
Supporting Collaborative Work by Preserving Model

Meaning when Merging Graphical Models

Keith Phalp1, Frank Grimm2, Lai Xu1

1
 Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK

2
 ScopeSET Technology Deutschland GmbH, Germany

Abstract. An important aspect of support for distributed work is to enable users
at different sites to work collaboratively; models need to be accessible by more
than one user at a time allowing them to modify them independently from each
other supporting parallel evolution [1]. As design is a largely creative process
users also use layout to convey meaning. However, tools for merging such
models tend to do so from a purely structural perspective, thus losing an
important aspect of the meaning conveyed by the modeller. This paper presents

a novel approach to model merging which allows us to preserve such layout
meaning when merging. We first present evidence from an industrial study,
which demonstrates how users use layout to convey specific meanings. We then
introduce an approach to merging which will allow for the preservation of
meaning and finally describe a prototype tool.

Keywords: UML class models/diagrams, model merging, diagram merging
model-driven, distributed, software engineering

1 Introduction: The Need for Merging Models within

Collaborative Development

This paper presents a novel approach to model merging [2] which is intended to bring

gains to those working on collaborative software development. Whilst, in our case the

primary objects (in the wider rather than software sense) are UML models, the lessons

learned here have implications for collaboration more widely, where any shared

artefact may be developed in a similar collaborative manner (based on diagrammatic

modelling notations).
The rest of the paper is organised as follows: section two gives background to

model merging and the industrial context, section three outlines our findings on the

importance of layout and section four then discusses the need for a different approach

to merging. Section five discusses our 'semi-automatic' approach to merging and

finally section six offers some conclusions.

242 K. Phalp et al.

 2 Model Merging and Context

The context for this study was the production of software for automatic gearbox

controllers, using a model driven approach [3, 4]. Hence, modifying, the software was

achieved by first modifying the model, then the respective implementation (source

code) modifications followed automatically [5]. Modifications could only be carried

out in a sequential manner: before starting to work on the model and realise their

modifications, developers at one site had to wait for the developers at the other site to
finish their modifications, which was clearly an inefficient form of collaboration [6].

Hence, the main motivation for the research presented here was to remove the

limitation of only one user modifying a model at the same time [7] and to enable a

genuinely collaborative approach. However, when evolved models are modified

independently from each other, the same model elements might have been modified in

different and potentially contradicting ways [8]. These 'merge conflicts' usually

cannot be solved automatically by a merge tool, since such a tool cannot decide which

element version to use in the merged model [8]. Hence, modellers (in our case

software engineers) have to manually resolve conflicts and reason about conflicting

changes [9, 10]. It is important to re-iterate that, for model-driven software

development, models are not just a means of visualisation and communication since

source code can be derived automatically. Hence, the need to understand how
modellers interpret the models, so that we could understand fully the impact of

merging, as this will directly impact the resultant software artefacts.

3 The Importance of Layout

Initial results of this analysis are presented in [11]; the results having come from

examination of two substantial projects [12]. The following lists some of the ways in

which we found that the software developers used layout to convey meaning (in our

case for class diagrams). Notably, this, often domain-specific meaning, is neither

formally defined in the model nor the diagram itself. The interested reader is referred

to Grimm [12] for an exhaustive list.

• The absolute position of a class symbol was meaningless [20, 22], though the

symbol’s proximity (diagram context) and relation the other class symbols

was important for the modellers’ mental-map [13] of a diagram.

• Class symbols did not overlap (a fundamental requirement of readability)

[14], were often ordered according to their semantics in the software design
domain, and UML class diagram layout guidelines often [15] ignored.

Symbols of closely related classes were then positioned in close proximity to

each other; for instance in containment (whole-part) and inheritance

hierarchies [16].

• Diagrams dealing with similar domain concepts, i.e., representing classes

whose semantics were closely related, often exposed a similar layout

structure, supporting the finding that diagram layout conveys inherent

information important to modellers.

Supporting Collaborative Work 243

• Elements placement was based on modellers' knowledge of semantic

relationships among elements and how they wanted to represent this

knowledge in a diagram. For instance, sometimes two subclasses were

placed on the left hand side close together, while another subclass on the

same inheritance level was placed on the right apart from its semantically

related variants. This concurs with Petre [16] who found that placing

unrelated elements close to each other led to the misinterpretation that they

were semantically related.

• The position of class symbols was more important than being able to draw

connection as straight lines. So, positioning class symbols in their semantic

context overweighted the connections the class had to other classes in the

respective diagram [17]. However, there was no preferred direction of

connections; though if a diagram depicted classes in a clear hierarchical

context, then a top-down direction of connections was preferred [18].

