time. The reliable delivering of the 
rekeying message is guaranteed by the underlying group communication layer as 
discussed above. 
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   The group key renewal is based on the Diffie-Hellman (DH) key exchange princi-
ple [8]. After generating a new group key the token holder establishes temporary 
secure channels to all members to deliver the key. For this, it uses the shared DH 
secrets, which are shared with each other member, and a nonce, which is only valid 
for this group key renewal cycle. The details are given for the join and the leave pro-
cedure next. 

 

Join procedure. The join procedure consists of two steps: (1) the authentication 
phase in which the invitee and the token holder mutually authenticate and (2) the 
proper join phase causing the group key refreshment (see Figure 2). Five messages 
or rounds, respectively, are needed for the join procedure: four rounds for authentica-
tion and one for the key refreshment.  

 

                       
 
                                               Fig. 2.  Join Procedure   

 
Unlike most group key management protocols TKD introduces a partner au-

thentication. It is supposed to assure that the group key is only delivered to an au-
thenticated member and that the new member can be sure that the received key is in 
fact sent by the inviting group. We apply the newly proposed internet draft standard 
IKEv2 [21] due to its increased efficiency, security, flexibility and robustness com-
pared to the predecessor IKE [20]. Let us assume that Pn+1 is invited to join a group 
of n participants: P1… Pn  (see Figure 2). The token holder is Pi. The group members 
including the token holder Pi are informed of the acceptance of the invitation by the 
underlying group communication protocol. Note that the token holder is not neces-
sarily identical with the inviting participant. Thus it is avoided that this participant 
invites people whom are not agreed upon. To accomplish the mutual authentication 
between Pi and Pn+1 the four messages (MJ1-MJ4) have to be exchanged in accordance 
with IKEv2.  

  

iiiniJ NASAKEHDRPPM ,,,:)( 11 +→  

11112 ,,,:)( ++++ → nnninJ NASAKEHDRPPM  
{ }rnrr

niiiniJ gggIDIDIDSIGCERTIDSKHDRPPM ...,,...,,,,,:)( 21
2113 +→   

{ }1
11114 ,,,`,:)( +

++++ → rn
nnninJ gSIGCERTIDSKHDRPPM   
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With the exchange of messages MJ1 and MJ2, the token holder and the invitee ne-
gotiate the security association SA which specifies the cryptography parameters used 
for the messages MJ3 and MJ4. Further they generate the shared keys SK and SK` on 
the basis of the exchanged public DH values KEi and KEn+1 as well as a nonce NA. 
The shared keys are used to protect the subsequent messages MJ3 and MJ4.  To avoid a 
reflection attack, separate session key SK and SK` are used for each direction [21]. 
SK (and also SK’ ) consists of the encryption key Ske and the authentication key SKa 
which are generated according to the IKEv2 draft [21].To adapt to the group com-
munication scenario some message components was added to messages MJ3 and MJ4 
to exchange information between the token holder and the invitee. The token holder 
delivers the group information to the new member in message MJ3 including all 
members’  identities (ID1, ID2,…, IDn) and the respective public DH values (gr1, 
gr2,…grn ). The invitee Pn+1 returns its identity IDn+1 and its public DH value grn+1 with 
message MJ4. Upon receipt of message MJ3 the invitee Pn+1 performs n DH agree-
ments to get the shared DH secrets with the other members. Virtually the new mem-
ber does not have to compute these n DH agreements in real-time. This can be done 
“off-line” , because the new member will apply the shared DH secrets only when it 
becomes the token holder to establish the temporal secure channels.     

If the token holder fails to authenticate the invitee it notifies the group about this 
and hands the token over to its neighbor IDi+1 with message MJf,: 

 { }1121 ,,,,,:)...,( ++→ nioldniJf IDAuthfIDVTTokenGKHDRPPPPM  

where Authf indicates the failed authentication, IDn+1 is the new member’s identity. 
The token version VT is used to prevent replay attacks. It is increased by 1 each time 
the token is forwarded. When receiving MJf, each member knows that the new mem-
ber failed to join the group and who is the new token holder. All members keep the 
group key unchanged.    

