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Abstract. We examine a reverse supply chain consisting of a collection site, 
where consumers return used products, and a remanufacturing facility. Some of 
the returned products are transported to the remanufacturing facility in order 
to be remanufactured and used to satisfy the stochastic demand for 
remanufactured products. The quality of returns is characterized by 
uncertainty, and therefore, before the procurement quantity determination, the 
remanufacturer has the alternative to inspect a sample drawn from the 
collected quantity in order to evaluate more accurately returns’ quality. Using 
general assumptions for returns quality and remanufactured products demand 
distributions, we formulate the expected profit function for both sampling and 
no-sampling cases and we examine numerically the economic effectiveness of 
sampling. A key characteristic of the current paper is that returns’ yield is 
expressed as the probability of a unit to be remanufacturable.  

Keywords: reverse supply chain, random yield, sampling inspection, binomial 
yield, value of information. 

1   Introduction 

One of the most important issues in Reverse Supply Chain Management is the 
quality of returned used units. Returns quality is associated with the ability of a unit to 
successfully undergo a recovery process, such as remanufacturing, refurbishing, 
repair, etc. Firms engaged in value-recovery activities employ a number of different 
practices in order to obtain information on returns quality. There are two main 
dimensions regarding this information: accuracy and timing. Usually, the acquisition 
of timely returns quality information requires the shift of inspection operations at the 
collection sites. Some remanufacturing firms introduce certain nominal metrics based 
on specific product characteristics and assign to the supplier the task of inspecting and 
grading the returned units, e.g. ReCellular [1]. Consequently, the supplier provides 
information regarding returns quality to the remanufacturer. Another way to obtain 
timely information is by incorporating electronic devices in the products that record 
basic usage data, e.g. Bosch [2], HP [3], which provide some information usually 
indirectly related to the quality of each unit upon its return. Both these practices 
permit an initial classification of returns according to their quality, before the 
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investment of significant resources by the remanufacturer. The disadvantage of these 
methods is that the accuracy of the information is generally limited. On the other 
hand, when the accuracy of the returns quality assessment is important, 
remanufacturing firms prefer to transfer the collected quantity to the remanufacturing 
site, disassemble all available units and inspect them, e.g. NEC-CI [4], Mercedes-
Benz [5]. The obvious disadvantage of this practice is that it can result in a 
considerable waste of time and effort because of the delayed identification of inferior-
quality lots. 

In the current paper we propose a different practice; that is to examine a sample 
taken from the collected quantity and base the procurement decision on the inspection 
outcome. To the best of our knowledge, sampling inspections in a reverse supply 
chain context has been initially proposed in [6]. In the current paper we extend the 
work of [6] for the case of stochastic demand for remanufactured products. The 
advantage of sampling inspection is that quality assessment can be carried out using a 
fairly accurate method while the total inspection cost is kept bearable. Of course, due 
to sampling there are inherent statistical errors.   

The uncertainty in returns quality is the main issue in a number of papers as for 
example in [7], [8], [9], [10] and [11]. The main objective in the aforementioned 
contributions is either the determination of procurement and remanufacturing 
decisions or the evaluation of the value of advanced information on returns quality. 
Other relevant contributions include [12] and [13] in which apart from the 
procurement and remanufacturing decisions, the impact of grading errors is explored, 
as well.  

The scope of the current paper is to study the advisability of establishing sampling 
inspection in reverse supply chains. The yield (i.e. the probability that a unit can be 
remanufactured successfully) of returns is considered stochastic and it is formulated 
as a continuous random variable. Before determining the procurement quantity, a 
sample from the collected quantity is inspected. Based on the outcome of this 
inspection, the prior belief about returns’ quality is updated and the optimal 
procurement quantity is defined. Under general assumptions, we formulate the 
expected profit functions corresponding to the cases that procurement quantity is 
decided with or without conducting previously a sampling inspection. The optimal 
sampling, procurement and remanufacturing decisions are evaluated numerically.  

There are two characteristics of the current paper that have not been studied 
extensively in the reverse supply chain literature: 

a) For each returned unit in the procurement lot, it is assumed that there is a 
specific probability to belong to a certain quality category. Therefore, the number of 
remanufacturable units in the quantity received is defined as a Binomial random 
variable. Although this type of random yield model can be found in conventional 
supply chain literature, e.g. [14], it is rare in the reverse supply chain context.  

b) The advisability of conducting sampling inspection is explored, taking into 
account that the decision of the procurement quantity is based on the inspection 
outcome. The issue of simultaneous determination of procurement quantity and 
sampling scheme has already been examined in the context of forward supply chains, 
e.g. [15] and [16]. Contrary to existing contributions, we examine this issue in the 
reverse supply chain context. In addition, we treat the sample size as a decision 
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variable and we allow the procurement quantity to vary with respect to the outcome of 
sampling inspection. 

