
Control-flow Pattern Based Transformation from UML
Activity Diagram to YAWL

Zhaogang Han1 , Li Zhang1 and Jimin Ling1, Shihong Huang2
1 School of Computer Science & Engineering，Beihang University, China

2Department of Computer Science&Engineering，Florida Atlantic University,USA
{hanzhaogang@gmail.com，lily@buaa.edu.cn，lingjimin@126.com，shihong@fau.edu}

Abstract. Business process verification is an important topic in business process management
(BPM). The verification of standard UML Activity Diagram is not easy due to lack of mature
tools. YAWL (yet another workflow language) has a formal semantics based on Petri net;
verification of YAWL model seems easier than other modeling languages such as UML-AD. A
series of mature verification tools has been released (Woflan, WofYAWL, ProM) based on
YAWL to find structural errors, such as deadlocks in the model. These tools can be used for
verifying UML-AD models if they can be transformed to YAWL models. The most challenging
problem is that some control-flow patterns in UML-AD can’t be transformed via an element-to-
element mapping. To solve this problem we provide a control-flow pattern based method for
transforming a UML-AD model to YAWL. We regard these patterns that need to be
transformed as whole model segments, pick them out from the UML-AD model and transform
the left part using an element-to-element mapping as well as an object flow transforming
method. We subsequently transform the picked-out patterns via patterns-based transformation
and combine all the transformed YAWL segments to a new YAWL net.

Keywords: Business Process Verification, UML Activity Diagram, YAWL,
Transformation，Control-flow Pattern.

1 Introduction

Business process verification is an important topic in business process management
[1-5]. This involves identifying structural conflicts in the business process definition.
UML Activity Diagram is intended for modeling computational and business
processes [6-9]. UML Activity Diagram (UML-AD for short) has a wide usage in
business process modeling and lots of research work have been done concerning its
verification [10-12] , but these work usually take a subset of UML-AD as a
verification basis and some advanced control structures (for example, cancel activity
and cancel region) has been excluded from this subset.

YAWL [13-15] is a BPM system having a formal semantics based on Petri net.
Because of its foundation on Petri net, its verification seems easier than other
modeling languages such as UML-AD. There are lots of research works [16-19] and a
series of mature tools [20-24] concerning the verification of YAWL. And YAWL
models with advanced control structures like or-join and cancel region can be verified
using these mature tools. In order to benefit from these mature tools, a transformation
from UML-AD to YAWL is needed. In [25], the first step has been taken but only a

small subset of UML-AD has been taken into account. So it is a good start but far
from enough. In this paper we try to give a deep analysis of this transformation.

Some key questions in such a transformation are “Can we keep all the control
aspect information without being lost in the transforming procedure” and “what
technology should be taken to guarantee a “correct” transformation”. In this paper a
method based on control-flow patterns is proposed to solve these problems.

We propose a three-step method to implement this transformation. Based on a
rigorous analysis, numerous results are drawn on how UML-AD and YAWL support
all the 43 control-flow patterns, control information of which patterns will lose during
the transformation, which pattern need to be transformed as a model segment and
which pattern can be transformed by element-to-element method. After picking out
the model segments that need to be transformed by pattern-based way in the first step,
we transform the rest parts of model based on an element-to-element mapping rule. In
the second step we transform UML-AD object nodes and object flows into YAWL
data and control flow since UML-AD object flows also contain control informations.
In the third step we transform the picked-out model segments via patterns-based
method and combine all the transformed YAWL segments to a whole YAWL net.

The rest of the paper is organized as follows. Section 2 provides background
information regarding model transformation and UML activity diagram. In section 3
based on the assumption that the model segments that need to be transformed by
pattern-based way have been picked out, we transform the rest parts of model based
on UML-AD and YAWL meta-models. An element-to-element mapping is used first
followed by transformation of UML-AD objects node and objects flow into YAWL
data and control flow. Section 4 illustrates which patterns need to be transformed as a
model segment by a pattern-based method and which patterns can be transformed by
an element-to-element transformation based on a rigorous analysis. We then pick out
the patterns (model segments) that need a pattern-based transformation and transform
them via patterns-based method and combine all the transformed YAWL segments to
a whole YAWL net. After presenting an example to illustrate our method (Section 5),
we draw a conclusion and present future research issues in section 6.