After successfully authenticating the invitee the token holder Pi starts the group 
key renewal. The new key GKnew is randomly generated and thus independent of 
previously used keys. The token holder multicasts the new key GKnew together with 
the token in the rekeying message MJ5 to the new partner Pn+1 and the other members 
(see Figure 2). For the latter, temporal secure channels are established as described 
below. Message MJ5 has the following format: 

 
{ } { }newiiioldniJ GKVKKNIDGKHDRPPPPM ,,,,:)...,( 11215 +→   

                    { } { } },,,,, {GK ,,,,,,,..., 11new
1

++
+

n
r

iinewnewin IDgIDVTTokenIDGSAVKGKSKGKVKK n   

 

    The message consists of four parts which serve different purposes. The first part of 
message MJ5 contains token holder’s identity IDi and a nonce Ni used to construct the 
temporal secure channels between the token holder and the other members. This part 
is encrypted with the old group key GKold.  The second part of message MJ5 contains 
the new group key GKnew and the group key version VK. The group key version dis-
tinguishes old group keys from the new one and is used to counter replay attacks. VK 
is increased by 1 each time the group key is renewed. These data are separately en-
crypted for each group member using its temporal channel keys Kij (j=1, 2,…n and 
j�i) between the token holder Pi  and the other group members. The token holder Pi 
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secrets with them and the nonce Ni. The secure channels are established as follows:  

                       )0,( jii
rrrr

eij IDIDNggHMACK jiji=−
                                                          (1)              

                       )1,( jii
rrrr

aij IDIDNggHMACK jiji=−
   (j=1, 2,….n and j�i)                        (2)  

    Ni and IDi are the nonce and token holder’s identity contained in the first part of 
message MJ5. IDj is the group members’ identity and grirj the secret key stored at both 
sides. HMAC(k,m) [22] is a pseudorandom function which hashes a message m us-
ing key k. The symbol “|” means concatenation. Kij-e is the encryption key, while Kij-a 

is used for message authentication. The third part of message MJ5 for the new mem-
ber contains the new group key GKnew, its version, the group key association GSA, 
which specifies the cryptographic algorithms and the security policies currently de-
ployed for group communication, and the token holders’ identity. These data are 
encrypted with the shared key SK determined during the authentication phase (see 
above). The fourth part contains the token, the token version VT, the neighbor’s iden-
tity IDi+1, the new members’ identity IDn+1, and its public DH value grn+1. This part is 
protected under the new group key GKnew. 
   After having received MJ5 the old group members can decrypt IDi and Ni with the 
old group key GKold. They can determine the channel key according to formula (1) 
and (2) and decrypt the new group key GKnew. The new group member decrypts the 
new group key using the shared key SK. Now all group members including the new 
participant Pn+1 possess the new group key, the public DH values of the other mem-
bers as well as their shared secrets. They are all in the same state so that the new to-
ken holder can refresh the group key when required. 
   
Leave procedure. When a participant leaves the group the underlying group com-
munication protocol informs the remaining members about the leaving. After that the 
token holder starts the key refreshment procedure. Figure 3 shows an example.             
                                

 
                                                  

Fig. 3.  Leave Procedure 
 

   We assume that participant Pn+1 is leaving a group of n+1 members P1… Pn+1. The 
token holder Pi generates a new group key GKnew and multicasts it in the leaving 
message ML1 to the remaining group members. ML1 has a similar structure like the 
join message MJ5:    

{ } { } { } } {GK,,,...,,,,,:)...,( 1new1211 +→ inewinnewiiioldniL  IDToken, VT,GKVKKGKVKKNIDGKHDRPPPPM  
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It first encrypts the identity of the token holder IDi together with a newly gener-
ated nonce Ni with the old group key. The new key GKnew and the actual key version 
VK are encrypted with the temporary channel keys for each remaining group mem-
ber. These keys are derived according to formula (1) and (2). The token, the token 
version, and neighbor’s identity IDi+1 are protected by the new group key. The leav-
ing participant cannot take possession of GKnew, because it cannot reconstruct any of 
the temporary secure channels Ki1, Ki2…Kin without knowing the shared secrets 
grir1,grir2,…grirn between the token holder Pi and the remaining members P1, P2,… 
Pj,…Pn (j�i). When receiving message ML1 the remaining group members can de-
crypt the new group key in the same way as described above for message MJ5. The 
group key refreshment is completed. 

When the token holder leaves the group it first forwards the token to its neighbor 
and then starts the leave procedure. A host failure including that of the token holder 
is indicated by the underlying group communication layer. The group members 
equally update the group composition. In case of a member crash the token holder 
simply refreshes the group key. If the token holder crashes the neighbor in order is 
the next token holder by rule. It starts the leave procedure.  

4    Performance analysis 

This section evaluates the performance of TKD in comparison with other decentral-
ized group key exchange protocols. We consider the key distribution protocol of 
Rodeh et al. and TGDH which are considered the most efficient group key distribu-
tion and agreement protocol, respectively. For the comparison, we apply the bench-
marks of cryptographic algorithms from [23] to calculate the performance. The 
benchmarks are summarized in Appendix.  
     TKD comprises two different procedures: member authentication (message MJ1~ 
MJ4) and group key renewal (message MJ5 or ML1). Since the other two protocols do 
not possess a member authentication we only compare the cost for the key renewal. 

