
Database Scheme Configuration for a Product
Line of MPC-TOOLS

Benjamin Klöpper, Tobias Rust, Bernhard Vedder, and Wilhelm Dangelmaier

Heinz Nixdorf Institute, University of Paderborn,
Fürstenallee 11, 33102 Paderborn, Germany

{kloepper}@hni.upb.de

http://www.hni.upb.de/cim

Abstract. Data model, planning restrictions, and objectives related to
manufacturing planning and control (MPC) strongly depend on the given
production process and workshop. In our opinion, these individual prop-
erties are the reason, why standard software fails to properly support
decisions in MPC. In this paper, we introduce a platform, which enables
a configuration process to create affordable individualized MPC software
from existing software components.

1 Introduction

Manufacturing Planning and Control (MPC) is a critical task in many indus-
tries and it encompasses a large variety of decision problems [1]. MPC posses
features which differ from other application areas of decision support and opti-
mization. These special features are the reason for a large number of individual
problem formulations and heuristics. The first essential feature of MPC is the
high frequency of decision-making. Decisions about production quantities and
the matching of quantities to the available production capacities are made, or at
least revised, several times a week or sometimes even several times a day. The
reason for this high frequency is the changing environment: incoming orders,
unexpected scrap rates or machine breakdowns. The second feature is the lack
of clearly defined objectives. From the view point of cost-effectiveness the overall
purpose of MPC is to achieve a predetermined output performance at minimal
costs [2]. Unfortunately, the exact determination of costs in a production en-
vironment is often not possible, because the costs either are not continuously
documented or cannot be documented (e.g. the long-term costs of delayed de-
livers are hard to estimate). Thus, usually alternative objectives and constraints
are used in MPC. As the alternative objectives bear conflicts, it is not possible to
describe a common objective function for MPC problems [3]. On the other hand,
experienced human planners are able to modify existing plans in such a way, that
they comply with soft factors, which can hardly be included in an automated
decision making process (e.g. in-plant work time agreements). For this purpose,
MPC tools must provide interactive interfaces [4]. Finally, every production sys-
tem and process has some unique properties. These properties may result from

2 Klöpper, Rust, Vedder, Dangelmaier

organizational or technical issues. Examples are buffers for decoupling of produc-
tions stages (organizational), set-up times or mandatory productions sequences
(technical). These individual properties have to be included in order to achieve
feasible or even high quality decisions. This opinion is supported by the fact
that materials management and production planning are among the most fre-
quently customized modules of ERP systems. Olhager and Selldin [5] present a
survey about Swedish manufacturing firms, where 60.7% of the material man-
agement and 69.2% of the production planning modules were modified during
the implementation.

For these reasons, a custom-made MPC solution for every production system
(plant or workshop) is required while there is also a need for intuitive graphical
user interfaces and effective planning procedures. Thus, a desirable platform
enables the required individuality and cost-effective development process at the
same time. The reuse of software may offer a custom-made and affordable MPC
software.

2 Software Reuse

”Software reuse is the process of creating software systems from existing software
rather than building software systems from scratch.” [6] The main motivations
for software reuse are gains in productivity by avoidance of redevelopment as well
as gains in quality by incorporating components, whose reliability has already
been established [7]. Obviously, the modularization and formation of encapsu-
lated software components is an important issue in software reuse. An important
step towards this vision was object orientation. According to Nierstrasz et al.
”objects provide a paradigm for decomposing large application into cooperating
objects as well as a reuse paradigm to compose application from pre-packaged
software components” [8]. Szyperski and Pfisters deliver a more accurate def-
inition of a software component and an important differentiation against pure
objects: ”A software component is a unit of composition contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties” [9].

The paradigm of generative programming goes beyond the idea of component-
based software. The idea is not to focus on single software systems, but to create
families of software products, from which custom-made variants are generated
[10]. The generative domain model is the basis of the concept. It consists of the
problem space, configuration knowledge and the solution space. The problem
space encompasses domain specific concepts and features, which are described
in domain specific languages (DSL). A DSL provides comprehensible but formal
methods to describe the customer’s requirements regarding the software prod-
uct. The solution space is the power set overall components of a software product
family, from which an appropriate configuration is selected.

Database Scheme Configuration for a Product Line of MPC-TOOLS 3

3 OOPUS WEB - A Development Platform for MPC

OOPUS WEB is a platform to efficiently create individualized planning and
scheduling tools. It provides flexible and adaptable master data functions as well
as smart planning interfaces, which enable maximal information transparency
for dispatchers. OOPUS WEB is intended to provide components and tools for
a MPC tool product line. The basic principle of OOPUS WEB is to decouple
MPC algorithms and user interfaces from the data model of the platform. In this
way, the large variety of planning algorithms and models is available and may be
selected depending on the current application scenario. OOPUS WEB focuses on
the area of serial production in line production fashion. This limitation enables
the definition of a lean but extensible data model. This data model is the basis
of the OOPUS WEB platform. The Model of Serial Manufacturing is described
in detail in [11].

