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Abstract. This paper addresses an optimization-based approach for the design 

of RF integrated inductors. The methodology presented deals with the 

complexity of the design problem by formulating it as a multi-objective 

optimization. The multi-modal nature of the underlying functions combined 

with the need to be able to explore design trade-offs leads to the use of niching 

methods. This allows exploring not only the best trade-off solutions lying on 

the Pareto-optimum surface but also the quasi-optimum solutions that would be 

otherwise discarded. In this paper we take advantage of the niching properties 

of lbest PSO algorithm using ring topology to devise a simple optimizer able to 

find the local-optima. For the efficiency of the process analytical models are 

used for the passive/active devices. In spite the use of physics-based analytical 

expressions for the evaluation of the lumped elements, the variability of the 

process parameters is ignored in the optimization stage due to the significant 

computational burden it involves. Thus in the final stage both the Pareto-

optimum solutions and the quasi-optimum solutions are evaluated with respect 

to the sensitivity to process parameter variations.  

Keywords: particle swarm optimization, multi-objective optimization, 

parameter variability, sensivity analysis, niching  

1   Introduction 

The worldwide market on communications is still growing exponentially, mainly due 

to the ever scaling down of CMOS transistor sizes. This evolution yields the 

development of faster and cheaper circuits with increasing functionality. However it 

is widely recognised that as technology sizes continues to scale down, the variability 

in process parameters may cause significant deviations in device characteristics, 

forcing the adoption of new methodologies for the design of integrated circuits and 

systems. Generally, in nano-CMOS technology, imperfections in analog and digital 

circuits are a result of arbitrary errors in the implementation process. These errors, 

commonly referred as process’s parameter variability, are consequence of several 

physical processes, that occur during fabrication, such as line edge roughness, random 

dopant fluctuations and oxide thickness variations [1]-[3]. Since process variability 

has strong influence on circuit reliability as well as in circuit lifetime, designers 

usually are tempted to use large design margins, degrading the circuit performance. In 
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order to overcome these issues, reliable assessments must be done at design time [1]. 

In this paper, we propose using optimization-based design applied to an integrated 

planar inductor. 

Stochastic optimization algorithms such as particle swarm optimization (PSO) 

algorithms have shown to be effective and robust optimization methods for solving 

difficult optimization problems [1]. The original and many existing forms of PSOs are 

designed for locating a single global solution. These algorithms typically converge to 

one final solution because of the global selection scheme used. However, the design 

problem under consideration is, by nature, “multimodal” meaning that there are 

multiple satisfactory solutions. For this type of optimization problems where multiple 

global and local optima exist, it is preferable to locate all global optima and/or some 

local optima that are also considered as being satisfactory. Techniques used to locate 

multiple optima (global or local) are referred to as “niching” methods. Niching PSO 

methods are able to promote and maintain multiple stable subpopulations within a 

single population, with an aim to locate multiple optimal or suboptimal solutions.  

Many of these niching methods require additional parameters, which are critical to the 

algorithm performance. Others have a high computational complexity, as they use 

global information calculated from the entire population [4]-[7]. The PSO algorithm 

used in the paper overcomes such difficulties by means of a local best (lbest) PSO 

algorithm with the population mapped onto a ring topology [2]. 

The integrated inductor design is formulated as a dual-objective optimization 

problem, where the parameter space is discretized by fixed step lengths which result 

from technical constraints. The lbestPSO algorithm is used to find a set of Pareto-

optimum and quasi-optimum solutions. The sensitivity of these solutions to parameter 

variation is analysed and a final set of solutions is selected to be submitted to the 

designer. 

The remain of the paper is organized as follows. The novelty introduced by this 

paper, as well as the integrated planar inductor optimization strategy, is offered in 

Section 2. The lbestPSO algorithm is discussed in Section 3. Then, Section 4 is 

dedicated to the optimization examples. Finally, conclusions are offered in Section 5. 

2   Contribution to Value Creation 

The main objective of the optimization based tool presented is to generate the 

geometrical layout parameters of integrated spiral inductors. For this purpose two 

main concerns were considered.  On one hand a technology–aware methodology is 

adopted where the discrete nature of the variables is accounted for as a way of 

restricting the search space to those points allowed by the technology. Further 

constraints arising from heuristic design rules are also considered. On the other hand 

the necessity for obtaining solutions in an efficient way led to the use of the inductor 

physical model, instead of using a simulation based approach. Several issues, such as 

process variability, technology-aware, accurate models, among others must to be 

taken into consideration in order to guarantee the accuracy of results.  

The novel contributions of this paper are as follows: 
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• It proposes an optimization-based design for nano-CMOS Planar Spiral Inductor, 

obtaining solutions in an efficient way based in analytical models, instead of 

using a simulation based approach; 

• The integration of a multi-objective optimization procedure onto the design 

scheme to select a set of optimal and quasi-optimal trade-off solutions for the 

design. The integration from information on sensitivity to process parameter 

variations into the selection procedure is addressed. 

2.1   Planar Spiral Inductor Pi-Model 

The efficiency of the optimization tool is obtained through the use of an inductor 

model.  For the sake of simplicity the pi-model, illustrated in Fig. 1.a., is adopted. 