4.1 Group key renewal  

Group key renewal delay. A widely accepted criterion to evaluate the efficiency of 
group key management protocols is the group renewal delay. It refers to the duration 
of the key renewal, i.e. the time between the triggering of the procedure and the suc-
cessful delivery of the key to each group member.  
    The group key renewal delay comprises the communication delay and the crypto-
graphic computation delay. It is determined by the following formula:  
                       )max( crcomcsgkr DDDD ++=                                                     (3) 

where Dgkr is the group key renewal delay, Dcs the cryptographic computation delay 
of the sender, Dcom the communication delay, and Dcr the cryptographic computation 
delay of the receiver. Here the sender stands for the tree leader in Rodeh’s protocol, 
the sponsor in TGDH, and the token holder in TKD, respectively. The receiver cor-
responds to the participants including the new member and the subtree leader in the 
Rodeh protocol, and the participants including the new member in TGDH and TKD.    
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The cryptographic computation delay directly depends on the computation cost of 
the protocol. Table 1 summarizes the computation cost of the considered protocols 
by indicating the number of cryptographic operations they carry out. The comparison 
shows that the protocols use asymmetric and symmetric cryptographic operations 
differently. TGDH at the one edge applies more intensively asymmetric crypto-
graphic computations while TKD at the other edge uses mainly symmetric opera-
tions. Since asymmetric cryptographic computations, as known, are much slower 
than the symmetric operations, the resulting total computation cost of TKD is lower 
than that of the other two protocols. For example, the computation cost of one DH 
agreement corresponds to approximately 5500 hash and symmetric encryptions of 
the group key (16 byte size) based on the benchmarks of cryptographic algorithms of 
[23]. Assuming a group size of 100 members, only about 400 hash and symmetric 
encryptions are required to renew the group key in TKD. 

Table 1. Computation cost for the group key renewal 

Computation cost 
Asymmetric operations Symmetric operations 

 
Protocols 

 
Opera-

tion 

 
Members 

DH    
agreement 

RSA   
signa-
ture2) 

RSA  
verifi-
cation2) 

Hash and                                                
encryption     
( 16 Byte) 

Hash  and 
decryption  
(16 Byte) 

Tree leader 1 - - 2 - 
New member 1 - - - 1 

 
Join 

Participants - - - - 1 
Tree leader log2n1) - - log2n - 

Subtree 
leader 

1 - - - 1 

 
 

Rodeh 

 
Leave 

Participants - - - - 1 
Sponsor 2 log2n 1 - - - 

New member 2 log2n - 1 - - 
 

Join 
Participants 1…2log2n - 1 - - 

Sponsor 2 log2n 1 - - - 

 
 

TGDH 

 
Leave Participants 1…2log2n  1 - - 

Token holder - - - 2n+3 - 
New member - - - - 2 

 
Join 

Participants 1 - - - 3 
Token holder - - - 2n+2 - 

 
 

TKD 

 
Leave Participants - - - - 2 

Note:    1) n is the number of group members.  
2) RSA signature in TGDH is used to support message authentication rather than member authen-

tication [5].     
       3) The computation costs of Rodeh and TGDH listed in the table are their best case when the key 

tree is balanced.  For an imbalanced key tree Rodeh and TGDH need more computation for a 
rekeying event.   

 
Applying the benchmarks of the cryptographic algorithms from [23] to Table 1 we 
can now compute the cryptographic computation delay for the three protocols, i.e. 
max(Dcs+Dcr). The results are listed in Table 2. It shows that TKD causes less com-
putation delay than the other two protocols for the join and leave procedure.   
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Table 2 Computation delay for group key renewal (ms)   

           Rodeh      TGDH        TKD 

Join                7.72        4.93+15.44 *log2n
1)   3.86+(2n+6)* 7*10-4 

Leave 3.86*(log2n+1)+(log2n+1)*7*10-4   4.93+15.44 *log2n (2n+4)*7*10-4 

  Note:  1) n is the number of group members.      
           
The communication delay for a group key renewal depends on the number of com-
munication rounds needed to complete the renewal procedure and on the duration of 
the communication rounds. For a fair comparison, we assume here that the three pro-
tocols run on top of the group communication protocol GCP [19]. According to [24] 
the delay Dc1 for one communication round in a LAN setting can be estimated as 
follows:    

                           Dc1 = 8.71n-8.63+0.0015b                                                              (4) 

where n is the number of group members and b the size of the rekeying message in 
bytes. TKD and TGDH require only one communication round to accomplish the 
group key renewal for joining and leaving, whereas the Rodeh protocol needs two 
communication rounds each.  
 