Figure 1 shows the task-structure of OOPUS WEB. The task structure is
the fundamental architectural concept in OOPUS WEB. The overall task, the
detailed planning and scheduling of a given production process is decomposed in
several subtasks, each working on a section of the overall model. Such a section
or sub model consists in partial subsets of production stages (multiple stage
planning methods), a single production stage (single stage planning methods) or
even a single line (single machine planning methods). Furthermore, the overall
model is also divided into sub models regarding the granularity of planning
periods. In that way, it is possible to perform a planning and scheduling on the
level of months, weeks, days or shifts or to directly create a machine scheduling
down to the minute. To solve a subtask, modules are combined and applied,
which can be selected from a toolbox.

Forecasting Fine TuningAutomatic Planning

User

User

Forecasting
method

User

Gantt Action
BB*

Lot‐Sizing
SB**

Lot‐Sizing

Batch Process

Interface InterfaceInterface Interface

Read / Write

Lot Table

Demand Table

* Big Bucket ** Small Bucket Big Bucket Small Bucket

Fig. 1. OOPUS WEB Task Model

4 Klöpper, Rust, Vedder, Dangelmaier

These modules are defined task oriented. Two different types of modules
and components are distinguished in OOPUS WEB: user interfaces and algo-
rithms. All modules and algorithms are only loosely coupled by the data they
visualize and manipulate. Details about the OOPUS WEB task model and the
semi-automated generation of the interface layer between modules and database
models can be found in [12]. A detailed use case can be found in [13].

Finally, one important part of an OOPUS WEB product is left without tool
support so far: the database. The database has to be modified for most companies
and plants in order to meet their individual properties and requirements.

4 OOPUS Database Configurator

The OOPUS Database Configurator (ODC) is a tool to create individual database
schemes for different applications from the OOPUS WEB family. The system en-
ables the user to make several businesses, technical and organizational oriented
decisions in order to generate a matching database model. The next section
introduces the concept of ODC. Subsequently the prototype is presented.

4.1 Concept

The basic idea of generative programming is to automate the development of
software products. The generative domain model is the basic element of gen-
erative programming. It consists of a problem space, a solution space and the
configuration knowledge, which defines a mapping between the to spaces (shown
in figure 2, for details cf. [10]).

Fig. 2. Generative Domain Model

The user selects different variants to create an individual configuration. These
variants provide a high-level domain specific language that enables business or
technical oriented users like managers or dispatchers to generate a database
scheme. The user requires no technical experiences in database modeling or SQL

Database Scheme Configuration for a Product Line of MPC-TOOLS 5

(Structured Query Language) but can focus on the business and organizational
needs of the current plant or workshop. Thus, the problem space consists of a
set of variants provided in the configuration tool. The solution space consists of
the tables, attributes and foreign key dependencies that represent the database
scheme. This database scheme has to be well formed. To ensure this, a val-
idator checks the combination of selected. The required information about the
dependencies of the variants is stored in the knowledge space. Another impor-
tant function of the configuration system is to map the users’ point of view on
a MPC system on a technical one. Thus, the configuration knowledge contains
transformation rules and construction rules. A transformer converts the selected
variants into a database model and the generator creates the resulting database
scheme in SQL. The ODC follows the general architecture of expert systems
introduced by Puppe [14]. It encompasses four basic components (Figure 3): the
interviewer component, the problem solving component, the knowledge base, the
knowledge acquisition component.

Fig. 3. Architecture of OOPUS Database Configurator

The validator checks the consistency of the selected configuration. Between
variants, positive or negative conflicts can exist. A positive conflict arises, if a
variant A requires another variant B that is not currently selected. A negative
conflict denotes that a variant C must not be selected together with a variant
D at the same time. If conflicts arise between two or more variants, they are
directly reported to the interviewer component. The user is responsible to resolve
them by changing the configuration. When the configuration is finished and no
conflicts remain, the database scheme can be generated. This is done by the
second component of the problem-solving component, the transformation engine.
The transformation engine is the most complex element of the problem-solving

6 Klöpper, Rust, Vedder, Dangelmaier

component. It has to convert a given set of consistent variants into a set of
database tables that define a specific and well-formed database scheme figure.

1 when

2 Variant "team -based processing time" is selected

3 then

4 Create table "team"

5 Create field "id_team" in table "times"

6 Create foreign key from table "times" to table "team"

7 end

Fig. 4. Example rule from the knowledge base

The knowledge applied in the transformation engine is represented in rules.
To simplify the administration of the rules, a second DSL was developed. Com-
pared to the business-oriented variants, this DSL is closer to technical problems.
However, it enables the user to define rules in a natural language (cf. figure
4). The transformer generates a database scheme represented as Java objects.
This is the input for the SQL-Generator that generates the database scheme
in data definition language (DDL). The knowledge used in the problem solving
components is stored in the knowledge base.