2 Preliminaries

2.1 Model Transformation

Model transformation technology is first used in Model-Driven Software
Development and now it has a widely application in many research domains [26].
Two kind of model transformation methods have been identified in [27]: Horizontal
transformation where the source and target models reside at the same abstraction level
and vertical transformation where the source and target models reside at different
abstraction levels. The key point of model transforming is the definition of
transformation rules. Traditional model transformation methods usually define their
transformation rules based on the meta-models of the source model and the target

model. Transformation rules are the mapping relations between the elements in the
meta-models of the source and target model in majority of cases.

Model transformation is used to bridge the gaps between different business
process languages on a different level of abstraction in BPM. Lots of research work
has been done to transform other business process modeling languages to YAWL [25,
28-31]. In [28, 29] BPMN (business process modeling notation) has been transformed
into YAWL. In [30] EPC (Event-driven Process Chains) has been transformed into
YAWL. In [31] BPEL has been transformed into YAWL. These transformations all
aiming at the benefits from the verification tools based on YAWL since these
modeling languages support advanced control-flow patterns such as or-join and
cancel region and YAWL verification tools can verify these patterns[32].

Pattern-based model transformation is not a novel technique. Some researchers
have earlier proposed the pattern-based transformation. They suggested selecting
some certain model segment in the source model and transforming them to model
segment in the target model. But how to determine these model segments (patterns)
remains an unsolved problem. Most of current existing researches use design patterns
to conduct the pattern-based model transformation when transforming PIM model to
PSM model in a MDA environment. Graphic pattern was also used to transform a
source graphical model to a target graphical model. This kind of pattern-based method
only enlarges the operating granularity during the transformation (from element to
model segment), it has no advantage in enhancing the conversion accuracy and
ensuring the transforming correctness compared to the element-to-element method.
Using the control-flow pattern based method proposed in this paper, we can expect a
more precise and more “correct” result than the element-to-element method.

2.2 UML Activity Diagram

A business process model usually includes four parts of information: control
aspect, data aspect, resource aspect and exception handling aspect. Since Woflan,
WofYAWL and ProM mainly verify the control structures of YAWL model and our
purpose is to check structural errors in UML-AD model (deadlock and etc.), we only
show an analysis on how to transform control-flow aspect information to YAWL,
other issues such as resources and exception handling is beyond this paper’s scope.
Figure 1 is a simplified UML-AD meta-model that contains necessary meta-classes
that are needed to model business processes and we will exclude the resource (the
ActivityPartation meta-class) and exception handling (the ExecptingHandler meta-
class) aspects informations since they have no effects on the control structure
correctness of business process model.

3 Meta-model Based Transformation

3.1 UML Meta-model
In order to define the element-to-element transformation rule, UML-AD meta-

model and YAWL meta-model is needed. UML is a language defined under the MOF
framework, UML-AD meta-model is described in [33] (chapter 11 and chapter 12).

The meta-model is, however, scattered in many small segments and some meta-
classes solve no purpose for transformation. In this paper we illustrate in Figure 1the
recommended subset of UML-AD notation for process definition. Meta-classes in
light color rectangles stand for meta-classes having no graphic notations and used as
classifier. Meta-classes in dark color rectangle stand for meta-classes having graphic
notations which are used in modelling. The details of attributions can be found in [33].

Figure 1. UML-AD meta-model

3.2 YAWL Meta-model
unlike UML-AD, YAWL is defined basing on a formal semantic of Petri net and

it has no meta-model that fits the MOF framework. The YAWL graphic notations are
shown in Figure 2.

