
UEML: COHERENT LANGUAGES AND
ELEMENTARY CONSTRUCTS

DETERMINATION

Matthieu Roque1, Bruno Vallespir1, Guy Doumeingts1, 2
(1) LAPS/GRAI, UMR CNRS 5131, University Bordeaux 1 - ENSEIRB

351, Cours de la Libération, 33405 Talence FRANCE
matthieu.roque@laps.u-bordeaux1.fr
bruno.vallespir@laps.u-bordeaux1.fr

(2) ADELIOR / Itrec gestion 62bis, Avenue André Morizet
92100Boulogne-BillancourtFrance

doumeingts@itrec.com

Nowadays, one of the important subjects of research in the enterprise
modelling domain is the development of a unified language, often called UEML
(Unified Enterprise Modelling Language). This paper is focused on one of the
more illustrating points about UEML: the comparison of the constructs of the
enterprise modelleling language. In previous work we have put in evidence few
situations which can occur when we want to compare some modelling
constructs belonging to different languages. We investigate more in detail this
problem of comparison, in using a formal approach based on the set
theory.This paper propses some concepts and guidelines in order to develop
UEML.

1. INTRODUCTION

Since the first development in the area of enterprise modelling started in the US in
the years of 70’s (ex. SADT, SSAD, IDEF0, Data Flow Diagram,…), a lot of
enterprise modelling languages have been elaborated world-wide. We can mention
for example, Entity Relationship model, MERISE, GRAI grid and nets, CIMOSA
constructs and building blocks, OMT, IEM, ARIS method, IDEFx,…(Petit, 1997),
(Vallespir, 2003), (Vallespir et al., 2003), (Vernadat, 1996). It is generally
recognised that there are too many heterogeneous modelling languages available in
the “Market” and it is difficult for business users to understand and choose a suitable
one. Main problems related to this situation have already presented in (Chen et al.,
2002) and will not explain in this paper. However, it seems that the elements behind
these various languages are similar or slightly differ in details. Thus, it is natural to
think about the development of a Unified Enterprise Modelling Language. One of
the principal benefits to have a Unified Enterprise Modelling Language is to be able
to translate a model of an enterprise built in a language in another one (Chen et al.,
2002), (Doumeingts et al., 1999), (Vallespir, 2003), (Vallespir et al., 2003),
(Vernadat, 2001), (Vernadat, 1999). Moreover, requirements about UEML have
been stated during the UEML project (IST-2001-4229) (Knothe, 2003). The third

3

NETWORK-CENTRIC COLLABORATION

24

most important requirement stated was the expectation for an “invariant and unique
behavioural semantic” language. Thus, the language UEML is used like a “pivot”
language and thus it allows to avoid the one-to-one translation (Chen et al., 2002),
(Berio, 2003). Several approaches can be considered for elaborating our unified
language like the bottom-up approach which starts with an analysis and then
synthesis of existing enterprise modelling languages. Indeed, for the moment, it
seems to be more efficient to use the principle which consists in integrating existing
languages (Chen et al., 2002), (Vallespir et al., 2003).

In this paper, we only focus on the determination of the common constructs in order
to find the elementary constructs. The comparisons of the links between the
constructs are not taking into account in these works.

2. DEFINITION OF THE ELEMENTARY CONSTUCTS

In previous works, the concept of elementary construct has been introduced and we
highlighted that its determination is not easy (Roque et al., 2005). The objective, of
this paper is to propose a formal approach in order to facilitate the determination of
the elementary constructs. The definition of the elementary construct is recalled
below.

A construct is an elementary construct, if it exists completely or not at all
for each considered languages.

For instance, in Figure1, we can see that all the constructs are elementary constructs
except the construct C2. This construct belongs completely to the language A but
only a part of this construct belongs to the language B. Thus, it is not an elementary
construct.

Language A Language B

Language C

C1C1
C3C3

C4C4

C5C5

C6C6 C7C7

C21C21 C22C22

C2C2

Figure 1 – Elementary constructs

UEML: Coherent languages and elementary constructs 25

3. CONSTRUCTS COMPARISON

In our approach, we consider the meta-modelling in optics to define a unified
enterprise modelling language. Some approaches like XML (DTDs and Schemas),
MOF, Telos, can be used as meta-modelling language (Panetto et al., 2004). The
meta-modelling language that we use is the UML (Unified Modelling Language)
class diagram (OMG, 2003) because it seems sufficient to deal with our problem
which is, in first time, to describe the syntactical aspects of the languages. Indeed,
for each language, a meta-model1 is built with the class diagram, in order to
represent the constructs of each language. With these meta-models we can compare
the constructs of the different languages. Thus, to elaborate the UEML meta-model
we have to compare a number Nc of constructs corresponding to all the constructs of
the languages. Our objective is to provide a systematic approach in order to
determinate which constructs we have to integrate in the UEML language and which
are the correspondences rules between them and the constructs of the considered
languages. The UEML language is composed by all the elementary constructs which
are possible to identify among the Nc conctructs. In order to define these elementary
constructs we use an approach based on the set theory approach where each
construct is represented by a set.

