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Abstract. The correctness of model transformation is an import research field 
in model-driven architecture. Syntactic correctness and semantic consistency 
are hot topics in the field of model transformation. Syntactic correctness has 
many mature solutions. However the validation of semantic consistency has 
some problems. Therefore, how to validate semantic consistency of model 
transformation is a major problem in model-driven development. In this paper, 
we propose a validation approach for semantic consistency of model 
transformation, which is based on pattern. We analyze some patterns in models 
and make these patterns as transformation pattern. We define transformation 
rule with transformation pattern and analyze three parts of semantic 
transformation. We present two theorems to validate semantic consistency of 
model transformation. Finally, we give a case to illustrate the effectiveness of 
our approach. 
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1   Introduction 

The correctness of model transformation is an important research field in model-
driven architecture (MDA) [1-2]. The research mainly focuses on syntactic 
correctness and semantic consistency [3]. Syntactic correctness has some mature 
solutions [4], e.g. planning algorithm [5]. However the validation of semantic 
consistency has some problems, e.g. effective theory. Therefore, how to validate 
semantic consistency of model transformation is a major problem in model-driven 
development of software systems. 

Model transformation consists of transformation rules which describe how a set of 
elements of the source model are transformed into a set of elements of the target 
model through transformation relationships [6]. Semantic consistency of model 
transformation is for maintaining consistency between source model and target model 
in the semantics. So, the validation problem for semantic consistency of model 
transformation is equivalent to the formulization proof of semantic consistency in the 
process of model transformation. 



Many methods to solve semantic consistency of model transformation have 
emerged from industrial and academic research. Varró [7] defined and validated the 
model constraints to preserve semantic consistency of model transformation. Jinkui 
Hou [8] proposed a semantic description framework, and promoted category theory to 
describe and validate semantics of model transformation. Caplat [9] extended formal 
language to describe and validate model semantics. Engles [10] provided the 
relationships of semantic objects of UML-RT to describe the consistency required 
among models, and proved these relationships through static analysis. XiaoHe [11] 
extended QVT Relations with three new concepts and discussed the semantics of the 
mapping pattern and creating model. 

Different model transformation methods may need different methods to preserve 
semantic consistency of model transformation. The paper proposes a validation 
approach for semantic consistency of model transformation based on pattern. We 
make some patterns, e.g. sequence pattern, branching pattern and loop pattern, in 
models as transformation patterns and use these transformation patterns to define 
transformation rule. There are three parts of the validation process of semantic 
consistency: (1) the semantic mapping from source model to source transformation 
pattern; (2) the semantic mapping from source transformation pattern to target 
transformation pattern; (3) the semantic mapping from target transformation pattern to 
target model. Then, the validation problem for semantic consistency of model 
transformation is equivalent to the problem about the three semantic mappings. 

The rest of this paper is structured as follows. In Sect. 2, we propose the motivating 
example which will be used throughout the paper. Section 3 provides the core 
concepts. Section 4 presents the validation theory of semantic consistency of model 
transformation. Section 5 illustrates the validation theory. Sect. 6 concludes the paper 
and further work. 

2   Motivation Example 

There are some basic patterns in models, e.g. sequence pattern, branching pattern, and 
loop pattern, which belong to business process model. The three patterns are shown in 
Fig.1 (a). We use the model transformation from UML Activity Diagram Model 
(UADM) to Java Business Process Model (JBPM) to describe how to preserve model 
semantics during model transformation. The UADM and JBPM are shown in Fig.1(b). 
The UADM describes a business process of submitting sale order. The process is: 
firstly query sale data, secondly fill these data into a sale order, thirdly audit the sale 
order, and finally submit the sale order. The activity about auditing the sale order has 
a judging condition, i.e. if the sale data is less than 1000, the sale order should be 
submitted directly. Otherwise the manager should audit the sale order. If the manager 
agrees the sale order, he submits the sale order. Otherwise the sale data will be 
queried again. 

The UADM contains these three patterns above. For example, the operations of 
querying sale data and filling the sale order correspond to the sequence pattern; the 
operation of checking the sale data corresponds to the branching pattern; the operation 



of auditing the sale order corresponds to the loop pattern, and the auditing loop 
pattern contains the sequence patter. 