Figure 2. YAWL notations

After a careful study of paper [13, 34] and the YAWL 2.1 system, we come up
with a YAWL meta-model that includes all the notations and meta-classes (without
graphic notation) as shown in figure 3. Meta-classes in light color rectangles stand for
meta-classes having no graphic notations which are used as classifier. Meta-classes in

dark color rectangle stand for meta-classes having graphic notations which are used in
modeling. Due to the limitation on space, the attributions have been left out.

Figure 3. YAWL meta-model

3.3 Element-to-element Transformation Rule

Based on UML-AD meta-model and YAWL meta-model given in previous
section, we can define an element-to-element mapping rule as shown in table 1.

Table 1. Element-to-element mapping rule
UML-AD Notation YAWL Notation
StartNode&FinishNode
InitialNode InputCondition
ActivityFinalNode OutputCondition
ExecutableNode
Action AtomicTask
 SendSignalAction AtomicTask
AcceptEventAction EventTask
AcceptTimeEventAction TimeTask
CallBehaviorAction CompositeTask
ExpansionRegion MultiInstanceCompositeTask
ControlNode
ForkNode And-SplitNode
JoinNode And-JoinNode
DecisionNode Xor-SplitNode
MergeNode Xor-JoinNode

Edge(Flow)
ControlFlow ControlFlow
Containment
Activity Net

Not all notations have been listed in table 1. Note that there are no direct
mapping relations between every element in UML-AD and YAWL. For example
there are no corresponding YAWL notations for UML-AD object node and its
subclasses.
3.4 Transform Object-Flows

Some business process modeling languages have more than one kind of flows
connecting the basic modeling elements. For example BPMN has two types of flow
namely sequence flow and message flow [35]. Some languages have only one kind of
flow. The Event-driven Process Chains (EPCs) only has control flow connecting
event, function and connector.

There are two kinds of activity edges in UML-AD, namely control flow and
object flow [33]. While YAWL only has control flow connecting condition and task.
YAWL has no graphic modelling notations for objects and object flow. How to
transform object flow and different kinds of objects in UML-AD to YAWL is a big
problem.

Objects and object flow are very important in UML-AD and there are several
different kinds of object notations. These notations have been listed in figure 4. For
more details about these notations refer to [33]. Not all object aspect informations will
be transformed into YAWL since the majority of them have nothing to do with the
control aspect information.

Figure 4. Object notations in UML-AD

As a business process modeling language, YAWL has provided modeling
mechanism to describe objects and data, as well as the movement of objects and data
transfer. In YAWL, data-aspects information is modeled as variables. There are two
types of variables namely net variable and task variable, both of which can have a
variable type pre-defined or defined by the user. Task can have input parameters and
output parameters, an input parameter defines a data transformation from a net
variable to a task variable and an output parameter defines a data transformation from
a task variable to a net variable. For more information about data aspect of YAWL,
refer to [36], chapter 5.

Figure 5. Data aspect meta-classes in YAWL

When transforming object flows in UML-AD to YAWL, we first transform all
the object nodes to the “pin” form and then we transform pins attached to actions and
object flow related with them to YAWL data attached to tasks and control flow
between the tasks. Object flow attributes like weight and effect have been omitted
during the transformation since they have nothing to do with the control-flow
information contained in object flows.

As an example, consider a UML-AD segment with object flow shown in figure 6.

Figure 6. UML-AD object flow example

Figure 7. Corresponding YAWL notations of figure 6

We can model this UML-AD segment in YAWL editor. The graphic notations
have been shown in figure 7. And in order to model the object “order” between tasks
“FillOrder” and “ShipOrder”, we need to define a data type named “OrderType” in
the YAWL net that contains these two actions as shown in figure 8 and a net variable
named “Order” with that data type. Then we define a task variable of task
“FillOrder” and a task variable of task “ShipOrder” with the same name “Order”, both
of which have a data type of “OrderType”. The transformation of “Order” then can be
illustrated by two task parameters. One parameter is defined under task “FillOrder”
with a parameter type “Out” to illustrate the flow of “Order” from the task
“FillOrder” to the net and the other parameter is defined under task “ShipOrder” with
a parameter type “In” to illustrate the flow of “Order” from the net to the task
“ShipOrder”.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="OrderType">
 <xs:sequence>
 <xs:element name="OrderState" type="xs:enumeration{normal,final,pending}" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Figure 8. Data type definition of OrderType

