
An Approach for Validating Semantic Consistency of
Model Transformation Based on Pattern

Jin Li1,2, Dechen Zhan1, Lanshun Nie1, Xiaofei Xu1

1 School of Computer Science and Technology, Harbin Institute of Technology, 92 West
Dazhi Street, Harbin 150001, China

2 School of Computer Science and Technology, Harbin Engineering University, 145 Nan
Tong Street, Harbin 150001, China

miaookok@163.com, { dechen, nls, xiaofei }@hit.edu.cn

Abstract. The correctness of model transformation is an import research field
in model-driven architecture. Syntactic correctness and semantic consistency
are hot topics in the field of model transformation. Syntactic correctness has
many mature solutions. However the validation of semantic consistency has
some problems. Therefore, how to validate semantic consistency of model
transformation is a major problem in model-driven development. In this paper,
we propose a validation approach for semantic consistency of model
transformation, which is based on pattern. We analyze some patterns in models
and make these patterns as transformation pattern. We define transformation
rule with transformation pattern and analyze three parts of semantic
transformation. We present two theorems to validate semantic consistency of
model transformation. Finally, we give a case to illustrate the effectiveness of
our approach.

Keywords: Model transformation, Transformation rule, Transformation pattern

1 Introduction

The correctness of model transformation is an important research field in model-
driven architecture (MDA) [1-2]. The research mainly focuses on syntactic
correctness and semantic consistency [3]. Syntactic correctness has some mature
solutions [4], e.g. planning algorithm [5]. However the validation of semantic
consistency has some problems, e.g. effective theory. Therefore, how to validate
semantic consistency of model transformation is a major problem in model-driven
development of software systems.

Model transformation consists of transformation rules which describe how a set of
elements of the source model are transformed into a set of elements of the target
model through transformation relationships [6]. Semantic consistency of model
transformation is for maintaining consistency between source model and target model
in the semantics. So, the validation problem for semantic consistency of model
transformation is equivalent to the formulization proof of semantic consistency in the
process of model transformation.

Many methods to solve semantic consistency of model transformation have
emerged from industrial and academic research. Varró [7] defined and validated the
model constraints to preserve semantic consistency of model transformation. Jinkui
Hou [8] proposed a semantic description framework, and promoted category theory to
describe and validate semantics of model transformation. Caplat [9] extended formal
language to describe and validate model semantics. Engles [10] provided the
relationships of semantic objects of UML-RT to describe the consistency required
among models, and proved these relationships through static analysis. XiaoHe [11]
extended QVT Relations with three new concepts and discussed the semantics of the
mapping pattern and creating model.

Different model transformation methods may need different methods to preserve
semantic consistency of model transformation. The paper proposes a validation
approach for semantic consistency of model transformation based on pattern. We
make some patterns, e.g. sequence pattern, branching pattern and loop pattern, in
models as transformation patterns and use these transformation patterns to define
transformation rule. There are three parts of the validation process of semantic
consistency: (1) the semantic mapping from source model to source transformation
pattern; (2) the semantic mapping from source transformation pattern to target
transformation pattern; (3) the semantic mapping from target transformation pattern to
target model. Then, the validation problem for semantic consistency of model
transformation is equivalent to the problem about the three semantic mappings.

The rest of this paper is structured as follows. In Sect. 2, we propose the motivating
example which will be used throughout the paper. Section 3 provides the core
concepts. Section 4 presents the validation theory of semantic consistency of model
transformation. Section 5 illustrates the validation theory. Sect. 6 concludes the paper
and further work.

2 Motivation Example

There are some basic patterns in models, e.g. sequence pattern, branching pattern, and
loop pattern, which belong to business process model. The three patterns are shown in
Fig.1 (a). We use the model transformation from UML Activity Diagram Model
(UADM) to Java Business Process Model (JBPM) to describe how to preserve model
semantics during model transformation. The UADM and JBPM are shown in Fig.1(b).
The UADM describes a business process of submitting sale order. The process is:
firstly query sale data, secondly fill these data into a sale order, thirdly audit the sale
order, and finally submit the sale order. The activity about auditing the sale order has
a judging condition, i.e. if the sale data is less than 1000, the sale order should be
submitted directly. Otherwise the manager should audit the sale order. If the manager
agrees the sale order, he submits the sale order. Otherwise the sale data will be
queried again.