 
Fig. 1. Motivation example 

The approaches of model transformation define transformation rules with the 
patterns. A pattern is either basic pattern or user-defined pattern. The user-defined 
pattern is generally defined according to domain business requirements. The patterns 
are called transformation patterns in transformation rules. These transformation 
patterns can simplify transformation definition, raise transformation efficiency, and 
improve transformation quality. 

3   Transformation Pattern and Transformation Rule 

Transformation rule, which is defined in model transformation based on pattern, 
contains two patterns: left pattern and right pattern. The two patterns also consist of 
some basic patterns and user-defined patterns. These basic patterns and user-defined 
patterns are called transformation pattern in the paper. Transformation patterns must 
be formed in pairs transformation rule, namely if left pattern contains a transformation 
pattern TPs, right pattern should contain another transformation pattern TPt. The 
semantics of TPs and TPt must be equivalence. The metamodel of transformation rule 
is shown in Fig.2. 

The class TransformationRule consists of LeftPattern, RightPattern and Constraint. 
LeftPattern and RightPattern are composed of Element and TransformationPattern. 
Element has three subclasses, and they are TransformationPattern, NodeElement, and 
RelationElement. TransformationPattern is composed of NodeElement, 



RelationElement, and Constraint. Constraint has two subclasses: interConstraint and 
exterConstraint. interConstraint describes the internal relationships of LeftPattern 
and RightPattern, and exterConstraint describes the external relationships of 
LeftPattern and RightPattern. interConstraint can be described by OCL, while 
exterConstraint is described according to the constraint relationships of NodeElement, 
RelationElement and TransformationPattern. We focus on the semantic information 
of exterConstraint in the paper. We firstly analyze the external relationships of 
transformation pattern, which are illustrated in Fig. 3. 

 

Fig. 2. Metamodel of transformation rule 

In Fig. 3, there are two kinds of constraint relationships: Element-Pattern and 
Pattern-Pattern. In the first constraint relationship, there is a relationship r1 between 
the element n1 and the transformation pattern TP1. The end element of r1 is one of 
elements of TP1. Because TP1 contains two elements (n2 and n3), there are three 
conditions of the mapping between n1 and TP1: (1) from n1 to n2; (2) from n1 to n3; (3) 
from n1 to n2 and n3. There needs an external constraint relationship to accurately 
describe the mapping condition between n1 and TP1. In the second constraint 
relationship, the identifier r2 is a relationship between the transformation patterns TP1 
and TP2. Because the start element of r2 comes from TP3 and the end element of r2 
comes from TP2, we divide the constraint relationship (Pattern-Pattern) into two 
constraint relationships (Element-Pattern): the relationship between r2 and TP2, and 
the relationship between r2 and TP3. The two relationships are similar to the 
relationship between r1 and TP1. 

We firstly propose the model definition, the definition of transformation pattern 
with the external constraint relationship, and the definition of transformation rule. 
Definition 3.1 (Model): A model is defined as  

M=<E, L, rel, meta> (1) 

Where 
- E={e1,e2,...,es} denotes a finite set of model elements,  



- L={l1,l2,...,lt} denotes a finite set of the relationships among model elements, 
- rel(lk)=[ei,ej] denotes a relational function between model elements, and 

describes that ei is a start element of lk and ej is an end element of lk, ei,ej∈E, 
1≤i,j≤s, lk ∈L, 1≤k≤t, 

- meta(eu) denotes an instance function, and it describes the metamodel of eu, 
1≤u≤s. 

Note that we use ”.” to describe the element of model, e.g. M.E describes the 
element set of M, and M.L denotes the relationship set of M. 
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Fig. 3. The external relationship of transformation pattern 

Definition 3.2 (Transformation Pattern): A transformation pattern is defined as  

TP=<N, R, rel, interC, exterC> (2) 

Where 
- N={n1,n2,...,np} denotes a finite set of nodes, and its instance element set is 

M.E; 
- R={r1,r2,...,rq} denotes a finite set of relationships, and its instance element 

set is M.L; 
- rel(rk)=[ni,nj] denotes an element-relationship function, and describes that ni 

is a start element of rk and nj is an end element of rk, ni, nj∈N, 1≤i,j≤p, 
rk ∈R, 1≤k≤q,  

- interC={iC1,iC2,...,iCm} denotes a finite set of the internal constraint 
relationships; 

- exterC={eC1,eC2,...,eCn} denotes a finite set of the external constraint 
relationships, eCx=<r,TP, {nx,nx+1,...,nl}> denotes the constraint relationship 
between r and TP, r ∉R, 1≤x,l≤p. Every element nk is either a start element 
or an end element of r, nk∈N, 1≤k≤p. 