The remainder of the paper is organized as follows. In the next section we describe 
is detail the problem setting and we define the basic assumptions. In Section 3 we 
present the formulation of the expected profit function for the cases without and with 
sampling inspection. Section 4 presents a numerical study and discusses the findings 
regarding the impact of the problem parameters on the optimal policy. Finally, 
Section 5 summarizes and concludes the paper. 

2   Problem Setting and Assumptions 

The reverse supply chain examined consists of a single collection site (CS) and a 
remanufacturing facility (R). At the collection site, end-users return used products. 
Each returned unit can be in one of two possible quality states, remanufacturable or 
non-remanufacturable. Although the actual condition of each unit is unknown, there is 
a rough knowledge about the quality of the lot collected at the CS. Specifically, we 
assume that all returned units in the lot have a specific but unknown probability, q, to 
be remanufacturable. This probability is considered a random variable, which follows 
a known distribution with density and probability functions g(q) and G(q), 
respectively.  

The remanufacturer, in order to decide the exact amount of returned units to 
procure, Q, has two alternatives: either to rely on the initial knowledge of returns 
yield distribution or to inspect a sample of size n drawn from the quantity collected, at 
a cost of cn per unit, evaluate the yield in the sample and consequently update the 
distribution of q based on the ratio of number remanufacturables in the sample to the 
sample size (Qn/n). In either case, when R procures some quantity of returned units, 
which cost ca per unit, upon reception it implements a thorough inspection procedure 
to the total quantity received (e.g. disassemble every unit and check each of its 
components) in order to identify all remanufacturable units in the procurement 
quantity. The respective cost at this stage is set equal to cda.  

After disassembly, the exact number of available remanufacturable units, Qa, is 
revealed, and the remanufacturer reaches at a second decision stage which is related 
to the number of remanufacturable units that will undergo the remanufacturing 
procedure, Qr, taking into account the relative cost and revenues as well as the 
demand characteristics. All units that after disassembly were classified as non-
remanufacturables as well as the excess remanufacturables are disposed of at a cost, 
cd and cdr, respectively. The remanufacturing process costs cr per unit. It is assumed 
that all remanufactured units can be considered suitable to satisfy demand for 
remanufactured products.  

Demand for remanufactured products is considered a random variable, x, with 
mean equal to E(x) and with f(x) and F(x) used to denote the density and probability 
functions, respectively. The sales revenue equals v per remanufactured unit sold. We 
assume that v > cr, in order to assure that it is worth considering remanufacturing of 
returns as a profitable option. If demand exceeds the number of available 
remanufactured units, a cost equal to cs per unit short is incurred. Unsold 
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remanufactured units also incur cost, denoted by cu per unit. We assume that cr + cu > 
cdr, since otherwise it would be profitable just to remanufacture returns without the 
intention to sell them. Table 1 summarizes the notation used throughout the paper.  

Table 1. Notation. 

v Sales revenue per unit n Sample size 
ca Acquisition cost per unit Q Procurement quantity 
cda Disassembly cost per unit Qr Number of units to remanufacture 
cd Disposal cost per non-remanufacturable unit Qn Remanufacturable units in the sample 
cdr Disposal cost per remanufacturable unit Qa Available remanufacturables in Q 
cr Remanufacturing cost per unit q Probability of a unit to be remanufacturable 
cs Shortage cost per unit short x Demand for remanufactured units 
cu Cost per unsold remanufactured unit g(q)Probability density function of q 
cn Inspection cost per unit in the sample f(x) Probability density function of x 

3  Expected Profit Function Formulation  

Regardless of the establishment of sampling inspection, after disassembling the 
procurement quantity the only remaining factor of uncertainty is demand. In that 
stage, having resolved quality uncertainty the remanufacturer can determine the 
optimal quantity that should be remanufactured. The expected profit function at this 
stage can be written as: 

 

rTP(Q ) =  
rQ

s u r s dr r r dr a s
0

(v c c ) (x Q )f (x)dx (v c c c )Q - c Q - c E(x)+ + − + + + −∫  (1) 

 
It is easy to show that (1) is maximized for *

rQ , which satisfies: 
 

*
r s dr r s uF(Q ) (v c c c ) (v c c )= + + − + +  . (2) 

 
Since the quality of returns is uncertain, it is not assured that at the second decision 

stage there will always be adequate remanufacturable units for processing. Therefore, 
the optimal policy at this stage is to remanufacture-up-to *

rQ  units and dispose of the 
remaining, if there are adequate remanufacturable units. Otherwise, i.e. if Qa < *

rQ , all 
available units should be remanufactured.  