The UADM contains these three patterns above. For example, the operations of
querying sale data and filling the sale order correspond to the sequence pattern; the
operation of checking the sale data corresponds to the branching pattern; the operation

of auditing the sale order corresponds to the loop pattern, and the auditing loop
pattern contains the sequence patter.

Fig. 1. Motivation example

The approaches of model transformation define transformation rules with the
patterns. A pattern is either basic pattern or user-defined pattern. The user-defined
pattern is generally defined according to domain business requirements. The patterns
are called transformation patterns in transformation rules. These transformation
patterns can simplify transformation definition, raise transformation efficiency, and
improve transformation quality.

3 Transformation Pattern and Transformation Rule

Transformation rule, which is defined in model transformation based on pattern,
contains two patterns: left pattern and right pattern. The two patterns also consist of
some basic patterns and user-defined patterns. These basic patterns and user-defined
patterns are called transformation pattern in the paper. Transformation patterns must
be formed in pairs transformation rule, namely if left pattern contains a transformation
pattern TPs, right pattern should contain another transformation pattern TPt. The
semantics of TPs and TPt must be equivalence. The metamodel of transformation rule
is shown in Fig.2.

The class TransformationRule consists of LeftPattern, RightPattern and Constraint.
LeftPattern and RightPattern are composed of Element and TransformationPattern.
Element has three subclasses, and they are TransformationPattern, NodeElement, and
RelationElement. TransformationPattern is composed of NodeElement,

RelationElement, and Constraint. Constraint has two subclasses: interConstraint and
exterConstraint. interConstraint describes the internal relationships of LeftPattern
and RightPattern, and exterConstraint describes the external relationships of
LeftPattern and RightPattern. interConstraint can be described by OCL, while
exterConstraint is described according to the constraint relationships of NodeElement,
RelationElement and TransformationPattern. We focus on the semantic information
of exterConstraint in the paper. We firstly analyze the external relationships of
transformation pattern, which are illustrated in Fig. 3.

Fig. 2. Metamodel of transformation rule

In Fig. 3, there are two kinds of constraint relationships: Element-Pattern and
Pattern-Pattern. In the first constraint relationship, there is a relationship r1 between
the element n1 and the transformation pattern TP1. The end element of r1 is one of
elements of TP1. Because TP1 contains two elements (n2 and n3), there are three
conditions of the mapping between n1 and TP1: (1) from n1 to n2; (2) from n1 to n3; (3)
from n1 to n2 and n3. There needs an external constraint relationship to accurately
describe the mapping condition between n1 and TP1. In the second constraint
relationship, the identifier r2 is a relationship between the transformation patterns TP1
and TP2. Because the start element of r2 comes from TP3 and the end element of r2
comes from TP2, we divide the constraint relationship (Pattern-Pattern) into two
constraint relationships (Element-Pattern): the relationship between r2 and TP2, and
the relationship between r2 and TP3. The two relationships are similar to the
relationship between r1 and TP1.

We firstly propose the model definition, the definition of transformation pattern
with the external constraint relationship, and the definition of transformation rule.
Definition 3.1 (Model): A model is defined as

M=<E, L, rel, meta> (1)

Where
- E={e1,e2,...,es} denotes a finite set of model elements,

- L={l1,l2,...,lt} denotes a finite set of the relationships among model elements,
- rel(lk)=[ei,ej] denotes a relational function between model elements, and

describes that ei is a start element of lk and ej is an end element of lk, ei,ej∈E,
1≤i,j≤s, lk ∈L, 1≤k≤t,

- meta(eu) denotes an instance function, and it describes the metamodel of eu,
1≤u≤s.