Moody [19] argues that the layout guidelines given by the UML standard [15] are

flawed in several ways, and, as the results of our diagram analysis show, those

guidelines were not followed rigorously. Hence, diagram layouts can, and do, differ

and are subject to the interpretation of the modellers who create or modify them.

The main generic finding is that the layout that modellers choose for a diagram is
intentional and follows informal, unspecified rules. Elements (mainly class symbols)

were placed in accordance with the element’s semantic (i.e., domain) meaning and the

engineer's understanding of this meaning. Hence, elements that are closely related in

terms of their domain semantics are likely to be positioned close together in a digram

as well. Thus, adjacent diagram symbols usually reflect a close relationship of the

semantic concepts and their layout in the diagram conveys this meaning visually .

4 Implications: A Different Approach to Merging

It was clear from our study that layout heuristics were being used in the construction

of models and allocation of classes to models. These findings strengthened the

conviction that merging was vital, but needed to take account of, or at least try to

preserve, as much of the meaning that layout conveyed as possible.

However, having conducted a thorough analysis of existing automatic diagram

layout approaches (typically based on automatic graph layout algorithms) it became

clear that these did not meet our needs because they merely preserved the connections

(in a topological sense) rather than dealing with the layout itself, and, similarly
ignored many of the heuristics suggested above [20].

In addition, for UML, automatic layout algorithms are based on UML model

elements, i.e., the semantic elements like packages, classes, and inheritance and

association relations among classes [21]. Since automatic layout algorithms focus on

creating aesthetically pleasing layouts, they try to optimise diagram layouts with

respect to edge crossings and bends [22], but they do not take the mental map of a

diagram into account. When symbols are added to or deleted from a diagram, an

automatic layout approach might create a completely different layout. Hence, users

working with the diagram would have to re-learn the diagram.

244 K. Phalp et al.

Given those issues related to conventional layout algorithms, the challenge was

how to enable efficient model and diagram merging whilst still allowing modellers to

preserve the domain-specific information. Ideally, a diagram merge approach would

automatically merge diagrams in a meaningful way and burden users only with

solving “real” diagram merge conflicts. The ideal scenario would be to allow

modellers to create diagrams the way they want with all possible layout freedom, but

still be able to rely on mental-map-preserving automatic layout. These two objectives

of course contradict each other – layout freedom and automatic layout cannot be
combined without one limiting the other.

The authors suggest that a certain degree of automatic layout is desirable, for

creating diagrams in the first place and for merging them. When model elements

depicted by diagram symbols are updated, a modelling tool has two possibilities, (1)

update the diagram symbols’ graphical properties (including its size) or (2) leave

them as they are and let the modellers take care of manually updating the diagrams.

Given the above drawbacks of fully automatic diagram layout, but also given that

automatic layout is useful to some extent, and given that merging fully manual

diagram layout in a meaningful way is not possible, a semi-automatic layout is

described briefly in the following section.

5 Implementing a Merging Tool

Since a diagram can be independently modified by different modellers, in parallel, the

diagrams should ideally be combined without user interaction if there are no diagram

merge conflicts (and the resulting diagram layout should still be meaningful).
Therefore, a semi-automatic layout approach is presented which allows modellers to

make the grouping and ordering of class symbols explicit.

As discussed above, these two layout features were found to be most important

with respect to defining and conveying domain-specific meaning; thus, when

modellers create diagrams, they can explicitly define the order of class symbols. In

our approach this is the only layout information that can be defined manually. The

more layout features modellers can influence, the more diagram merge conflicts can

occur because the features were conflictingly changed in parallel in both evolved

diagrams. Those conflicts then have to be resolved manually. This additional diagram

information is then taken into account when class diagrams are laid out

automatically. The extra information is leveraged in order to position class symbols

according to the manually defined order. Thus, for example, modellers are able to
explicitly define the principal horizontal and vertical ordering of class symbols –

which are then automatically laid out as trees in a top-down manner. Being able to

automatically re-arrange diagram symbols during the diagram merge process relieves

modellers from having to deal with unimportant layout merge conflicts (e. g., symbol

overlapping) and allows them to automatically create uncluttered diagrams during the

merge.