In Fig. 3, the three mapping condition of the constraint relationship between n1 and 
TP1 can be defined as the following: 

eC1=<r,TP,{n2}>, eC2=<r,TP,{n3}>, eC3=<r,TP,{n2,n3}>. 



When a transformation rule contains an element, we make the element as a 
transformation pattern. Therefore, the left and right pattern of transformation rule can 
contain one or more transformation patterns. 
Definition 3.3 (Transformation Rule): A transformation rule is defined as  

TR=<LP, RP, C> (3) 

Where 
- LP={tps1,tps2,...,tpsu} denotes left pattern, and it contains a finite set of 

source transformation patterns,  
- RP={tpt1,tpt2,...,tptv} denotes right pattern, and it contains a finite set of 

target transformation patterns; 
- C denotes constraint relationship of LP and RP. 

The left and right pattern are formed pairs in transformation rule, i.e. if left pattern 
contain the transformation pattern tpsi, right pattern should contain another 
transformation pattern tptj. The semantics tpsi, is similar to the semantics of tptj, 1≤i≤u, 
1≤j≤v. 

4   The Validating of Semantic Consistency of Model 
Transformation 

The goal of preserving semantic consistency of model transformation is that the 
semantics of source and target model is equivalence. During a process of model 
transformation based on pattern, the semantic transformation process from source 
model to target model is an implementation process of transformation rules. The 
processes contain three parts of model semantic mappings: the semantic mapping 
from left pattern to source model, the semantic mapping from left pattern to right 
pattern, and the semantic mapping from right pattern to target model. Because the left 
and right patterns have the equivalent semantics, the problem of preserving model 
semantic consistency is similar to two the semantic mapping problem: the mapping 
from left pattern to source model, and the mapping from right pattern to target model. 
We will propose the theorems to solve the problem.  

4.1   Semantic Mapping from source transformation pattern to source model 

According to the definition 3.3, the left pattern of transformation rule is a set of 
source transformation patterns. Every element of source transformation pattern is 
either automatic element or another transformation pattern. So we describe the 
semantic mapping from left pattern to source model according to two mapping 
conditions. The identifiers M and TP denote a model and a transformation. If the 
semantics of M and TP is equivalence, we called the equivalence relationship as TP≌
M. We provide a theorem to validate the semantic consistency of the mapping 
between transformation pattern and model. 



Theorem 4.1 Let M be a Model, the node set of M is M.E={ e1,e2,...,es}, TP is a 
transformation pattern, the node set of TP is TP.N={n1,n2,...,np}. TP≌M if and only if 
Satisfying the following three conditions: 
(1) every node ni∈TP.N, then ni∈∪meta(M.E); 
(2) every relationship rj∈TP.R, then rj∈∪meta(M.L); 
(3) every external constraint relationship eC∈TP.exterC preserves the semantics. 
Proof.  
(1) Every node of transformation pattern is a certain metamodel element of model 

element. ni is an element of TP, 1≤i≤p, 
<i> if ni is an automatic element, there exists a node ek ∈M.E which satisfies 

ni=meta(ek). So ni∈∪meta(M.E); ① 
<ii> if ni is a transformation pattern, it should semantic map with a submodel 

Mi’ of M. The node set of Mi’ is a sub set of M nodes, i.e. Mi’.E ⊆M.E. 
Every element nl of ni, there exists a node eo∈Mi’.E and it satisfies 
nl=meta(eo). So ni∈∪meta(M.E); ② 