Note that we use ”.” to describe the element of model, e.g. M.E describes the
element set of M, and M.L denotes the relationship set of M.

n4

n5

n6 n7

n8

n1

n2 n3

TP1

r1

n1

n2 n3

Condition 1

r1

n1

n2 n3

Condition 2

r1

n1

n2 n3

Condition 3

r1 r1

r2

n4

n5

r2

n6 n7

n8

r2

TP2

TP3

TP2

TP3

El
em

en
t—

Pa
tte

rn
Pa

tte
rn

—
Pa

tte
rn

Fig. 3. The external relationship of transformation pattern

Definition 3.2 (Transformation Pattern): A transformation pattern is defined as

TP=<N, R, rel, interC, exterC> (2)

Where
- N={n1,n2,...,np} denotes a finite set of nodes, and its instance element set is

M.E;
- R={r1,r2,...,rq} denotes a finite set of relationships, and its instance element

set is M.L;
- rel(rk)=[ni,nj] denotes an element-relationship function, and describes that ni

is a start element of rk and nj is an end element of rk, ni, nj∈N, 1≤i,j≤p,
rk ∈R, 1≤k≤q,

- interC={iC1,iC2,...,iCm} denotes a finite set of the internal constraint
relationships;

- exterC={eC1,eC2,...,eCn} denotes a finite set of the external constraint
relationships, eCx=<r,TP, {nx,nx+1,...,nl}> denotes the constraint relationship
between r and TP, r ∉R, 1≤x,l≤p. Every element nk is either a start element
or an end element of r, nk∈N, 1≤k≤p.

In Fig. 3, the three mapping condition of the constraint relationship between n1 and
TP1 can be defined as the following:

eC1=<r,TP,{n2}>, eC2=<r,TP,{n3}>, eC3=<r,TP,{n2,n3}>.

When a transformation rule contains an element, we make the element as a
transformation pattern. Therefore, the left and right pattern of transformation rule can
contain one or more transformation patterns.
Definition 3.3 (Transformation Rule): A transformation rule is defined as

TR=<LP, RP, C> (3)

Where
- LP={tps1,tps2,...,tpsu} denotes left pattern, and it contains a finite set of

source transformation patterns,
- RP={tpt1,tpt2,...,tptv} denotes right pattern, and it contains a finite set of

target transformation patterns;
- C denotes constraint relationship of LP and RP.

The left and right pattern are formed pairs in transformation rule, i.e. if left pattern
contain the transformation pattern tpsi, right pattern should contain another
transformation pattern tptj. The semantics tpsi, is similar to the semantics of tptj, 1≤i≤u,
1≤j≤v.

4 The Validating of Semantic Consistency of Model
Transformation

The goal of preserving semantic consistency of model transformation is that the
semantics of source and target model is equivalence. During a process of model
transformation based on pattern, the semantic transformation process from source
model to target model is an implementation process of transformation rules. The
processes contain three parts of model semantic mappings: the semantic mapping
from left pattern to source model, the semantic mapping from left pattern to right
pattern, and the semantic mapping from right pattern to target model. Because the left
and right patterns have the equivalent semantics, the problem of preserving model
semantic consistency is similar to two the semantic mapping problem: the mapping
from left pattern to source model, and the mapping from right pattern to target model.
We will propose the theorems to solve the problem.

4.1 Semantic Mapping from source transformation pattern to source model

According to the definition 3.3, the left pattern of transformation rule is a set of
source transformation patterns. Every element of source transformation pattern is
either automatic element or another transformation pattern. So we describe the
semantic mapping from left pattern to source model according to two mapping
conditions. The identifiers M and TP denote a model and a transformation. If the
semantics of M and TP is equivalence, we called the equivalence relationship as TP≌
M. We provide a theorem to validate the semantic consistency of the mapping
between transformation pattern and model.