When there is not the alternative of sampling inspection, the lot-sizing decision is 
based on the prior knowledge for the returns quality. The formulation of the expected 
profit function is carried out separately depending on the relationship between the 
values of the procurement quantity, Q, and the optimal remanufacturing quantity, *

rQ . 
For simplification of exposition we introduce the function B, defined as follows: 
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Taking into account all relevant costs and revenues and after some algebraic 
manipulation and using (2), the expected total profit is written as follows: 

 

TP[Q|g(q)] = 
aQ1

Q
s u 0 a

0 0

(v c c ) B (x Q )f (x)dx g(q)dq
⎛ ⎞

+ + −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ s d r(v c c c )Q E(q)+ + + −  

d a da s(c c c )Q c E(x)− + + − ,  for Q < *
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a

*
r
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 d dr(c c )QE(q)+ −  d a da s(c c c )Q c E(x)− + + − ,  for Q > *
rQ . (4) 

 
Given the distribution of the yield, the optimal procurement quantity, Q* can be 

evaluated using (3) and (4). 
When sampling inspection is in effect, the sampling outcome is used to update the 

estimation regarding the quality of the collected quantity using Bayes theorem. The 
lot-sizing decisions are based on the posterior distribution of the returns quality. The 
form of the expected profit function given the sampling outcome is identical to the 
case without sampling inspection, substituting for g(q) the posterior distribution that 
is derived based on the sampling inspection outcome and subtracting the cost of the 
sample inspection. Thus, given the values of n and Qn, and the posterior distribution 

nn,Qg (q) , (3) and (4) apply for the expected profit function.  
 

TP[Q|n, Qn] = TP[Q|
nn,Qg (q) ] nc n− . (5) 

 
The expected profit for any possible outcome of the sampling inspection can be 

computed as the expected value of the profit weighted over all possible outcomes of 
the inspection, which are based on the prior distribution of the yield. 

 

nQE [TP(Q)]  = { }n n

n

1 n
*

n,Q n,Q n n
Q 00

TP Q | g (q ) b(Q ;n,q) g(q)dq c n
=

⎡ ⎤ −⎣ ⎦∑∫ ,  (6) 

 
where b(x; y, z) stands for the probability that a random variable that follows the 
Binomial distribution with parameter z takes the value x after y Bernoulli trials. 

4   Numerical Illustration and Discussion 

In this section we present a numerical experiment which investigates the economic 
effectiveness of sampling inspection as well as its interaction with the mean and 
variance of the yield and the costs of remanufacturing, disassembly and sampling 
inspection. The random yield is modeled using 6 different distributions of the Beta 
family. The Beta parameter values were selected so as to examine 3 levels of yield 
mean, i.e., low (E(q) = 1/3), medium (E(q) =1/2) and high (E(q) = 2/3), and two levels 
of yield variance, low (V(q) = 0.03) and high (V(q)  0.07). Remanufacturing and 
disassembly costs are examined in two levels. Specifically, cr is set equal to 10 or 20, 
while cda = 0.25cr or cda = cr. The demand is modeled using normal distribution with 
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mean and standard deviation equal to µ = 100 and σ = 10, respectively. The sales 
revenue, v, is set in all examples equal to 100, while the shortage cost, cs, is assumed 
negligible. Disposal costs (cd, cdr) as well as cost of unsold remanufacturable units, cu, 
are set equal to 1. Finally, acquisition cost, ca, is set equal to 15. Table 2 summarizes 
the 24 parameter sets used in the numerical investigation.  

Table 2. Parameter values and optimization results. 

 Parameter values No sampling Sampling 
(low cn) 

Sampling 
(high cn) 

# E(q) V(q) cr cda Q* TP n* % n* % 
1 low low 10 2.5 205 1918.7 42 16.6 26 13.1 
2 low low 10 10 153 579.8 17 44.8 10 37.8 
3 low low 20 5 167 850.2 27 31.7 15 26.1 
4 low low 20 20 0 0.0 4 100.0 0 0.0 
5 low high 10 2.5 170 1595.2 44 30.2 29 27.4 
6 low high 10 10 127 488.8 16 61.0 9 57.2 
7 low high 20 5 138 711.0 26 48.3 14 44.7 
8 low high 20 20 0 0.0 5 100.0 3 100.0 
9 medium low 10 2.5 189 4022.0 40 4.2 22 2.5 
10 medium low 10 10 165 2696.3 0 0.0 0 0.0 
11 medium low 20 5 170 2723.3 18 1.6 0 0.0 
12 medium low 20 20 125 513.3 7 18.7 2 8.9 
13 medium high 10 2.5 154 3202.2 44 13.8 25 11.9 
14 medium high 10 10 130 2144.9 14 16.6 10 12.8 
15 medium high 20 5 134 2163.0 23 16.0 15 13.0 
16 medium high 20 20 101 423.3 6 59.5 4 55.3 
17 high low 10 2.5 154 5173.1 36 4.0 19 2.9 
18 high low 10 10 140 4073.6 7 0.9 0 0.0 
19 high low 20 5 142 3874.3 16 2.3 7 1.0 
20 high low 20 20 119 1928.7 0 0.0 0 0.0 
21 high high 10 2.5 147 4838.5 34 6.1 24 4.8 
22 high high 10 10 131 3802.1 12 2.8 6 0.7 
23 high high 20 5 133 3616.2 18 4.5 10 2.6 
24 high high 20 20 111 1808.0 5 3.7 0 0.0 
 
Each of the 24 sets is optimized assuming that no sampling inspection is in effect. 