Fig. 5. Sketch of the Prototype

4.2 Prototype

The core component of the application is the rules engine. In this case, the
open-source software JBoss Rules Engine is used. It encompasses three basic
elements (figure 5). The rule base contains the rules that are transformed by a
compiler. The working memory contains the facts. The inference engine controls

Database Scheme Configuration for a Product Line of MPC-TOOLS 7

the application of the rules to the facts. To start the process, rule file and the
DSL file are imported into the rule base. The DSL file contains the mapping
information. Afterwards the application data (variants and table definitions) are
loaded into the working memory. When firing the inference engine matches the
facts against the rules. Depending on the selected variants, several elements like
tables, attributes and key dependencies are activated. Therefore, every element
has a flag that marks whether an element is active or not. Finally, the set of
marked elements forms the resulting database definition. The prototype enables
a user to select domain specific features of the desired product and visualizes
possible conflicts. Figure 6 shows a screenshot from the prototype. The left hand
side of the screenshot shows the selectable features in a hierarchical structure.
The right hand side enables the user to select different product features. The red
exclamation marks denotes a conflicts, which is explained by the message box.
When the user resolved all conflicts, the rule engines uses the selected features
as facts and generates the database definition.

Fig. 6. Screenshot from the Prototype

5 Conclusion

Standard software applications provide unsatisfactory performance in many man-
ufacturing planning and control use cases. The main reason for the poor perfor-
mance is ignorance of individual properties of manufacturing environments. Only
individual solutions can offer the performance required in today’s competitive

8 Klöpper, Rust, Vedder, Dangelmaier

environment. Of course, individual solutions have the drawback of high invest-
ment costs. Thus, we introduced a platform, which enables the fast and lean
development of custom-made MPC applications for serial manufacturing. The
basic idea is the definition of a family of software products, where reusable com-
ponents are combined in order to meet the requirements of a specific company
or workshop. An important part of any MPC system is its database. To model
a production system in an appropriate way, the database scheme is a crucial is-
sue. Thus, in order to compose individual MPC solutions, a flexible database is
essential. In this paper, we introduced a concept and a prototypical implementa-
tion of database-scheme configurator, which enables the definition of individual,
well-defined database schemes by selecting the required business-related, techni-
cal, or organizational properties. Currently the OOPUS Database Configurator
is used in two development projects at German automotive suppliers.

References

1. Tempelmeier, H., Kuhn, H.: Flexible Manufacturing Systems: Decision Support for
Design and Operation. Wiley-Interscience, San Francisco (1993)

2. Vollmann, T.E.; Berry, W.L.; Whybark, D.C.; Roberts, R.J.: Manufacturing Plan-
ning and Control for Supply Chain Management, Taylor-Francis, New York (2005)

3. Fleischmann, B., Meyr, H., Wagner, M.: Advanced Planning. In: Stadtler, H. and
Kilger, C.: Supply Chain Management and Advanced Planning, Springer Verlag,
Berlin (2005)

4. Stadtler, H.: Production Planning and Scheduling . In: Stadtler, H. and Kilger, C.:
Supply Chain Management and Advanced Planning, Springer Verlag, Berlin (2005)

5. Olhager, J. and Selldin, E.: Enterprise resource planning survey of Swedish manu-
facturing firms. European Journal of Operational Research 146, 365–373 (2003)

6. Krueger, C.W.: Software Reuse. ACM Computing Survey, 24(2), pp. 131–183 (1992)
7. Selby, R.W.: Enabling Reused-Based Software Development of Large Scale Systems.

IEEE Transactions on Software Engineering, 31(6), pp. 495–510 (2005)
8. Nierstrasz, O. and Gibbs, S. and Tsichritzis, D.: Component-Oriented Software De-

velopment. Communications of the ACM, 35(9), 160–165 (1992)
9. Szyperski, C. and Gruntz, D., Murer, S.: Component Software. Beyond Object-

Oriented Programming, Addison-Wesley Professional (2002)
10. Czarnecki, K.; Eisenecker, U.W.: Generative Programming: Methods, Tools, and

Applications,Addison-Wesley Longman, Amsterdam (2000)
11. Klöpper, B., Timm, T., Brüggemann,D., Dangelmaier, W.: A Modelling Approach

for Dynamic and Complex Capacities in Production Control Systems. In: Abramow-
icz, W. (eds.): BIS 2007, LNCS, vol 4439, pp. 626 – 637, Springer-Verlag Berlin
(2007)

12. Klöpper, B., Rust, T.; Timm, T., Dangelmaier, W.: A Customizing Platform
for Individual Production Planning and Control Solutions. In: Proceedings of
Wirtschaftsinformatik 2009 , vol. 2, pp. 77 – 86, (2009)

13. Klöpper, B., Rust, T.; Timm, T.,Brüggemann,D., Dangelmaier, W.: OOPUS WEB:
A MPC Customizing Platform with Ergonomic Planning Interfaces. In: Proceedings
of the 1st International Conference on Business Innovation and Information Tech-
nology, Logos Verlag (2009)

14. Puppe, F.; Systematic Introduction to Expert Systems, Springer Verlag, Berlin
(1993)