4 Control-flow Pattern based Transformation

4.1 An Introduction to Control-flow Pattern

Workflow pattern was first proposed by Van Aalst in 2003. In [37] Aalst
systemically defined 20 workflow control-flow patterns. In 2006 Russell put forward
a revised version of workflow control-flow patterns [38]. Shortly after the proposal of
control-flow pattern, other workflow patterns like workflow data pattern [39, 40],
workflow resource pattern [41, 42] and workflow exception pattern [43, 44] have also

been identified. For more information about workflow patterns, refer to
http://www.workflowpatterns.com/.

The research of workflow patterns have provided a thorough examination of
various perspectives (control flow, data, resource, and exception handling) that need
to be supported by a workflow language or a business process modeling language.
The examined results can be used to evaluate the suitability of a particular process
language or workflow system for a particular project, implement certain business
requirements in a particular process-aware information system, and serve as a basis
for language and tool development.

43 control-flow patterns are used to guarantee a “correct” transformation and
enhance the precision of the transformation in this paper. Control-flow patterns are
divided into eight categories, the first and the most simple category is the basic
control-flow patterns, which includes sequence, Parallel Split, Synchronization,
Exclusive Choice and Simple Merge. Figure 9 illustrates these five patterns in UML-
AD. For detail description of these control-flow patterns, refer to [45].

Figure 9. Basic control-flow patterns in UML-AD

4.2 Control-flow Patterns in UML-AD and YAWL
Neither YAWL nor UML-AD supports all the 43 control-flow patterns. For the

patterns that are supported only by UML-AD, the control aspect informations that
they stand for will be lost during the transformation, since they can’t be described in
YAWL. These patterns mainly belong to the categories of advanced branching and
synchronization and trigger patterns; these patterns are colored as red in table 2. This
implies the limits of YAWL when describing control aspect informations of business
process model. An improved version of YAWL language has been proposed in [46],
this new YAWL supports all the 43 control-flow patterns.

There are 10 patterns that are not supported by UML-AD though YAWL
supports them. These patterns mainly belong to the category of advanced branching
and synchronization and the category of state-based patterns. These are colored as
light green in table 2. State-based patterns are not well supported since there are no
notations representing state changing like a condition in YAWL.

Patterns that supported by both UML-AD and YAWL can be and should be
transformed from UML-AD to YAWL without losing the control aspect information.
But how to transform them properly remains a problem. After a thorough study of
these patterns in UML-AD and YAWL, we identify 6 patterns that need to be

transformed by a pattern-based way and 2 patterns that in some certain cases need to
be transformed by a pattern-based way which are colored as orange in table 2. The
patterns colored as green in table 2 represent those patterns that can be easily
transformed using an element to element transformation. Detailed analysis will be
given in the next section.

Besides these patterns, there are 3 patterns colored as blue in table 2 namely
Pattern 22(Recursion), Pattern 27(Complete Multiple Instance Activity), and Pattern
36(Dynamic Partial Join for Multiple Instances) which are not supported by either
UML-AD or YAWL.

Table 2. Control-flow pattern based evaluation of UML-AD and YAWL

To achieve a + rating (direct support) or a +/- rating (partial support) the language should satisfy the
corresponding evaluation criterion of the pattern. Otherwise a - rating (no support) is assigned. We use
color gray to identify the 8 pattern categories. Blue color stands for patterns that not supported by both
UML-AD and YAWL. Light green is used for patterns that UML-AD doesn’t support. Red color represents
the patterns that YAWL doesn’t support. Green color stands for patterns that can be transformed by
element-to-element mapping. Orange color stands for patterns that need to be transformed by pattern-based
transformation.
4.3 Patterns should be transformed by Pattern-based Transformation