3.1 Definition of the elementary constructs

Each constructs can be easily represented by a set. Thus, we can write some
equations in order to determine the elementary constructs in the case of a number
”Nc” of constructs and how the constructs of each language can be recomposed. We
can define in the first time the set E corresponding to the union of the Nc constructs.
Thus, we can define NEC elementary constructs (ECi) corresponding to all the
sub-sets which is possible to create with the intersections of all constructs (1). To
determine the elementary constructs, it is useful to use a truth table (as in Boolean
algebra) with all constructs. In this table, each “0” corresponds to the
complementary2 of the set in the set E and each “1” corresponds to the set. Thus,
each combination of the truth table defines an elementary constructs excepted the
first one because cC1 ∩∩∩∩ CC2 ∩∩∩∩ cC3 = ∅. Thus, in the case of three constructs, we can
write the equations below in order to find the elementary constructs and the
correspondences rules (see Table 1).

Table 1 – Determination of the elementary constructs

Elementary constructs Correspondances rules
CE1 = C1 ∩ C2 ∩ C3 CE5 = cC1 ∩ C2 ∩ C3 C1 = CE1 ∪ CE2 ∪ CE3 ∪ CE4
CE2 = C1 ∩ C2 ∩ cC3 CE6 = cC1 ∩ C2 ∩ cC3 C2 = CE1 ∪ CE2 ∪ CE5 ∪ CE6
CE3 = C1 ∩ cC2 ∩ C3 CE7 = cC1 ∩ cC2 ∩ C3 C3 = CE1 ∪ CE3 ∪ CE5 ∪ CE7
CE4 = C1 ∩ cC2 ∩ cC3

1 However, meta-modelling is not an easy step for several reasons: first because given a language it is

possible to build different meta-models (as in the case of modelling the same situation) and because
there is the need of some guidelines which are not explained in this paper.

2 equal to [E - (Ck)] noted c(Ck)

NETWORK-CENTRIC COLLABORATION

26

The number of the elementary constructs, in the case of Nc constructs, is given by
the equation (1)

 1 -2 N CN
EC = (1)

3.2 Coherent languages and elementary constructs

The equation (1) does not assume that the intersections between the constructs of a
same language are equals to the empty set. Indeed, some languages can have some
redundancies or overlapping between their constructs. For the reason, we define the
concept of coherent language.

A coherent language is a language whose all the intersections between its
constructs are equals to the empty set.

Thus, for a coherent language there is no redundancy and no overlapping between its
constructs. In the case of the considered languages for elaborating UEML are
coherent languages, the number of the elementary constructs can be reduced. Indeed,
in this case this number is not equals to (1) but to the equation (2) in removing all
the elementary constructs resulting of the comparison of two constructs of same
languages.

�
�

�

�

�
�

�

�
−−

�
�
�

�

�

�
�
�

�

�

−= �
=

�
= 1212

1

)(
)(

1

L

iC

LN

i
iC N

i

LN
LN

ECN (2)

Where:

� NL is the number of the considered languages,
� Nc(Li) is the number of the constructs of the language Li.

4. APPROACH FOR DEFINGING THE ELEMENTARY

CONSTRUCTS

Finally, we can define three different steps in order to determinate the elementary
constructs.

1. Write the equations to define all the elementary constructs for the
considered number of constructs.

However, the concept of coherent language of the section 3.2 is very important. In
our approach, the definition of UEML is based on the union of constructs of existing
languages. For this reason, the problem of redundancy and overlapping constructs of
these languages has to be solved before, in order to have simpler and more coherent
UEML. In this case, the correspondences rules will be less complicated.
Consequently, it seems to be more efficient to apply our approach for defining the

UEML: Coherent languages and elementary constructs 27

elementary constructs (before the first step), to each language in order to have
coherent languages. Moreover, there is no interest to define a unified enterprise
modelling language in using languages whose their constructs or part of constructs
are not unique in a same language.

2. Interview the providers of the languages in order to identify the

intersections between the constructs of the languages.