(2) Every relationship of transformation pattern is a certain metamodel relationship 
of model element. rj is a relationship of TP, 1≤j≤q. According to the definition 
3.2, rel(rj)=[nj1,nj2], nj1 and nj2 are the elements of TP, i.e. nj1,nj2∈TP.N. And 
according to ①②, because nj1,nj2∈∪meta(M.E), there exists two elements 
eu,ev∈M.E. They satisfy nj1=meta(eu) and nj2=meta(ev). To the relationship lw 

between eu and ev, there exists rel(lw)=[eu, ev]. So rj∈∪meta(M.L); ③ 
(3) The constraint relationship of transformation pattern satisfies semantic 

consistency. There are two parts of the constraint relationship: the internal 
constraint relationship and the external constraint relationship. Preserving the 
internal constraint relationship can be validated by OCL, while preserving the 
external constraint relationship is validated according to the definition of the 
external constraint relationship. There is an external relationship r between the 
element ni and the transformation patter TP: 
<i> if ni is an automatic element, there exists an instance element lk(lk∈M.L) of 
r and rel(lk)=[ei,ej] (ei,ej∈M.E). According to ①②, ni satisfies either ni=meta(ei) 
or ni=meta(ej), then the external constraint relationship eC=<r,TP,{ni}> 
preserves the semantics of r and TP; ④ 
<ii> if ni is a transformation pattern TPi, according to ②, there exists a sub 
model Mj’ of M, and ni≌Mj’, then a certain element nk of TPi may be the start or 
end element of r, nk∈ TPi.N. According to ④, the external constraint relationship 
eC=<r,TPi,{nk}> preserves the semantics of r and TP. ⑤ 

4.2   Semantic Mapping from target transformation pattern to target model 

In the session, we will propose the construction process from target transformation 
pattern to target model, and provide a theorem to validate whether the process 
preserve the semantics. 



TPs and TPt are the source and target transformation patterns, and their 
corresponding mapping models are Ms and Mt. The construction process from TPt to 
Mt is the following: 
(1) Constructing element. nt is an element of TPt, nt∈TPt.N, 

<i> if nt is an automatic element, according to the instance relationship of the 
metamodel and model, constructing a new model element ei and make 
nt=meta(ei); ⑥ 
<ii> if nt is a transformation pattern, according to the corresponding element ns 
of TPs: 

a)   if ns is an automatic element, constructing a new element ei, and make 
nt=meta(ei)；⑦ 

b) if ns is a transformation pattern, constructing a sub model Mt’, and make 
nt.N=meta(Mt’.E)；⑧ 

(2) Constructing relationship. rk is a relationship of TPt, rk∈TPt.R. There exists two 
elements (ni,nj) and they satisfy rel(rk)=[ni,nj], ni,nj∈TPt.N,  
<i> if ni and nj are two automatic elements, according to ①, their instance 
elements (eti, etj) are the automatic elements of Mt. ni and nj satisfy ni=meta(eti) 
and nj=meta(etj). Then, constructing a relationship ltk from eti to etj, and make 
rel(ltk)=[ eti,etj], ltk∈Mt.L; ⑨ 
<ii> if ni is a transformation pattern and nj is an automatic element. According 
to ②,ni corresponds to a sub model Mti’ of Mt, Mti’.E={eti1,eti2,…,etim}. If there 
exists an external constraint relationship eC=<r,ni,{etj}>, the model element etk 
will be found in Mti’.E Then constructing a relationship lk from etk to etj, and 
make rel(lk)=[etk,etj]. In the same way, if ni is an automatic element and nj is a 
transformation pattern, there exists Mtj’.E={etj1,etj2,…,etjn}. According to the 
external constraints relationship eC=<r,nj,{ni}>, there exists an element etk’ in 
Mtj’.E, constructing a relationship lk’ from eti to etk’, make rel(lk’)=[eti, etk’]; ⑩ 
<iii> if ni and nj are two transformation patterns, according to ②, ni and nj are 
corresponds to the sub model Mti’ and Mtj’, and these sub models satisfy 
Mti’.E={eti1,eti2,…,etim} and Mtj’.E={etj1,etj2,…,etjn}.According to the external 
relationships eC1=<r,ni,{etj1,etj2,…,etjn}> and eC2=<r,nj,{eti1,eti2,…,etim}>, if there 
exists two elements etk and etk’ in Mti’.E and Mtj’.E, constructing a relationship lk 
from etk to etk’, and make rel(lk)=[etk, etk’]. ○11  

Theorem 4.2. Let TPs and TPt be two transformation patterns, if they correspond to 
the source Ms and target model Mt, the semantics of Ms and Mt is equivalence. 
Proof. 