There are five basic control patterns that are supported by all BPM languages.
Due to their simplicity it seems unnecessary to transform them by the complex
pattern-based way. But a careful study reveals that this is not the case. If parallel split
(pattern 2) and synchronization (pattern 3) is modeled in UML-AD in the way shown
in figure 10 (a), there will be no problem if we transform these two patterns by an

element-to-element mapping: action in UML-AD to atomic task in YAWL, ForkNode
in UML-AD to And-Split Node in YAWL and JoinNode in UML-AD to And-Join
Node in YAWL. Then we will get a YAWL net as shown in figure 10 (c). The
YAWL net we obtained is correct as it is in accordance with the YAWL syntax. We
only need to first merge the Atomic Task 1 and AndJoin Task and then merge the
AndSplit Task and Atomic Task 2 to finally get a result as shown in figure 10 (d).

UML-AD language grammar allows another form of these two patterns.
Consider a model segment shown in figure 10 (b). This is another form of parallel
split (pattern 2) and synchronization (pattern 3) and they can’t be transformed via an
element-to-element mapping to YAWL model segment as figure 10 (c) since the
ForkNode and JoinNode has been omitted and we can’t get the “AndJoinTask” and
“AndSplitTask” in figure 10 (c). And only after we have got figure 10 (c) can we
simplify it to figure 10 (d). So we can draw a conclusion that parallel split and
synchronization in figure 10 (b) can’t be transformed to figure 10 (c) by element-to-
element mapping and a pattern-based transformation is needed. We need to first
recognize parallel split and synchronization in this form and then transform them as a
whole to YAWL segment as shown in figure 10 (d).

(a) Standard form of parallel split and synchronization in UML-AD

(b) Simplified form of parallel split and synchronization in UML-AD

(c) Transformed YAWL

(d) Simplified YAWL

Figure 10. Different forms of parallel split and synchronization in UML-AD and YAWL
Another pattern that needs a pattern-based transformation is the multi-choice

pattern (pattern 6). This pattern provides the ability for the thread of execution to be
diverged into several concurrent threads on a selective basis. The decision as to
whether to pass the thread of execution to a specific branch is made at runtime. This
pattern is essentially an analogue of the Exclusive Choice pattern (pattern 4) in which
multiple outgoing branches can be enabled [47]. Since there is no specialized notation
for multi-choice in UML-AD, ForkNode is used to achieve this pattern as shown in
figure 11(a). It is different from the parallel split pattern since there are guards on
each of the output control flows. In the example of figure 11, after execution Action1

will output a ValuePin named “x” and the value of x has been determined during the
execution of Action1. It is passed to the ForkNode and the routing is then determined
by the value of x. If x>10 Action2 and Action3 will be executed and if x<10, Action4
will be executed. This is different from Exclusive Choice (Pattern 4) since in
Exclusive Choice the guards on each of the outgoing control flows after ForkNode
must be mutually exclusive. This pattern also needs a pattern-based transformation to
get a result YAWL net as shown in figure 11(b) because if we use an element-to-
element mapping the ForkNode notation in Multi-Choice pattern will be mapped to a
YAWL And-JoinTask resulting in a wrong output.

(a) UML-AD (b) YAWL
Figure 11. Multi-Choice (Pattern 6) in UML-AD and YAWL

Figure 12 is the multi instance without synchronization (pattern 12) in UML-AD
and YAWL (refer to [6] and [36]). After Action1 (AtomicTask1), a multi-instance
action namely “MIActionWithoutSychronization” (a MIAtomicTask named
“MITaskWithoutSychronization”) is created. The MI action (MITask) will create 10
instances of itself, leaving these instances executing and give the control-flow token
to Action2(AtomicTask2) which means Action2(AtomicTask2) will start execution
without the synchronization of any instances of the MI action (MI Task). Pattern 12
has a different form in UML-AD and YAWL due to the lack of specialized notation
for MI actions in UML-AD.