Fig. 1 shows a merge example. The screen-shot shows four UML class diagrams:

the initially merged diagram is shown in the upper-right corner, both evolved

diagrams are in the lower half, and their common ancestor diagram is shown in the

Supporting Collaborative Work 245

upper-left corner. The latter three diagrams are immutable, only the merged diagram

and its underlying model can be modified by the modeller. Modifications are

necessary to resolve merge conflicts. Both evolved diagram versions and the ancestor

diagram are annotated with change and conflict information. Diagram symbols and

model elements deleted in one or both evolved diagrams are highlighted and

annotated in the ancestor version - since they are not part of evolved diagram (in

which they got deleted). Any other changes are highlighted and annotated in the

evolved diagrams. Conflicting changes are highlighted in a different colour to non-
conflictingly ones.

A brief description of our algorithm now follows (again see Grimm [12] for a more

detailed treatment). As a first step, the changes between both evolved models and the

common ancestor are calculated by comparing the states of equivalent model

elements. Equivalent elements in different model versions are determined by means

of globally unique identifiers and it is then decided, for each change, whether or not it

can be accepted. Conflicting changes are rejected. For model elements with

conflicting containments this means that the model element is not part of the initially

merged model. Then, so-called existence conflicts exist, and the modeller has to

manually decide which parent element contains the element. If an element is not

included in the initial merged model, its children elements are also omitted.

Referencing any such element from other elements is not possible. Thus, such
references are also marked with merge conflicts. As a second step, the actual merged

model is created. Any model element which does not have an existence conflict

becomes part of the merged model. Of course, these model elements might have

merge conflicts, too. However, these conflicts do not prevent the element from

becoming part of the merged model, though they would need to be resolved manually

by the modeller.

Fig. 1: Merged diagram example (also shown: evolved diagram versions and their common
ancestor with change and conflict annotations)

246 K. Phalp et al.

The merge tooling also provided modellers with the possibility to resolve merge

conflicts by accepting and rejecting model and diagram changes. Not only could

modellers modify the merged model (diagram) by means of accepting or rejecting

changes, but also they could also modify it in any way. Therefore, even model

elements or symbols which were not changed at all (not even non-conflictingly) could

be modified. Hence, the editing capabilities of the implemented model merge tool

were those specific ones required for dealing with changes, in addition to the common

editing functions provided by an ordinary modelling tool and used when models and
diagrams are created in the first place. The dedicated merge tooling took care of

updating the acceptance status of changes when the merged model or diagram was

updated – so that modellers could learn whether a change made in one model

(diagram) was (still) part of the merged model.

In contrast to other automatic UML class diagram layout approaches, no layout

heuristics or iterative layout were applied for the implemented layout approach. Such

approaches are used to create more aesthetically pleasing and potentially more

readable diagram layouts, but they have the drawback that the resulting layout might

'look' different every time a diagram is laid out and when the model is updated (and

thus the information used to calculate the layout changed). Hence, the semi-automatic

layout approach implemented here is a trade-off between diagram mergablity and

manually creating UML class diagrams with all the freedom with respect to
positioning / laying out of diagram symbols.

Hence, in our approach, the 'freedom' of manual layout was reduced in favour of

being able to efficiently merge class diagrams, while the most important layout

features (regarding embedding domain-specific information into the layouts of class

diagrams) can still be defined manually by modellers. That is, the layout approach

implemented here has as a priority keeping a stable and predictable layout. This

means that the order of class symbols is not altered so long as the modeller does not

change it. The layout of connection symbols depicting relationships among classes is

done completely automatically; a connection symbol's layout is not changed as long

as the order of the connection’s class symbols does not change.

6 Conclusions

This paper examines support for collaboration across multiple sites when developing

automotive software, focussing on the issue and importance of model merging.

In order to understand the way developers used layout we examined two substantial
industrial projects (see section four). The main generic finding was that modellers use

layout to convey meaning, often in a way that is not defined by given model heuristics

(such as guidance on the production of UML class diagrams). Having established the

importance of layout we then wanted to enable modellers to work independently on

certain models in parallel.

Therefore, we present an approach for laying out models (class diagrams) in a

semi-automatic fashion that allows modellers to manually define the order of class

symbols and at the same time allows diagrams to be merge-able. This approach

provided a trade-off between (1) the amount of layout freedom modellers had

Supporting Collaborative Work 247

regarding the position of diagram symbols and (2) the ability to automatically create

'meaningful' merged diagrams whose layout was untangled - and preserved the

manually defined class symbol hierarchy. In addition, an approach to visualising

differences and conflicts between 'to-be-merged' UML models and class diagrams

was implemented. This allowed the developers to work with merged models in the

same way that modellers work with them when they create them in the first place, and

crucially allowed developers to exchange partially merged models.