There are three parts of the semantic transformation of source model: the semantic 
mapping from Ms to TPs, the semantic mapping from TPs to TPt, and the semantic 
mapping from TPt to Mt. According to definition 3.3, the semantics of TPs and TPt is 
equivalence. According to the theorem 4.1, the semantics of Ms and TPs is 
equivalence. So the preserving semantic problem of Ms and Mt is equivalent to the 
preserving semantic problem of TPt and Mt. Because Mt is constructed by TPt, the 
preserving semantic problem only validates the semantic equivalence of element and 
relationship of Mt. The validation of preserving the semantic equivalence of element 
and relationship are the following:  



(1) Element equivalence. nt is an element of TPt, nt ∈TPt.N, 
<i> if nt is an automatic element, according to ⑦, the instance element ei of nt 

satisfies nt=meta(ei), then TPt.N≌Mt.E; 
<ii> if nt is a transformation pattern, according to ⑧, the instance sub model 
Mt’ of nt satisfies nt.N=meta(Mt’.E), then TPt.N≌Mt.E; 

(2) Relationship equivalence. rk is a relationship of TPt, rk∈TPt.R. There exists two 
elements (ni, nj) and they satisfy rel(rk)=[ni,nj], ni,nj∈TPt.N, 
<i> if ni and nj are two automatic elements, according to ③⑥, their instance 
elements are eti and etj which are two elements of Mt. According to ⑨,there 
exists the instance relationship ltk of lk, and rel(ltk)=[eti,etj], So TPt.R≌Mt.L; 
<ii> if ni is a transformation pattern and nj is an automatic element. According 
to ③⑩, there exists an element etk in the instance model Mti’ of ni, and a 
relationship lk from etk to etj. The relationship satisfies rel(lk)=[etk,etj], so rk≌Mti’; 
In the same way, if ni is an automatic element and nj is a transformation pattern, 
there exists a relationship lk’, so TPt.R≌Mt.L; 
<iii> if ni and nj are two transformation patterns, according to③○11 , if there 
exists etk and etk’, the relationship lk between etk and etk’, and rel(lk)=[etk, etk’], so 
TPt.R≌Mt.L. 

5   Experiment 

We validate the semantic equivalence of UADM and JBPM. There are three parts of 
the validation process: (1) preserving semantic equivalence of UADM and TPs; (2) 
preserving semantic equivalence of TPs and TPt; (3) preserving semantic equivalence 
of TPt and JBPM. The validation process is the following: 
(1) Preserving semantic equivalence of UADM and TPs 

The metamodel of UADM contains Activity, Decision, ConstrolFlow, Start and 
End. There are three basic patterns in UADM: sequence pattern, branching pattern 
and loop pattern. We firstly define three transformation patterns according to these 
basic patterns. 

(a) A source sequence pattern is composed of querying sale data, filling sale order 
and their relationship in UADM. It is defined as TPSS=<NSS, RSS, relSS, interCSS, 
exterCSS>, where NSS={Activity, ControlFlow}, RSS={r1,r2}, relSS(r1)=[Activity, 
ControlFlow], relSS(r2) =[ControlFlow, Activity], exterCSS={eC1}, eC1=<rs1, 
TPSS,{Activity}>. 

Note that rs1 is an external relationship, rs1 ∉ relSS. 
(b) A source branching pattern is composed of auditing sale order, pass, and TPSS. 

It is defined as TPSB=<NSB, RSB, relSB, interCSB, exterCSB>, where NSB={Activity, 
Decision, ControlFlow, TPSS}, RSB={r3,r4,r5,r6}, relSB(r3)=[Decision, ControlFlow], 
relSB(r4)=[ControlFlow, Activity], relSB(r5)=[Activity, ControlFlow], rellSB(r6)= 
[ControlFlow, Decision], exterCSB={eC2}, eC2=<rs2, TPSB,{ Decision}> 

Note that rs2 is an external relationship, rs2 ∉ relSB. 