Table 2 reports the optimal procurement quantity along with the corresponding 
expected profit. Moreover, assuming that there is the alternative of conducting a 
sampling inspection before the determination of Q, we specify the optimal sample 
size, n*, using the same 24 parameter sets including the sample inspection cost, cn, 
which is examined in two levels, low (cn = cda) and high (cn = 2cda). The resulting 
optimal values of n and the corresponding profit increase as compared to the no-
sampling case are also shown in Table 2. It should be noted that when sampling 
inspection is allowed, the optimal procurement quantity value depends on the 
inspection outcome, Qn. Thus, for a given sample size, Q* is a function of Qn, and it is 
evaluated through the maximization of (5).  

Examination of Table 2 reveals that the introduction of sample inspection may 
increase the profitability of remanufacturing. This improvement is attributed to the 
fact that after inspection the additional information on returns’ yield allows the more 
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precise determination of the procurement quantity. For example, for set #12 (high cn) 
with n* = 2, if Qn = 2 the optimal procurement quantity is Q* = 130, if Qn = 1, then Q* 
= 129 and if Qn = 0, then Q* = 0. On the other hand, based solely on the prior to 
inspection knowledge, the optimal decision would be to procure Q* = 125 units. This 
effect is more pronounced for sets #4 (low cn) and #8 (for both low and high values of 
cn). For these sets in the no-sampling case Q* = 0, while with sampling inspection 
there can be the opportunity to procure some quantity leading to positive expected 
profit (45.6 for set #4 and 253.5 or 171.0, respectively for set #8). However, in set #4 
(high cn) the value of information from sampling vanishes because of the high value 
of cn. Another consequence of inspection sampling is that it can prevent 
remanufacturing firms from procuring inferior-quality lots. For example, in case #1 
(low cn) without sampling Q* = 205, while when sampling is allowed, for Qn < 8 it is 
optimal not to procure at all (Q* = 0). 

Based on the results, we conclude that high sampling cost decreases the value of 
n*, reducing sampling discriminatory power; thus, the value of sampling decreases. 
Sampling inspection is more advisable, in terms of percentage profit improvement, 
when the expected yield of returns is rather low. On the contrary, when yield 
variability is low, the benefits of sampling inspection decrease or even vanish. The 
impact of cda differs depending on the expected yield of returns. Specifically, for low 
or medium values of E(q), the value of sampling inspection increases with cda, since 
performing an initial quality assessment of the returns decreases the amount of non-
ramanufacturable units disassembled and disposed of. On the other hand, when the 
returns’ expected yield is high, the percentage profit improvement due to sampling 
inspection is perceivable only for low values of cda (mainly as a result of lower cn 
values). Finally, based on the numerical examples studied we conclude that the value 
of cr does not influence notably the results. 

5   Summary and Future Research 

In the current paper we examined the advisability of establishing sampling 
inspection prior to the determination of the procurement quantity in a reverse supply 
chain. We formulated the expected profit functions for the cases with and without 
sampling inspection and evaluated the optimal decisions under different values of the 
problem’s parameters. 

The most important contribution of the current paper is that it proposes a new 
method for resolving, at a certain extent, the uncertainty regarding returns’ quality 
which is inherent in reverse supply chains. Moreover, it enables the evaluation of the 
economic benefits of sampling inspection and the determination of the optimal values 
of the sample size and the procurement quantity with respect to the sampling 
outcome.  

It has been shown that the establishment of sampling inspection can substantially 
improve the profitability of a reverse supply chain. The outcome of sampling 
inspection allows the remanufacturer to refine the procurement quantity decision and 
also to avoid procurement of lots characterized by low returns’ yield. The 
optimization results provide insights on the factors that affect the value of sampling 
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inspection before the procurement of returns. Specifically, through the numerical 
investigation presented we found that the advisability of establishing sampling 
inspections is increasing as the quality uncertainty and the disassembly cost increase 
and as the expected yield of returns and the sampling inspection cost decrease.  

Interesting extensions of the proposed model include the investigation of the 
impact of different degrees of sampling inspection accuracy and of the advisability of 
sampling inspection when multiple returns quality states and recovery options exist. 
In the latter case the inspection outcome would define, apart from the procurement 
quantity, the appropriate recovery process, as well.  
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