Group key renewal delay. Based on Table 2 and formula (4), we can now deter-
mine the group renewal delay using formula (3). The resulting delays for the join and 
the leave procedures are depicted in Figure 4 and 5.  
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                Fig. 4. Group key refreshment delay comparison for joining     
 
 

 
 
 
 
 
 
 
 
 
                                                                      

                      Fig. 5. Group key refreshment delay comparison for leaving    
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   Inferred from formula (4) and the cited benchmarks of asymmetric algorithms in 
the appendix, the communication delay plays a larger role than the cryptographic 
computation delay in determining the group key refreshment delay. It is worth to 
mention that a reverse conclusion may be drawn, if the comparisons are based on 
lower computation power devices (e.g. PDAs, mobile phones) rather than on a mod-
ern computer platform (such as Pentium 4 platform used in our comparison). The 
lower the power of a device the larger the computation delays required by the asym-
metric algorithms.      
   The comparison shows that TKD has a lower group key refreshment delay for both 
procedures than the Rodeh key distribution protocol and the most efficient key 
agreement protocol TGDH. The reason is that TKD needs less computation rounds 
and mostly uses symmetric cryptographic computations. The Rodeh protocol is the 
most expensive one, because it demands two communication rounds to accomplish 
the group key refreshment. Although also requiring only one communication round 
like TKD the TGDH protocol is the second expensive one, because it requires a lot 
of asymmetric cryptographic operations to generate the new group key for each 
member.                                                                                                                                   

4.2 Communication overhead  

The communication overhead depends on the message size of the protocol, i.e. how 
many bandwidth a protocol consumes. Many centralized group key distribution pro-
tocols such as LKH [5] apply a key tree structure, so that the group key server can 
update the group key using a message size of O(log2n) symmetric keys. This is of 
particular significance for very large groups (e.g. one million members). Thus the 
rekeying message can be delivered in one packet. Some decentralized group key dis-
tribution protocols like Rodeh and TGDH follow the same principle to achieve a 
small rekeying message size, O(log2n) symmetric keys for Rodeh and O(log2n) 
asymmetric keys for TGDH. This is, however, achieved at the cost of two communi-
cation rounds in the Rodeh protocol and of O(log2n) asymmetric cryptographic com-
putations in TGDH. This is reason why they are slower than our scheme. In TKD the 
rekeying message size is O(n) symmetric keys. For a group of 100 member peers, 
these are about 4 Kbyte. This can be transmitted without any problem in one UDP 
packet. Therefore bandwidth consumption for key renewal is not an issue for small 
group settings at all. In contrast, the group key renewal delay is the critical point for 
real-time applications.   

4.3 Theoretical upper bounds of the group size 

Finally we estimate the theoretical upper bounds of the group size of TKD. This es-
timation is made on two conditions: (1) the key renewal delay of TKD should fall 
below that of the compared protocols and (2) TKD accomplishes the group key re-
newal in one communication round.   
     The group key renewal delay of TKD, TGDH, and the Rodeh protocol can be 
determined based on Table 2 and formula (4) as follows:  
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         nnnDTKD *36*0015.083.671.810*7*)62(86.3 4 +−+++= −                           (5) 

         nnnDTGDH 22 log*128*0015.083.671.8log*44.1593.4 +−++=                        (6) 

         )log*36*0015.083.671.8(*272.7 2nnDRodeh +−+=                                          (7) 

Condition (1) can be expressed through the following two formulas: 
    

          
TGDHTKD DD ≤                                                                                                (8) 

          
RodehTKD DD ≤                                                                                                  (9)   

  
These formulas can be now used to determine the upper limit of the TKD group size. 
The solution for formula (8) is n=3420, whereas formula (9) remains true for any 
group size, i.e. TKD is always more efficient than the Rodeh protocol if TKD com-
pletes the key renewal in one communication round. Condition (2) means that the 
size of the rekeying messages is always less than the maximum size of an UDP 
packet (65536 bytes). Thus the upper bounds of group size can be determined by the 
following formula: 

           65536)(*)1( ≤+++ akhskn                                                      (10) 

 where n is the number of group members, while sk, h, and ak correspond to the size 
of the symmetric key, the hash value and the asymmetric key, respectively. Their 
corresponding typical values are 16 bytes, 20 bytes and 128 bytes. Formula (10) 
holds as long as n is smaller than 1815.  
     To sum up, TKD is more efficient related to the key renewal delay than other key 
exchange protocols as long as the group size does not exceed 1815 members.  

