
Interoperability constraints and requirements formal
modelling and checking framework

Vincent Chapurlat, Matthieu Roque

LGI2P - Laboratoire de Génie Informatique et d'Ingénierie de Production
site EERIE de l’Ecole des Mines d’Alès, Parc Scientifique Georges Besse, F30035 Nîmes

cedex 5, France, {Vincent.Chapurlat, Matthieu.Roque}@ema.fr

Abstract: This paper aims to present and formalize the foundations of a
modeling and checking framework for system requirements management. It is
illustrated by the study of interoperability requirements having to be respected
all along collaborative (private or public) processes.

Keywords: System requirement, modeling, verification, interoperability
requirement

1. Introduction

For a long time, System theory has proposed paradigms and concepts (complexity vs.
complication, system, system of systems, abstraction, multi views representation,
interaction, processor, etc.) [1] in order to support and to help an actor involved in a
process (engineering, decision, control) focusing on complex system. These
paradigms allow:
− to acquire and to formalize knowledge about this system and,
− to acquire knowledge allowing to manage the process itself and,
− to define and to argue what are the most relevant actions having to be done

regarding first, the objectives the studied system must reach in terms of
performance, integrity and stability (safety, security, etc.) and second, the process
environment, resources and context.

Various technical, industrial and scientific domains such as system engineering [2] or
enterprise modeling [3, 4] for example, have declined and specialized these concepts
and paradigms in order to take into account their specificities. Modeling frameworks,
methods, languages and tools have been defined and developed. However, a question
appears to have been treated unequally, or even completely forgotten by some
domains because of its apparent disinterest or poor understanding of the actors. This
question is: how the requirements of the studied system are really and efficiently
defined, handled and verified all along the process and for doing what?
This paper aims to present the foundations of a system requirements modeling and
verification framework. This framework is applied here to describe and formalize

interoperability requirements when the considered system is a collaborative process in
which various companies aim to be involved and work together. The illustrative
example presented has been developed with the support of CARNOT-Mines Institute
during the CARIONER project1 [5].

2. Problematic

All along an engineering process, the resulting product or service (the target system)
but also the process itself (the management system) must respect several needs. A
need can come logically from the customer of the target system or from the
stakeholders having to interact with the target system during its life-cycle or during
the engineering process itself (management rules…). It can be formalized by the use
of languages such as SysML but remains usually described informally by actors with
possible ambiguities in meaning of words, omissions or repetitions. Thus, to prove
that the target system or the process satisfy a need become then difficult.
The proposed framework aims to help actors (customers, stakeholders, engineers,
managers) involved in the process first to formalize a need i.e. to list requirements,
second to check these requirements on the different models. This work takes into
account next hypothesis:
− As proposed in Model Based System Engineering paradigm, and more generally

Model Driven Engineering [6], engineering process is led by the use and
implementation of models. This induces first to define a requirement model able to
formalize needs. Second, it is necessary to enrich existing modeling frameworks,
languages, methods and tools considering this requirement model.

− Checking a requirement may use several techniques more or less formal [7, 8]:
expertise of the model by a human expert, test on a prototype followed by an
expertise, simulation e.g. for evaluating the system performances, formal proof for
achieving and improving trust into a model. Some techniques remain difficult to
use or not well suited for different kinds of systems (technical, socio-technical).
This requires then to rethink partially or to adapt some of these techniques taking
into account necessary skills to be able to use it, required delays, required re-
working phases to transform a given model into another ones, ...

3. Proposed approach

The proposed framework aims to:
− Provide a requirement model for describing a need and focusing on what can or

what must be proved by using given techniques.
− Provide automatic mechanisms for models transformation, requirement re-writing

considering different potential checking techniques and tools. Provide conceptual

1 French translation of characterization and improvement of organizational interoperability in

enterprises processes

enrichments for adapting existing modeling languages respecting Model Driven
Engineering context and,

− Methodology for system requirements modeling and verification process in
relation with existing system modeling enriched languages and frameworks.

This approach is illustrated in this paper by an application to interoperability
requirements modeling and checking problematic.

Requirement model

A requirement is considered as an unambiguous, but may be partial, description of the
pointed out need concerning customer, stakeholders, process management and models
management. Customer describes what the system must do. Stakeholder describes
what they require in order to interact with the system. Last, some constraints and
rules have to be respected during the process for example when some technological or
organizational choices have been made or when reusing existing models. This work
takes consideration to the reference model [2] summarized in Figure 1.