Theorem 4.1 Let M be a Model, the node set of M is M.E={ e1,e2,...,es}, TP is a
transformation pattern, the node set of TP is TP.N={n1,n2,...,np}. TP≌M if and only if
Satisfying the following three conditions:
(1) every node ni∈TP.N, then ni∈∪meta(M.E);
(2) every relationship rj∈TP.R, then rj∈∪meta(M.L);
(3) every external constraint relationship eC∈TP.exterC preserves the semantics.
Proof.
(1) Every node of transformation pattern is a certain metamodel element of model

element. ni is an element of TP, 1≤i≤p,
<i> if ni is an automatic element, there exists a node ek ∈M.E which satisfies

ni=meta(ek). So ni∈∪meta(M.E); ①
<ii> if ni is a transformation pattern, it should semantic map with a submodel

Mi’ of M. The node set of Mi’ is a sub set of M nodes, i.e. Mi’.E ⊆M.E.
Every element nl of ni, there exists a node eo∈Mi’.E and it satisfies
nl=meta(eo). So ni∈∪meta(M.E); ②

(2) Every relationship of transformation pattern is a certain metamodel relationship
of model element. rj is a relationship of TP, 1≤j≤q. According to the definition
3.2, rel(rj)=[nj1,nj2], nj1 and nj2 are the elements of TP, i.e. nj1,nj2∈TP.N. And
according to ①②, because nj1,nj2∈∪meta(M.E), there exists two elements
eu,ev∈M.E. They satisfy nj1=meta(eu) and nj2=meta(ev). To the relationship lw

between eu and ev, there exists rel(lw)=[eu, ev]. So rj∈∪meta(M.L); ③
(3) The constraint relationship of transformation pattern satisfies semantic

consistency. There are two parts of the constraint relationship: the internal
constraint relationship and the external constraint relationship. Preserving the
internal constraint relationship can be validated by OCL, while preserving the
external constraint relationship is validated according to the definition of the
external constraint relationship. There is an external relationship r between the
element ni and the transformation patter TP:
<i> if ni is an automatic element, there exists an instance element lk(lk∈M.L) of
r and rel(lk)=[ei,ej] (ei,ej∈M.E). According to ①②, ni satisfies either ni=meta(ei)
or ni=meta(ej), then the external constraint relationship eC=<r,TP,{ni}>
preserves the semantics of r and TP; ④
<ii> if ni is a transformation pattern TPi, according to ②, there exists a sub
model Mj’ of M, and ni≌Mj’, then a certain element nk of TPi may be the start or
end element of r, nk∈ TPi.N. According to ④, the external constraint relationship
eC=<r,TPi,{nk}> preserves the semantics of r and TP. ⑤

4.2 Semantic Mapping from target transformation pattern to target model

In the session, we will propose the construction process from target transformation
pattern to target model, and provide a theorem to validate whether the process
preserve the semantics.

TPs and TPt are the source and target transformation patterns, and their
corresponding mapping models are Ms and Mt. The construction process from TPt to
Mt is the following:
(1) Constructing element. nt is an element of TPt, nt∈TPt.N,

<i> if nt is an automatic element, according to the instance relationship of the
metamodel and model, constructing a new model element ei and make
nt=meta(ei); ⑥
<ii> if nt is a transformation pattern, according to the corresponding element ns
of TPs:

a) if ns is an automatic element, constructing a new element ei, and make
nt=meta(ei)；⑦

b) if ns is a transformation pattern, constructing a sub model Mt’, and make
nt.N=meta(Mt’.E)；⑧