5 Security demands   

TKD fulfills important security demands. Due to space limitation we cannot give a 
detailed analysis of the security properties of TKD here. We sketch the most impor-
tant aspects.  

The protocol has to assure that nobody outside the group acquires the group key 
(key authentication). TKD assures this, because each invitee must be authenticated 
by a group member. Only if this authentication is successful, the invitee can join the 
group and obtain the group key. On the other hand, the invitee can convince itself by 
receiving their identities and public DH values with message MJ3 that the received 
group key is of the expected group.  

It has to be assured that earlier leaving members cannot access to any key gener-
ated later to further decrypt data exchanged (forward confidentiality). According to 
the leaving procedure described above the leaving participant can never access to the 
temporary secret channels, because they rely on the shared secrets between the token 
holder and the remaining members which are not accessible for him/her. Vice versa, 
a later joining member should never have access to any older key to decrypt previ-
ously exchanged data (backward confidentiality). This is achieved by never deliver-
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ing the old group key to the joining member. The parts of message MJ5 that can be 
decrypted by the new member do not contain the old key. 

The protocol has further to assure that members after leaving a session are not 
being able to deduce the current key using their former keys (collusion freedom). 
TKD assures this by randomly generating new group keys each time the group com-
position changes, which do not depend of each other. A further desirable feature is to 
avoid that a compromised group key can lead to the disclosure of past keys (perfect 
forward secrecy). TKD achieves this by never using long-term credentials for en-
crypting the keys and avoiding any access to keys and key material of former ses-
sions. Finally the protocol should not allow that a disclosure of past session keys 
could be used to compromise the current group key (resistance to known key at-
tacks). TKD prevents such attack by never transmitting the shared DH secrets via the 
network so that an attacker is unable to access the temporary secrete channels used 
for the group key delivery.  

Compared with the other mentioned key management protocols TKD is the only 
one which fulfills all these security requirements.   

6   Final remarks 

In this paper we have presented the group key distribution protocol TKD to support 
confidential meetings of small dynamic peer groups in the Internet, e.g. for business 
talks. The protocol approach is simple and straightforward using a token mechanism 
and mainly symmetric cryptographic operations for the group key renewal. This 
leads to a significantly lower key renewal delay compared to existing key distribu-
tion and key agreement protocols. It is especially appropriate for applications which 
except key management and encryption/decryption simultaneously run other time 
and resource consuming procedures such as media data decompression like in a peer-
to-peer multiparty video conference. In addition, TKD introduces in contrast to oth-
ers key management protocol an authentication based on IKEv2. TKD requires an 
underlying group communication protocol that supports virtual synchrony for group 
data consistency as well as dynamic group composition. There are several protocols 
proposed in literature which possess these properties. 

We showed in the paper that a simple straightforward distribution approach is 
more efficient for small groups than a key tree based one. It provides a stable per-
formance and needs less effort for its maintenance. Key tree based schemes like 
TGDH and the Rodeh protocol possess a fluctuating performance after many rekey-
ing operations due to the unbalance of the key tree. To maintain a balanced key tree 
rebalance algorithms have to be applied which makes the protocols more complex 
and less practical.  
    TKD further fulfil ls important security demands like key authentication, forward 
and backward confidentiality, collusion freedom, and others. It is based on the well-
studied protocol IKEv2 for member authentication and the well-known Diffie-
Hellman problem (i.e. discrete logarithm problem) for the construction of the tempo-
rary secure channels. The security of TKD is achieved by carefully paying attention 
that group key material can be only accessed by current authenticated group mem-
bers and by generating keys which do not depend of each other. 
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    We are currently introducing TKD into the security architecture of the peer-to-
peer multiparty video conference system BRAVIS [25] to allow confidential talks of 
closed group meetings in the Internet.   
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Appendix: Benchmarks of crypto operations   

The speed benchmarks for the cryptographic algorithms used in this paper are listed 
in the following table which is adopted from [23]. These results are achieved on a 
Pentium 4 2.1 GHz processor under Windows XP.    

 
Symmetric crypto operations Asymmetric crypto operations  

Algo-
rithms 

SHA-1 AES       
(128-bit key) 

RSA 1024     
Signature 

RSA 1024     
Verification  

DH 1024 key 
Agreement 

Speed 68 Mbyte/s 61 Mbyte/s 4.75 ms/operation 0.18 ms/operation 3.86 ms/operation 

 
 