Figure 1: requirement reference model [2]

In other words, a requirement formalizes a expected functional (what the system must
do) or non-functional (how the system must do in terms of constraint, performance,
integrity and stability or more commonly security, safety, availability, etc.)
characteristic of the system. Each need has then to be described by a list of identified
requirements related to various aspects of the system (behavior, function, structure)
before being allocated to the components forming parts of the system. The
requirement model proposed is inspired first by the reference requirement tree model
proposed in Figure 2 and by the property model [9] as follows. A property describes
rules and constraints to verify the correctness, the coherence and the relevance of a
model. In this work, a requirement is defined as a property i.e. as a causal and typed
relation (Figure 2) between two sets called respectively cause (condition) and effect
(conclusion). In all cases, a requirement is described from a recursive manner and a
given cause can induce different effects.

node(i.1)

node(i.2)

node(i.k)

node iR

Causal relation

requirement
refinement

Conceptual
Graphs

Temporal
Logic

Natural
language
(expertise)

is re-writen into

Simulation
language

Test
scenarios

CREDI

Requirement description

Conceptual
Graphs

node(i.k)

node(i.k.1)

node(i.k.2) R’

node(i.k.n)

Requirement
reference
taxonomy
(partial)

Figure 2: requirement reference taxonomy and model

Last logical operators or more complex functions are used for describing the
condition under which the requirement have to be checked and the conclusion which
is normally expected.
It can be:
− Temporized: requirement depends from time evolution and concerns system

behavior.
− A-temporal: requirement characterizes only the structure or the functional aspect of

the system without taking into account the time.
− Simple requirement: cause is empty and effect has to be checked in every case.
− Composite requirement: cause and effect are interacting.
Requirement specification can be done respecting three cases:
− Cause and effect are composed of modeling variables, parameters and predicates

extracted from the model to be verified i.e. model has to be transformed in order to
dispose of data which compose it. Requirement cause and effect are described by
using the CREDI property model and UPSL [9] (Unified Property Specification
language) or the Conceptual Graphs as proposed in [10]. They can be formally
checked on the pointed out model by using technique as proposed in [10] or re-
written into other formal checking tool inputs languages such as Temporal Logic
(for example TCTL in the case of temporized composite or simple requirement if
the chosen checking tool is UPPAAL [11]) or simulation scenario description
language.

− Cause and effect are composed of other properties allowing then to refine
requirements from more complicated or complex ones to most simple ones. Their
specification can use then Natural Language to allow users to be more autonomous
and creative but this limits usable checking techniques to expertise.

The Figure 3 shows a partial view of the interoperability reference taxonomy
proposed in CARIONER project. It takes into account different levels and nature of
interoperability problems such as proposed in interoperability reference models
defined by the research and industrial communities [12, 13, 14, 15, 16].

Ri.1

Ri

Pi.1
- Simple requirement
- CREDI
- Conceptual Graph
- Natural language

Ri
- Composite requirement
- CREDI
- Natural language

Figure 3: interoperability requirements reference taxonomy (partial view)

The Figure 4 shows a very simple example of composite requirement described by
using each of the three provided modeling languages.

Other elements of the approach

The conceptual enrichments, model transformation principles and checking
mechanisms are rapidly defined and illustrated in the case of CARIONER project as
follows:

− Conceptual modeling enrichments: numerous methodologies, frameworks and
tools have been developed for enterprise modeling [4]. They provide adapted
concepts, modeling languages and reference models. In the current state of the
work, the proposed approach focuses on the BPMN language (Business Process
Modeling Notation) [17] enriched by the formal interoperability requirement
reference taxonomy model related concepts and relations presented before. These
enrichments have been introduced in [6].

Natural
Language

Conceptual
Graph

UPSL

Cause := ∅
Relation := true
Effect := ‘activity responsible’s email
address has to be known by all partners’

Cause := (∃ a ∈ Activities, ∃ c ∈ Actors. (IsResponsible(A,C)=true ∧
hasAttributes(c,emailAdress)
Relation := (∀t ∈ Time, ⇒)
Effect := (∀ b ∈ Activities, ∃ d ∈ Actors.[(A<>B) ∧
(IsResponsible(b,d)=true ∧ IsInRelationWith(c,d))

Figure 4: example of a requirement described by using three different provided languages

− Model transformation mechanisms (Figure 5): this study intent to take into
account the limited formalization level of a majority of used modeling languages in
industry, the limited requested time for system modeling but also modeling and
checking different natures of requirement. The checking technique used in the next
phase is based on the use of conceptual graphs [19]. So, a set of re-writing rules
under development will be defined respecting MDA [18] principles in order to
translate the enriched version of BPMN into Conceptual Graphs inducing a limited
loss of information.

− Proof mechanisms: the current state of the project focuses only on requirements
described by using Conceptual Graphs. Analysis mechanisms are then issued from
COGITANT tool [20] and based on three conceptual handling mechanisms called
projection, constraint and rule as proposed in [10].

− Tool development methodology: six steps are required for developing the
supporting set of tools. In CARIONER context, Eclipse GMF modeling framework
and COGITANT are used (Figure 6) [6, 21]. These steps are:

1 - Define a meta model (concepts and relations) describing the required system
modeling languages and modeling framework employed.
2 - Establish the requirement taxonomy model related to the domain and process
engineering purpose taking into account the meta model(s) established in step 1.
3 – Choose checking tools and formalize input languages a new meta model.
4 – Enrich the modeling languages meta model from step 1 taking into account the
requirement taxonomy from step 2.
5 - Formalize model and requirements transformation rules models.
6 - Proceed to the development of the tool platform including system and
requirement modeling, model transformation, requirement re-writing and other
handling functionalities required by users.