(2) Constructing relationship. rk is a relationship of TPt, rk∈TPt.R. There exists two
elements (ni,nj) and they satisfy rel(rk)=[ni,nj], ni,nj∈TPt.N,
<i> if ni and nj are two automatic elements, according to ①, their instance
elements (eti, etj) are the automatic elements of Mt. ni and nj satisfy ni=meta(eti)
and nj=meta(etj). Then, constructing a relationship ltk from eti to etj, and make
rel(ltk)=[eti,etj], ltk∈Mt.L; ⑨
<ii> if ni is a transformation pattern and nj is an automatic element. According
to ②,ni corresponds to a sub model Mti’ of Mt, Mti’.E={eti1,eti2,…,etim}. If there
exists an external constraint relationship eC=<r,ni,{etj}>, the model element etk
will be found in Mti’.E Then constructing a relationship lk from etk to etj, and
make rel(lk)=[etk,etj]. In the same way, if ni is an automatic element and nj is a
transformation pattern, there exists Mtj’.E={etj1,etj2,…,etjn}. According to the
external constraints relationship eC=<r,nj,{ni}>, there exists an element etk’ in
Mtj’.E, constructing a relationship lk’ from eti to etk’, make rel(lk’)=[eti, etk’]; ⑩
<iii> if ni and nj are two transformation patterns, according to ②, ni and nj are
corresponds to the sub model Mti’ and Mtj’, and these sub models satisfy
Mti’.E={eti1,eti2,…,etim} and Mtj’.E={etj1,etj2,…,etjn}.According to the external
relationships eC1=<r,ni,{etj1,etj2,…,etjn}> and eC2=<r,nj,{eti1,eti2,…,etim}>, if there
exists two elements etk and etk’ in Mti’.E and Mtj’.E, constructing a relationship lk
from etk to etk’, and make rel(lk)=[etk, etk’]. ○11

Theorem 4.2. Let TPs and TPt be two transformation patterns, if they correspond to
the source Ms and target model Mt, the semantics of Ms and Mt is equivalence.
Proof.

There are three parts of the semantic transformation of source model: the semantic
mapping from Ms to TPs, the semantic mapping from TPs to TPt, and the semantic
mapping from TPt to Mt. According to definition 3.3, the semantics of TPs and TPt is
equivalence. According to the theorem 4.1, the semantics of Ms and TPs is
equivalence. So the preserving semantic problem of Ms and Mt is equivalent to the
preserving semantic problem of TPt and Mt. Because Mt is constructed by TPt, the
preserving semantic problem only validates the semantic equivalence of element and
relationship of Mt. The validation of preserving the semantic equivalence of element
and relationship are the following:

(1) Element equivalence. nt is an element of TPt, nt ∈TPt.N,
<i> if nt is an automatic element, according to ⑦, the instance element ei of nt

satisfies nt=meta(ei), then TPt.N≌Mt.E;
<ii> if nt is a transformation pattern, according to ⑧, the instance sub model
Mt’ of nt satisfies nt.N=meta(Mt’.E), then TPt.N≌Mt.E;

(2) Relationship equivalence. rk is a relationship of TPt, rk∈TPt.R. There exists two
elements (ni, nj) and they satisfy rel(rk)=[ni,nj], ni,nj∈TPt.N,
<i> if ni and nj are two automatic elements, according to ③⑥, their instance
elements are eti and etj which are two elements of Mt. According to ⑨,there
exists the instance relationship ltk of lk, and rel(ltk)=[eti,etj], So TPt.R≌Mt.L;
<ii> if ni is a transformation pattern and nj is an automatic element. According
to ③⑩, there exists an element etk in the instance model Mti’ of ni, and a
relationship lk from etk to etj. The relationship satisfies rel(lk)=[etk,etj], so rk≌Mti’;
In the same way, if ni is an automatic element and nj is a transformation pattern,
there exists a relationship lk’, so TPt.R≌Mt.L;
<iii> if ni and nj are two transformation patterns, according to③○11 , if there
exists etk and etk’, the relationship lk between etk and etk’, and rel(lk)=[etk, etk’], so
TPt.R≌Mt.L.

5 Experiment

We validate the semantic equivalence of UADM and JBPM. There are three parts of
the validation process: (1) preserving semantic equivalence of UADM and TPs; (2)
preserving semantic equivalence of TPs and TPt; (3) preserving semantic equivalence
of TPt and JBPM. The validation process is the following:
(1) Preserving semantic equivalence of UADM and TPs

The metamodel of UADM contains Activity, Decision, ConstrolFlow, Start and
End. There are three basic patterns in UADM: sequence pattern, branching pattern
and loop pattern. We firstly define three transformation patterns according to these
basic patterns.