As shown in figure 12(a), the initial value of x is 0, the action
“MIActionWithoutSychronization” will be executed if x<10 so it will be executed 10
times and Action2 will not wait for the finish of its ten instances to start execution.
The corresponding YAWL net is shown in figure 12(b). There is a specialized
notation for MI actions in YAWL called MIAtomicTask having 4 parameters. The
first parameter “10” means the task “MITaskWithoutSychronization” will have a
minimum instance number of 10; the second parameter “10” means the task will have
a maximum instance number of 10. So these two parameters define the instance
number to be 10. The third parameter “0” means 0 instance of this MIAtomicTask
needs to be synchronized and the last parameter “s” (short for static) indicates that
new instances cannot be created dynamically during the execution of any instances.
For more information of MIAtomicTask, refer to [36].

(a)UML-AD

(b) YAWL

Figure 12. Multiple Instances without Synchronization (Pattern 12) in UML-AD and YAWL
InterruptibleActivityRegion can be used to model cancel-related patterns in

UML-AD [6], whereas in YAWL CancelRegion is used to model these patterns.
Element to element mapping transformation of these patterns will be troublesome.
Due to the limited space we take cancel task (pattern 19) as an example to illustrate
why a pattern-based transformation is needed and the other cancel patterns may be
treated as same as cancel task pattern.

As shown in the UML-AD diagram of figure 13(a), the
InterrruptibleActivityRegion has two actions in it: Action2 and Action3. Whereas in
the corresponding YAWL net in figure 13(b), AtomicTask3 has a cancel region with
only one task (AtomicTask2) in it (this is illustrated by the red point in the top right
corner of the notation of AtomicTask3 and the red outline of AtomicTask2). So a
pattern based transformation is also needed when transforming this pattern.

(a)UML-AD

(b) YAWL

Figure 13. Cancel Task (Pattern 19) in UML-AD and YAWL
After patterns that need to be transformed by pattern-based method have been

identified, we can pick them out of the source UML-AD model, transform the left
parts to YAWL using a meta-model based method and then transform the pick-out
parts via a pattern based method. We subsequently combine all the transformed
YAWL segments together and get a whole target YAWL model.

5 Example Illustrating Our Method

In order to illustrate our methods we take a UML-AD model shown in figure 14
as a source model and transform it to a target YAWL net as shown in figure 15.

Figure 14. An order process model in UML-AD Figure 15. The target YAWL net

On top left corner of figure 14, pattern 2 and pattern 3 are used in a form shown
in figure 10 (b) except that there are pins attached to actions and the flow type is
object flow. Orders need to be checked by two order checkers namely checker A and
B. The status of Order will be “Accepted” only if both of the checkers accept it,
otherwise the status will be “Rejected” and the activity will be terminated. The
“ProcessOrder” action will be executed for ten times by different workers so it is a
multi-instance action. An InterruptableActivityRegion is used as cancel region
(pattern 25), the whole order-processing process can be canceled if a
“CancelRequest” is received.

Since there are three patterns that need a pattern based transformation in the
source UML-AD model, we have to first pick these patterns out and transform the left
parts of the model to YAWL via a meta-model based meethod, that is, an element-to-
element mapping and a transformation of object flow. Note that we have omitted the
data aspect of the target YAWL net due to a limited space. Then we transform the
picked-out patterns using a pattern based transformation. Element-to-element
mapping and object flow transformation may also be used during this procedure. The
final target YAWL net is as shown in figure 15. Note that there is an additional Or-
Split Task in the target YAWL net connecting the InputConditon and the TimeTask
“CancelRequest”. This signifies a problem caused by the multi-start phenomenon in
UML-AD. For details about this problem, refer to [25].
6. Conclusion and Future Work

In order to benefit from the mature verification tools (Woflan, WofYAWL,
ProM) based on YAWL, UML Activity Diagrams need to be transformed to YAWL
nets. Since our goal is to verify UML-AD model and to check if it contains
structural errors like deadlock and lack of synchronization, therefore our study has
been limited to transformation of control-flow aspect information only. A

transformation method that transforms all information that can be transformed to
YAWL is beyond our discussion.