This step is really not obvious. Indeed, most of the languages have not a formal
definition of their constructs. In this case, the comparison is mainly based on
informal comparisons where each construct is only defined by a textual description.
In the UEML project (Berio, 2003) which provided UEML 1.0, this comparison had
been performed by using a scenario. This scenario had been modelled in each
considered enterprise modelling language. The study of the intersections between
the constructs had been done on the bases of this scenario. Even if, this approach do
not provide a formal approach in order to compare the constructs, the lack of formal
definition of the constructs, do not permit to use a formal and automatic method.
The UEML 2.0 (Berio, 2005) undertakes a very different, eventually complementary
approach. Indeed, it requires to fully model the languages in their three conceptual
components: abstract syntax, semantic domain and semantics. These three
components are organised according to a meta-meta-model: any language is
represented by constructs, in turn associated to some meaning provided by a
semantic domain. However, the subject of the paper is not to discuss on the way to
get the different equations which represent the intersections between the constructs.

3. Resolve the equations according to the results of the preceding step.

5. ILLUSTRATION EXAMPLE

Let us assume that we want to deal with only two pieces of languages: the SADT
and the GRAI activities (Roque et al., 2005) as shown in Figure 2.

Support

Trigger OutputNAME#

GRAI Activity

Control

NAMEInput Output

#

SADT Activity

Mechanism

Figure 2 – GRAI and SADT activities

The two simplified meta-models (the links between the constructs of the languages
are not represented) of our example are represented in UML class diagrams in the
Figure 3. In this paper we focus only on the constructs comparison. In a first
comparison, we can identify three elementary constructs which are the Name, the
Number and the Output. In the two languages, these concepts are used for

NETWORK-CENTRIC COLLABORATION

28

representing the same things. For simplify, these three constructs can be grouped
into only one elementary constructs which is called Activity.min (3).

Activity.min = {Name, Number, Output} (3)

SADT ACTIVITYSADT ACTIVITY

MECHANISMMECHANISM
1..*

INPUTINPUT
1..*

CONTROLCONTROL
1..*

OUTPUTOUTPUT
1..* GRAI ACTIVITYGRAI ACTIVITY

NUMBERNUMBER
1

TRIGGERTRIGGER
0..1

SUPPORTSUPPORT
1..*

NAMENAME
1

NUMBERNUMBER
1

OUTPUTOUTPUT
1..*

NAMENAME
1

Figure 3 – GRAI and SADT simplified meta-models

5.1 Definition of the elementary constructs and the correspondences rules

5.1.1 First step: Write the equations

Now, we have to consider only five constructs (Support, Trigger, Control,
Mechanism and Input) because we have created the Activity.min elementary
construct. Thus, with the equation (1) we can define 31 elementary constructs.
However, if we use the equations (2) we can reduce this number to 11 elementary
constructs. For this example, it is possible to add another assumption in order to
reduce again the number of elementary constructs. Indeed, if we take the case of the
control, we can see that this constructs is decomposed in three elementary
constructs3:

EC9 = C ∩ CM ∩ CI ∩ CT ∩ CS
 EC10 = C ∩ C M ∩ C I ∩ C T ∩ S
 EC11 = C ∩ C M ∩ CI ∩ T ∩ CS

EC9 represents a control in SADT which is neither a Trigger nor a Support in SADT.
For transformation issue, we can consider that a control can always be linked to a
Trigger or a Support. Thus, we can assume that the generalization relationship is
complete and that EC9 = ∅. We can apply the same principle of all the constructs
and finally we have also EC1 = ∅, EC2 = ∅, EC3 = ∅ and EC6 = ∅.

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�
−−

�
�
�

�

�

�
�
�

�

�

−= ��
==

�
=

LL

iC

LN

i
iC N

i
ic

N

i

LN
LN

EC LNN
11

)(
)(

)(1212 1

(4)

3 Support → S ; Trigger → T ; Control → C ; Mechanism → M ; Input → I;

Not Triggering Control → NTC

UEML: Coherent languages and elementary constructs 29

The equations (2) can be modified in order to take into account this remark, like is
illustrated by the equation (4). With this equation the number of elementary
constructs is reduced to 6.

5.1.2 Second step: Interview the providers of the languages

For the five constructs of the two activities, we can write the six relationships below,
which will be used to define all the elementary constructs.

1. Trigger ⊂ Control
2. Trigger ∩ Input
3. Trigger ∩ Mechanism = ∅
4. Support ∩ Control � ∅
5. Input ⊂ Support
6. Mechanism ⊂ Support

5.1.3 Third step: Resolve the equations

In conclusion, we have only 6 elementary constructs. These elementary constructs
and the correspondences rules are in Table 2.

Table 2 – Elementary constructs and correspondences rules.