(a) A source sequence pattern is composed of querying sale data, filling sale order
and their relationship in UADM. It is defined as TPSS=<NSS, RSS, relSS, interCSS,
exterCSS>, where NSS={Activity, ControlFlow}, RSS={r1,r2}, relSS(r1)=[Activity,
ControlFlow], relSS(r2) =[ControlFlow, Activity], exterCSS={eC1}, eC1=<rs1,
TPSS,{Activity}>.

Note that rs1 is an external relationship, rs1 ∉ relSS.
(b) A source branching pattern is composed of auditing sale order, pass, and TPSS.

It is defined as TPSB=<NSB, RSB, relSB, interCSB, exterCSB>, where NSB={Activity,
Decision, ControlFlow, TPSS}, RSB={r3,r4,r5,r6}, relSB(r3)=[Decision, ControlFlow],
relSB(r4)=[ControlFlow, Activity], relSB(r5)=[Activity, ControlFlow], rellSB(r6)=
[ControlFlow, Decision], exterCSB={eC2}, eC2=<rs2, TPSB,{ Decision}>

Note that rs2 is an external relationship, rs2 ∉ relSB.

(c) A source loop pattern is composed of less 1000, auditing sale order, pass, and
TPSS. It is defined as TPSL=<NSL, RSL, relSL, interCSL, exterCSL>, where NSL={Activity,
Decision, ControlFlow, TPSS}, RSL={r7,r8,r9,rs1}, relSL(r7)=[Decision, ControlFlow],
relSL(r8)=[ControlFlow,TPSS], relSL(rs1)=[TPSS, ControlFlow], relSL(r9) =[ControlFlow,
Decision], exterCSL={eC3}, eC3=<r6, TPSL,{Activity}>.

According to the theorem 4.1, we validate the semantic equivalence of source
transformation patterns and UADM. The instance model of TPSS contains the
elements querying sale data and filling sale order. When the auditing order is error,
the sale data should be queried again. So there is a relationship between TPSS and rs1.
TPSS contains an external relationship eC1=<rs1, TPSS,{Activity}> to describe the
relationship. When the auditing order is ok, there exists a relationship between TPSL
and TPSB. Then there is a relationship r6 between TPSL and TPSB. TPSL contains an
external relationship eC3=<r6, TPSL,{Activity}> to describe the relationship. So the
transformation patterns (TPSS, TPSB, TPSL) preserve the semantic equivalence of Ms.
(2) Preserving semantic equivalence of TPs and TPt

We firstly define three target transformation patterns. JBPM contains TaskNode,
DecisionNode, and Transition.

(d) Target sequence pattern contain two TaskNodes and a Transition. Target
sequence pattern TPTS=<NTS, RTS, relTS, interCTS, exterCTS>, where NTS={TaskNode,
Transition}, RTS={r10,r11}, relTS(r10)=[TaskNode, Transition], relTS(r11)=[Transition,
TaskNode], exterCTS={eC4}, eC4=<rt1, TPTS,{TaskNode}>

(e) Target branching pattern contain a TaskNode, a DecisionNode, a Transition and
a TPTS. It is defined as TPTB=<NTB, RTB, relTB, interCTB, exterCTB>, where
NTB={TaskNode, DecisionNode, Transition, TPTS}, RTB={r12,r13,r14,rt1}, relTB(r12)=
[DecisionNode, Transition], relTB(r13)=[TaskNode, Transition], relTB(r14)=[TaskNode,
DecisionNode], relSB(rt1)=[DecisionNode, TPTS], exterCTB={eC5}, eC5=<rt2, TPTS,
{TaskNode}>

(f) Target loop pattern contain two DecisionNodes, a TPTS, and a TaskNode. It is
defined as TPTL=<NTL, RTL, relTL, interCTL, exterCTL>, where NTL={TaskNode,
DecisionNode, Transition, TPTS}, RTL={r15,r16,r17,r18,rt1}, relTL(r15)= [DecisionNode,
TPTS], relTL(r16)=[TPTS, TaskNode], relTL(r17)= [DecisionNode, TaskNode],
relTL(r18)=[TaskNode, DecisionNode], exterCTL={eC6}, eC6=<rt3, TPTL, {TaskNode}>

The semantics of TPs and TPt is equivalence. This is not the focus of this paper, and
therefore, we will not describe it here.