Meta Meta
Model (UML)

Meta
model

A
model

Modelling language

Conceptual
enrichments

Conform to

Modelling aspect Checking aspect

Proof
language

Conform to

Conform to

Conform to

Rewriting
rules

model

(generic)

Rewriting
rules

model

(specific)

Rewriting
rules

model

(business)

Conform to

Conform to

Rewriting
Figure 5: meta modeling rules and paradigm

System
Models

System
Models

M
od

el
tra

ns
fo

rm
at

io
n

System modeling

Requirements modeling

R
eq

ui
re

m
en

ts
re

-w
rit

in
gCOGXML

input
language

meta model

Reference
Interoperability
requirements

taxonomy

Enriched
BPMN

meta model

Modelling
Environment
(GMF Eclipse)

Checking tools
(COGITANT 5.1)

Figure 6: CARIONER platform

4. Conclusion and perspectives

This article presents how a requirement model based on property concept can be used
all along a system engineering process for improving quality and interactions between
actors involved in the process. Indeed, sharing a common requirement taxonomy
model, handling our own modeling languages but become able to use checking tools
can help collaborative works between actors from different domains to ameliorate
their processes. The main perspectives of this work concern now the temporal

requirements checking in a multi languages and multi view modeling environment. A
research work about multi agents systems integration is now under development. It
will provide simulation mechanisms taking into account behavioral models.

5. References

1. J-L.Le Moigne, La modélisation des systèmes complexes, Paris, Dunot, 1990 [in French]
2. INCOSE, Systems Engineering Handbook: a guide for system life cycle processes and

activities, Incose-Tp-2003-002-03.1, version 3.1, August 2007
3. F.B.Vernadat, Enterprise Modelling and Integration: Principles and Applications,

Chapmann & Hall, 1996
4. Petit, M. et al., Enterprise Modelling State of the Art. UEML Thematic Network.Contract

n°: IST–2001–34229. Work Package 1 (2002)
5. Douglass.C.Schmidt, Model-Driven Engineering, IEEE Computer Society, 0018-9162/06

39 (2), pages 25-31, february 2006 (see http://www.cs.wustl.edu/~schmidt/PDF/GEI.pdf)
6. M.Roque, V.Chapurlat, Interoperability In Collaborative Processes: Requirements

Charactersisation And Proof Approach, PRO-VE'09, 10th IFIP Working Conference on
Virtual Enterprises, Thessaloniki, GREECE, 7-9 October 2009

7. V.Chapurlat, C.Braesch, Verification, Validation, Qualification and Certification of
Enterprise Models: statements and opportunities, Intl. Journal on Computers in Industry
(Elsevier), 5th issue of the 59th volume, mai 2008

8. YAHODA verification tools data base, see http://anna.fi.muni.cz/yahoda/
9. Lamine E., Définition d’un modèle de propriété et proposition d’un langage de

spécification associé : LUSP, PhD thesis, Montpeiller II University, 12/2001 [in French]
10. Kamsu-Foguem B., Chapurlat V., Prunet F., Enterprise Model Verification : a Graph-based

Approach, International IEEE/SMC multiconference on Computational Engineering in
Systems Applications, CESA 2003, Lille, France, July 2003

11. UPPAAL documentation and tool are available online at: http://www.uppaal.com/
12. INTEROP, Enterprise Interoperability-Framework and knowledge corpus - Final report,

INTEROP NoE, FP6 – Contract n° 508011, Deliverable DI.3, May 21st (2007)
13. ATHENA, Framework for the establishment and management methodology, Integrated

Project ATHENA, deliverable A1.4 (2005)
14. Tolk A., Muguira J.A., The Levels of Conceptual Interoperability Model, Fall Simulation

Interoperability Worshop (2003)
15. C4ISR, Levels of Information Systems Interoperability (LISI), Architecture Working

Group ,United States of America, Department of Defence (1998)
16. Clark T., Jones R., Organisational Interoperability Maturity Model for C2, Australian

Department of Defence (1999)
17. BPMN, Business Process Modelling Notation, V1.2. http://www.bpmn.org/, 2009
18. MDA, Model Driven Architecture (MDA), Architecture Board ORMSC, Joaquin Miller

and Jishnu Mukerji Eds., 2001
19. Aloui S., Chapurlat V., Penalva J.-M., Linking interoperability and risk assessment: A

methodological approach for socio-technical systems, Proceedings of INCOM2006, 12th
IFAC Symposium on Information Control Problems in Manufacturing, Information control:
a complex challenge for the 21st century, A. Dolgui, G. Morel and C. Pereira Eds., ISBN:
978-0-08-044654-7, Saint Etienne, France, hal-00354778 (2006)

20. CoGITaNT Version 5.2.0: Reference Manual (2009) (http://cogitant.sourceforge.net)
21. A.S.Rebai, V.Chapurlat, System interoperability analysis by mixing system modelling and

MAS: an approach, Agent-based Technologies and applications for enterprise

interOPerability (ATOP), Eighth International Joint Conference on Autonomous Agents &
Multi-Agent Systems (AAMAS 2009), Budapest, Hungary, May 12 2009