Based on a proposed YAWL meta-model, this paper has solved the UML-AD to
YAWL transformation problem by a three step method. First UML-AD object nodes
and object flows are transformed into YAWL control flows by adding necessary data
to the corresponding task nodes. Secondly all control-flow patterns that UML-AD
supports are analyzed and classified based on their transformation either by element-
to-element mapping or by pattern to pattern methods. Finally the remaining model
segments are transformed by element-to-element mapping based on UML-AD meta-
model and the proposed YAWL meta-model. Since this method is more precise than
the method proposed in [25], we can expect a better result when verifying UML-AD
models using YAWL verification tools.

The future work includes applying this control-flow pattern based transformation
method to transform other business process modeling languages to YAWL to check if
we can get better transformation results than other transformation methods [28-31].
Moreover we aim to use this transformation method to convert the large amount of
UML-AD process models to YAWL and analyze them with verification tools such as
Woflan, WofYAWL and ProM.

Acknowledgments This work is supported by the National Natural Science
Foundation of China under Grant No. 61170087.

References

1. Burlton, R., Business process management: profiting from process. First ed. 2001,
Indianapolis, IN, USA: Sams.

 2. ter Hofstede, A., et al., Business Process Management: A Survey. 2003. p. 1019-
1019.

 3. Hepp, M., et al., Semantic Business Process Management: A Vision Towards
Using Semantic Web Services for Business Process Management. E-Business
Engineering, IEEE International Conference on, 2005. p. 535-540.

 4. Smith, H. and P. Fingar, Business Process Management: The Third Wave. 2006:
Meghan-Kiffer Press.

 5. Weske, M., Business Process Management: Concepts, Languages, Architectures.
2007, Secaucus, NJ, USA: Springer-Verlag New York, Inc.

 6. Russell, N., et al. On the suitability of UML 2.0 activity diagrams for business
process modelling. in APCCM '06. 2006. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc.

 7. Dong, Y. and Z. ShenSheng, Using π - calculus to Formalize UML Activity
Diagram. Engineering of Computer-Based Systems, IEEE International
Conference on the, 2003. p. 47.

 8.List, B. and B. Korherr, A UML 2 Profile for Business Process Modelling. 2005. p.
85-96.

 9. Korherr, B. and B. List, Extending the UML 2 Activity Diagram with Business
Process Goals and Performance Measures and the Mapping to BPEL. 2006. p. 7-

18.
10. Eshuis, R. and R. Wieringa. Verification support for workflow design with UML

activity graphs. in ICSE '02. 2002. New York, NY, USA: ACM.
11. Baldan, P., A. Corradini and F. Gadducci, Specifying and Verifying UML Activity

Diagrams Via Graph Transformation. 2005. p. 18-33.
12. Eshuis, R., Symbolic model checking of UML activity diagrams. ACM Trans.

Softw. Eng. Methodol., 2006. p. 1--38.
13. van der Aalst, W.M.P. and A.H.M. ter Hofstede, YAWL: yet another workflow

language. Inf. Syst., 2005. p. 245--275.
14. van der Aalst, W.M.P., et al., Design and Implementation of the YAWL System.

2004. p. 281-305.
15. Hofstede, T.A.A., et al., Modern business process automation:YAWL and its

support environment. 2010: Springer.
16. Verbeek, H.M.W., W.M. van der Aalst and A.H. ter Hofstede, Verifying

Workflows with Cancellation Regions and OR-joins: An Approach Based on
Relaxed Soundness and Invariants. 2007.

17. Verbeek, H.M.W., et al., Verifying workflows with cancellation regions and OR-
joins: an approach based on invariants. 2006, Proceedings of BPM 2006, volume
4102 of LNCS.

18. Wynn, M., et al., Verifying Workflows with Cancellation Regions and OR-Joins:
An Approach Based on Reset Nets and Reachability Analysis, in Lecture Notes in
Computer Science, S. Dustdar, J. Fiadeiro and A. Sheth, Editors. 2006, Springer
Berlin / Heidelberg. p. 389-394.