(3) Preserving semantic equivalence of TPt and JBPM
Mt is constructed by TPt. According to the theorem 4.2, the semantics of the

constructed elements and relationships is equivalence is equivalent to the semantics of
Ms. So the mapping between TPt and Mt preserves the semantic equivalence.

As noted above, the semantics of UADM to JBPM is equivalence.

6 Conclusions and Future Work

In this paper we propose an approach for validating semantic consistency of model
transformation. We analyze some basic patterns in models, e.g. sequence pattern,
branching pattern, and loop pattern, and use these basic patterns to define

transformation rules. Therefore, the semantic transformation of source model has
been divided three parts: (1) the semantic mapping from source transformation pattern
to source model; (2) the semantic mapping from source transformation pattern to
target transformation pattern; (3) the semantic mapping from target transformation
pattern to target model. The validation problem for semantic consistency of model
transformation is equivalent to the problem about the three semantic mappings. The
motivation example illustrates the effectiveness of our approach.

Future work is to optimize transformation rules constructed through our approach
transformation. For this reason, we plan to analyze the typical business patterns in
models and compose some transformation rules using these patterns to improve the
efficiency of model transformation.

Acknowledgments. Research works in this paper are supported by the National
Natural Science Foundation of China (60773064, 60904080), the National High-Tech
Research and Development Program of China (2009AA04Z153,
2008GG1000401028).

References

1. Miller J, Mukerji J. MDA Guide Version 1.0.1 [EB/OL]. OMG Document number
omg/2003-06-01. http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

2. Brent Hailpern, Peri Tarr. Model-driven development: The good, the bad, and the ugly [J].
IBM System Journal, 2006, 45(3): 451-461.

3. Beydeda S, Book M, Gruhn V. Model-Driven Software Development-Volume of Research
and Practice in Software Engineering [M]. Berlin: Springer, 2005.

4. J.H.Hausmann, R.Heckel, and S.Sauer. Extended model relations with graphical consistency
conditions. In UML 2002 Workshop on Consistency Problems in UML-based Software
Development, 2002:61–74.

5. Varró D, Varró G, Pataricza A. Designing the automatic transformation of visual languages.
Science of Computer Programming, 2002, 44 (2):205–227.

6. Kleppe A, Warmer J, Bast W. MDA Explained: The Model Driven Architecture: Practice
and Promise, Addison-wesley, Boston, 2003.

7. Varró D, Pataricza A. Automated Formal Verification of Model Transformation. In:
Proceedings of Workshop on Critical Systems Development with UML (CSDUML 2003),
Technische Unviersitat Munchen, 2003, 63-78.

8. Jinkui Hou, Haiyang Wang, Jun Ma et al. Semantic Description Framework for Architecture-
Centric Model Transformation. Journal of Software, 2009, 20(8):2113-2123.

9. Caplat G, Sourrouille JL. Model Mapping Using Formalism Extensions [J]. IEEE Software,
2005, 2(22):44-51.

10. Engels G, Heckel R, Kuster JM, et al. Consistency-Preserving Model Evolution Trough
Transformations [C]. In: Proceedings of UML’02, LNCS2460, Heidelberg: Springer-Verlag,
2002, 212-227.

11. Xiao He, Zhiyi Ma, Yan Zhang, Weizhong Zhang. Extending QVT Relations for business
process model transformation. Journal of Software, 2011, 22(2):195-210.