(c) A source loop pattern is composed of less 1000, auditing sale order, pass, and 
TPSS. It is defined as TPSL=<NSL, RSL, relSL, interCSL, exterCSL>, where NSL={Activity, 
Decision, ControlFlow, TPSS}, RSL={r7,r8,r9,rs1}, relSL(r7)=[Decision, ControlFlow], 
relSL(r8)=[ControlFlow,TPSS], relSL(rs1)=[TPSS, ControlFlow], relSL(r9) =[ ControlFlow, 
Decision], exterCSL={eC3}, eC3=<r6, TPSL,{Activity}>. 

According to the theorem 4.1, we validate the semantic equivalence of source 
transformation patterns and UADM. The instance model of TPSS contains the 
elements querying sale data and filling sale order. When the auditing order is error, 
the sale data should be queried again. So there is a relationship between TPSS and rs1. 
TPSS contains an external relationship eC1=<rs1, TPSS,{Activity}> to describe the 
relationship. When the auditing order is ok, there exists a relationship between TPSL 
and TPSB. Then there is a relationship r6 between TPSL and TPSB. TPSL contains an 
external relationship eC3=<r6, TPSL,{Activity}> to describe the relationship. So the 
transformation patterns (TPSS, TPSB, TPSL) preserve the semantic equivalence of Ms. 
(2) Preserving semantic equivalence of TPs and TPt 

We firstly define three target transformation patterns. JBPM contains TaskNode, 
DecisionNode, and Transition. 

(d) Target sequence pattern contain two TaskNodes and a Transition. Target 
sequence pattern TPTS=<NTS, RTS, relTS, interCTS, exterCTS>, where NTS={TaskNode, 
Transition}, RTS={r10,r11}, relTS(r10)=[TaskNode, Transition], relTS(r11)=[Transition, 
TaskNode], exterCTS={eC4}, eC4=<rt1, TPTS,{TaskNode}> 

(e) Target branching pattern contain a TaskNode, a DecisionNode, a Transition and 
a TPTS. It is defined as TPTB=<NTB, RTB, relTB, interCTB, exterCTB>, where 
NTB={TaskNode, DecisionNode, Transition, TPTS}, RTB={r12,r13,r14,rt1}, relTB(r12)= 
[DecisionNode, Transition], relTB(r13)=[TaskNode, Transition], relTB(r14)=[TaskNode, 
DecisionNode], relSB(rt1)=[DecisionNode, TPTS], exterCTB={eC5}, eC5=<rt2, TPTS, 
{TaskNode}> 

(f) Target loop pattern contain two DecisionNodes, a TPTS, and a TaskNode. It is 
defined as TPTL=<NTL, RTL, relTL, interCTL, exterCTL>, where NTL={TaskNode, 
DecisionNode, Transition, TPTS}, RTL={r15,r16,r17,r18,rt1}, relTL(r15)= [DecisionNode, 
TPTS], relTL(r16)=[TPTS, TaskNode], relTL(r17)= [DecisionNode, TaskNode], 
relTL(r18)=[TaskNode, DecisionNode], exterCTL={eC6}, eC6=<rt3, TPTL, {TaskNode}> 

The semantics of TPs and TPt is equivalence. This is not the focus of this paper, and 
therefore, we will not describe it here. 

(3) Preserving semantic equivalence of TPt and JBPM 
Mt is constructed by TPt. According to the theorem 4.2, the semantics of the 

constructed elements and relationships is equivalence is equivalent to the semantics of 
Ms. So the mapping between TPt and Mt preserves the semantic equivalence. 

As noted above, the semantics of UADM to JBPM is equivalence. 

6   Conclusions and Future Work 

In this paper we propose an approach for validating semantic consistency of model 
transformation. We analyze some basic patterns in models, e.g. sequence pattern, 
branching pattern, and loop pattern, and use these basic patterns to define 



transformation rules. Therefore, the semantic transformation of source model has 
been divided three parts: (1) the semantic mapping from source transformation pattern 
to source model; (2) the semantic mapping from source transformation pattern to 
target transformation pattern; (3) the semantic mapping from target transformation 
pattern to target model. The validation problem for semantic consistency of model 
transformation is equivalent to the problem about the three semantic mappings. The 
motivation example illustrates the effectiveness of our approach. 

Future work is to optimize transformation rules constructed through our approach 
transformation. For this reason, we plan to analyze the typical business patterns in 
models and compose some transformation rules using these patterns to improve the 
efficiency of model transformation. 
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