In summary, this paper has provided evidence for the importance of layout in
models and has presented a 'semi-automatic' approach to merging which allows

modellers to retain a greater recognition and understanding of their work when

models across sites are merged. In addition, by allowing the exchange of partially

merged models conflicts between versions can be resolved effectively. We contend

that such merging is a vital cog in the support for collaborative development

processes.

References

1. Mens, T., Buckley,J. , Zenger, M., Rashid, A.: Towards a taxonomy of software evolution.
In:. Proceedings of the Workshop on Unanticipated Software Evolution (2003)

2. Westfechtel, B.: Structure-oriented merging of revisions of software documents. In:
Proceedings of the 3rd international workshop on Software configuration management,

pages 68–79, New York, NY, USA, ACM Press (1991)
3. Hermsen, W., Neumann, K.-J.: Application of the object-oriented modeling concept OMOS

for signal conditioning of vehicle control units. Technical report, SAE 2000 World
Congress, March 2000, Detroit, MI, USA (2000)

4. Schweizer, M., Benkel, M.: Development of product families - an example from the
automobile industry. In: Proceedings of the 3rd Workshop on Object-oriented Modeling of
Embedded Real-Time Systems (OMER3) (2005)

5. Kleppe, A. G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
(2003)

6. Harrison, W. H., Ossher, H., Sweeney, P. F.: Coordinating concurrent development. In
Proceedings of the 1990 ACM conference on Computer-supported cooperative work,
CSCW ’90, pages 157–168, New York, NY, USA, ACM (1990)

7. Mens. T.: A state-of-the-art survey on software merging. In: IEEE Trans. Softw. Eng.,
28(5):449–462 (2002)

8. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM

Comput. Surv., 30:232–282, (June 1998)
9. Ohst, D., Welle, M., Kelter, U.: Difference tools for analysis and design documents. In:

ICSM ’03: Proceedings of the International Conference on Software Maintenance, page 13,
Washington, DC, USA, IEEE Computer Society (2003)

10. Kelter, U., Wehren, J., Niere, J.: A generic difference algorithm for uml models. In:
Proceedings of the SE 2005, Essen, Germany (March 2005)

11. Grimm, F. Phalp, K, Vincent, J.: Enabling multi-stakeholder cooperative modelling in
automotive software development and implications for model driven software development.

Ist International Workshop on Business Support and MDA (MDABIZ) a Tools 2008
Workshop, Zurich (July 2008)

248 K. Phalp et al.

12. Grimm, F. Enabling collaborative modelling for a multi-site model-driven software
development approach for electronic control units, PhD thesis, Bournemouth University
(2012)

13. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. In:
Journal of Visual Languages and Computing, 6(2):183–210 (1995)

14. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of
diagrams. In: IEEE Trans. Syst. Man Cybern., 18(1):61–79 (1988)

15. UML Notation Guide. Object Management Group (2003)
16. Petre. M.: Why looking isn’t always seeing: readership skills and graphical programming.

In: Commun. ACM, 38(6):33–44 (1995)
17. Eichelberger, H.: Nice class diagrams admit good design? In: SoftVis ’03: Proceedings of

the 2003 ACM symposium on Software visualization, pages 159–167, New York, NY,
USA, ACM Press (2003)

18. Purchase, H.: Evaluating graph drawing aesthetics: defining and exploring a new empirical
research area. In: DiMarco, J. (ed.), Computer Graphics and Multimedia: Applications,
Problems and Solutions, pages 145–178. Ed. Idea Group Publishing (2004)

19. Moody, D. L.: The "physics" of notations: a scientific approach to designing visual
notations in software engineering. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-
8 May 2010, pages 485–486 (2010)

20. Eichelberger, H.: Aesthetics of class diagrams. In: Proceedings of the First IEEE
International Workshop on Visualizing Software for Understanding and Analysis, pages 23–
31. IEEE (2002)

21. Eiglsperger, M., Gutwenger, C., Kaufmann, M., Kupke, J., Jünger, M., Leipert, S., Klein,
K., Mutzel, P., Siebenhaller, M.: Automatic layout of UML class diagrams in orthogonal
style. In: Information Visualization, 3(3):189–208 (2004)

22. Eichelberger. H.: On class diagrams, crossings and metrics. In: Jünger, M., Kobourov, S.,
Mutzel, P. (eds.), Graph Drawing, Dagstuhl Seminar Proceedings (2006)