19. Wynn, M.T., et al., Business Process Verification - Finally a Reality!. Business
Process Management Journal, 2010.

20. Verbeek, E. and W. van der Aalst, Woflan 2.0 A Petri-Net-Based Workflow
Diagnosis Tool. Application and Theory of Petri Nets 2000, 2000: p. 475-484.

21. van der Aalst, W., et al., ProM 4.0: Comprehensive Support for Real Process
Analysis. Petri Nets and Other Models of Concurrency – ICATPN 2007, 2007:
p. 484-494.

22. Verbeek, H.M.W., T. Basten and W.M.P. van der Aalst, Diagnosing Workflow
Processes Using Woflan. THE COMPUTER JOURNAL, 1999. p. 2001.

23. van Dongen, B.F., et al., The ProM Framework: A New Era in Process Mining
Tool Support. 2005. p. 444-454.

24. Verbeek, E., WofYAWL. Technical report, 2005.
http://home.tm.tue.nl/hverbeek/wofyawl03.pdf.

25.Han, Z., L. Zhang and J. Ling, Transformation of UML Activity Diagram to YAWL.
2010: p. 289-299.

26. SENDALL, et al., Model transformation: The heart and soul of model-driven
software development. 2003. p. 4.

27. Mens, T. and P. Van Gorp, A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 2006. p. 125-142.

28. JianHong, Y., et al. Transformation of BPMN to YAWL. in Computer Science and
Software Engineering, 2008 International Conference on. 2008.

29. Decker, G., et al., Transforming BPMN Diagrams into YAWL Nets. Business
Process Management, 2008: p. 386-389.

30. Mendling, J., M. Moser and G. Neumann. Transformation of yEPC business

process models to YAWL. 2006. New York, NY, USA: ACM.
31. Brogi, A. and R. Popescu, From BPEL Processes to YAWL Workflows. Web

Services and Formal Methods, 2006: p. 107-122.
32. Wynn, M.T., et al., Business Process Verification Finally a Reality!. Business

Process Management Journal, 2010.
33. The Unified Modeling Language™ (UML) specification version 2.3. 2010, Object

Management Group.
34. van der Aalst, W.M.P., et al., Design and Implementation of the YAWL System.

2004. p. 281-305.
35. Business Process Modeling Notation (BPMN) Version 2.0. 2009, Object

Management Group/Business Process Management Initiative.
36. ter Hofstede., YAWL User Manual Version 2.0. 2009.
37. van der Aalst, W.M.P., et al., Workflow Patterns. Distributed and Parallel

Databases, 2003. p. 5-51.
38.Russell, N., A.H.M. Ter Hofstede and N. Mulyar, Workflow ControlFlow Patterns:

A Revised View. 2006.
39. Russell, N., A.H.M. Ter Hofstede and D. Edmond, Workflow data patterns. 2004.
40. Russell, N., et al., Workflow Data Patterns: Identification, Representation and

Tool Support. 2005. p. 353-368.
41. Russell, N.N., et al., Workflow resource patterns. 2005, Technische Universiteit

Eindhoven, BETA.
42. Russell, N., et al., Workflow Resource Patterns: Identification, Representation and

Tool Support. 2005. p. 216-232.
43. Russell, N., A. Ter Hofstede and W. van der Aalst, Workflow Exception Patterns.

2006.
44. Russell, N. and A.H.M. Ter Hofstede, Exception Handling Patterns in Process-

Aware Information Systems.
45. Russell, N., A.H.M.T. Hofstede and N. Mulyar, Workflow ControlFlow Patterns:

A Revised View. 2006.
46. Russell, N.N., V.D.W.W. Aalst and T.A.A. Hofstede, New YAWL: designing a

workflow system using coloured Petri Nets. 2008, Xidian University.
47. Russell, N., A.H.M.T. Hofstede and N. Mulyar, Workflow ControlFlow

Patterns: A Revised View. 2006.