Elementary constructs Correspondences rules
EC4 = CC ∩ CM ∩ I ∩ CT ∩ S = IUEML S = IUEML ∪ MUEML ∪ NTC

EC5 = CC ∩ CM ∩ I ∩ T ∩ CS=∅ I = IUEML
EC7 = CC ∩ M ∩ CI ∩ CT ∩ S = MUEML M = MUEML

EC8 = CC ∩ M ∩ CI ∩ T ∩ CS = ∅ C = NTC ∪ TUEML
EC10 = C ∩ CM ∩ CI ∩ CT ∩ S = NTC T = TUEML
EC11 = C∩ CM ∩ CI ∩ T ∩ CS = TUEML

5.2 UEML meta-model and correspondences rules

Finally, we can build the UEML meta-model of this example in UML class diagram
(see Figure 4).

INPUTINPUTUEMLUEML

MECHANISMMECHANISMUEMLUEML

NO TRIGGERING NO TRIGGERING

CONTROLCONTROL

TRIGGERTRIGGERUEMLUEML

ACTIVITY.MINACTIVITY.MIN

SUPPORTSUPPORT

CONTROLCONTROL
ACTIVITY SADTACTIVITY SADT

ACTIVITY GRAIACTIVITY GRAI

UEML

Figure 4 – UEML meta-model and correspondences rules

NETWORK-CENTRIC COLLABORATION

30

This class diagram illustrates the UEML meta-model and the correspondences rules
between the UEML constructs and the constructs of the GRAI and the SADT
activities. Practically, this rule leads to get elementary constructs belonging to
UEML that enable to rebuild constructs of languages (so-called local constructs) by
generalization. Since these local constructs are obtained, they can be composed to
get the whole language.

6. CONCLUSION

In this paper, we have wanted to put in evidence some difficulties concerning the
comparison of constructs of enterprise modelling languages. We have presented a
systematic approach which provides some help for the determination of the core
constructs of the UEML language and the correspondences rules. However, an
important question not addressed is the applicability of the methodology for a real
case due to the algorithm complexity. Indeed, the number of elementary constructs
is of the exponential order and the automatic determination will be difficult without
a software support which has to be developed.

7. REFERENCES

1. Berio G., Requirements analysis: initial core constructs and architecture, UEML Thematic Network -

Contract n°: IST – 2001 – 34229, Work Package 3 Deliverable 3.1, May 2003.
2. Berio G., UEML 2.0. Deliverable 5.1. INTEROP project UE-IST-508011 (www.interop-noe.org). 2005
3. Chen D., Vallespir B., Doumeingts G. Developing an unified enterprise modelling language (UEML) –

Roadmap and requirements. – in Proc. of 3rd IFIP Working conference on infrastructures for
virtual enterprise, PROVE, Sesimbra, Portugal, 1st-3 May 2002 – Collaborative Business
Ecosystems and Virtual Enterprises, Kluwer Academic Publishers.

4. Doumeingts G., Vallespir B. UEML : Position du LAP/GRAI. – Seminar of Groupement pour la
Recherche en Productique, GRP, Nancy, France, 25 November 1999.

5. Knotte T., Busselt C. and Böll D. – Report on UEML (needs and requirements). - UEML Thematic
Network - Contract n°: IST – 2001 – 34229, Work Package 1 Report, April 2003.

6. OMG. Unified Modeling Language Specification. – Version 1.5, formal / 03-03-0, 2003.
7. Panetto H., Berio G., Benali K., Boudjlida N., Petit M. (2004). A Unified Enterprise Modelling

Language for enhanced interoperability of Enterprise Models. Proceedings of the 11th IFAC
INCOM Symposium, Bahia, Brazil, April 5-7, 2004.

8. Petit M. Enterprise Modelling State of the Art, UEML Thematic Network - Contract n°: IST – 2001 –
34229 – Work Package 1 Report, October 2002.

9. Roque M., Vallespir B. and Doumeingts G. From a models translation case towards identification of
some issues about UEML – in Proc. of the workshop on Entreprise Integration, Interoperability and
Networking (EI2N), Geneva, Switzerland, February 22, 2005.

10. Vallespir B., Braesch C., Chapurlat V., Crestani D. L’intégration en modélisation d’entreprise : les
chemins d’UEML. – in Proc. of 4ème conférence francophone de Modélisation et Simulation,
Organisation et conduite d’activités dans l’industrie et les services, MOSIM, Toulouse, France, 23-
25 April 2003.

11. Vallespir B. - Modélisation d’entreprise et architecture de conduite des systèmes de production. –
Thesis for Habilitation à Diriger des Recherches, University Bordeaux 1, 19 December 2003.

12. Vernadat F. UEML: Towards a Unified Enterprise Modelling Language. – in Proc. of 3rd Conférence
Francophone de Modélisation et Simulation, MOSIM, Troyes, France, 25-27 April 2001.

13. Vernadat F. Unified Enterprise Modelling Language (UEML). – IFAC-IFIP Task force Interest group
on UEML, Paris, France, 16 December 1999.

14. Vernadat F.B. Enterprise modelling and integration: principles and applications. Chapman & Hall,
1996.