 

(a)               (b)  

Fig. 1. a) Planar inductor pi-model; b) Layout of a square inductor 

For the evaluation of the inductance, Ls, several approaches have been proposed, 

based on a fitting process to values obtained experimentally [8], or through physics-

based equations [9]. In this tool the Modified Wheeler formula is used [8], where Ls is 

a function of the number of turns (n), the internal diameter (din) and the track width 

(w), as represented in Fig. 1.b. The value of Ls also depends on the inductor shape [8]. 

The evaluation of Rs, RsiCs, Cox, and Csi, is obtained with equations in [10] and [11]. 

The inductor quality factor (Q) is usually adopted as the characteristic to be used 

when comparing inductors performance. For an accurate prediction of Q, the parasitic 

effects cannot be neglect. The pi-model presented in Fig. 1 takes into account a set of 

various parasitic and loss elements, allowing to write (Q) as function of the passive 

components. The Q is usually calculated reducing the two ports of the pi-model, to a 

single port by grounding the second port (shadow branch) [13]. This configuration 

aims to simplify the analysis of the Q behaviour. The Q is analytical obtained by 

� = �	���� 	 ��
�� + 
��	���� �

 + 1���
		
1 − ��	�� ��� + ��� − ������ + ����, 

(1) 
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�� = 1
���� ��� +

������� + ����
���  (2) 

�� = ��� 1 + ����� + ����������1 + ����� + ������� 	. (3) 

2.2   Particle Swarm Optimization Applied to Integrated Inductor Design 

PSO is a swarm intelligence technique originally developed from studies of social 

behaviors of animals or insects [13]. Since its inception PSO has gained increasing 

popularity among as a robust and efficient technique for solving optimization 

problems. 

PSO is based on the evolution of a population of particles. It manipulates each 

particle position (i.e., a candidate solution) within the search space based on its 

velocity, some previous best positions it has found so far, and previous best positions 

found by its neighbouring particles. In a canonical PSO, the velocity of each particle 

is modified iteratively by its personal best position (i.e., the position giving the best 

fitness value so far), and the position of best particle from the entire swarm. As the 

algorithm evolves the particles are attracted towards a single global solution. 

In problems like the inductor design, however, multiple satisfactory solutions exist 

for which the selection criterion is difficult to formalize into a performance index. 

Thus, it is important to have a tool able to pick the set of satisfactory solutions instead 

of only a global one. Here we take advantage of the niching properties of a lbestPSO 

algorithm with a ring topology population map [14] to find the set of solutions. We 

seek to simultaneously maximize the inductors quality factor (Q) while minimizing its 

deviation from the specified value ���� − ��������� � ��������� ! ". 
The parameter search space consists of the number of turns (n) of the inductor, the 

internal diameter (din), the track width (w) and the inductor shape. Technical 

constraints limit the precision for each of these parameters. This leads to the 

discretization of the search space. The sensitivity of these solutions to parameter 

variation is analysed and a final set of solutions is selected to be submitted to the 

designer. 

3   Particle Swarm Optimization Algorithm 

In PSO algorithms a set of particles is set to drift along the search space. At iteration k 

the displacement of the i
th

 particle within the search space is characterized by its 

position (#$� ) and velocity (%$� ). Each particle position is evaluated according to the 

performance index to optimize. The particle velocity is updated from a comparison 

between its current position, its best past position and the best past position from its 

group: 

%&'() = *%&) + +,-./0���1&) − #&) " + +-./0���1&2 − #&) " (4) 
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#&'() = #&) + %&'()  (5) 

where w, c1 and c2 are real valued parameters; 1&)  is the location corresponding to the 

best position on particle i history; 1&2 is the location corresponding to the best position 

ever found by any particle in the group to which particle i belongs; rand() is a real 

valued random vector, uniformly distributed in the range [0,1]. In the canonical 

algorithm 1&2 is evaluated from the entire population. 

3.1   Niching PSO Using Ring Topology 

Let the swarm of particles be mapped on to a ring topology as presented in Fig. 2. 

Associate with each particle not only a personal best 1&)   but also a group best 1&2,). 
The evaluation of each particle group best �1&3,)" only takes into account its neighbouring 

particles (for example, to update 1&3,4 the personal best of 3 particles are considered: 1&5, 1&4 and 

1&6). 

The fact that each particle interacts only with its two neighbours slows down the 

communication within the swarm. As shown in [11] this leads the particles to 

associate in clusters around the local optima. Slow communication is a desirable 

feature on an algorithm which aims to locate multiple optima as it allows the particles 

to thoroughly search in its local neighbourhood. 

 

 

Fig. 2. PSO swarm ring topology with 6 particles 

When the algorithm stops the set of group best positions 71&3,�: 9 = 1,⋯ , /; 
corresponds to the set of local optimal solutions.  

3.2   PSO and Discrete Search Space 

Technical constraints limit the feasible values for the design parameters, leading to a 

discrete search space. As expressions (4) and (5) do not account for this discrete 

nature of the parameters, the updating of the particle position needs to be modified. 

The modification amounts to compare the particle position determined from 

expressions (4) and (5) and replacing it by the nearest discretized value. Once the 

actual position is determined the particle performance is evaluated. This insures that 

the algorithm optima truly correspond to feasible solutions. 
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4   Optimization of Inductor Design 

In this section we consider the design of a 5 nH inductor. The design concerns the 

evaluation of four independent parameters, namely the track width (w), the number of 

turns (n), inductor shape (Nside), and the internal diameter (din). Design constrains that 

lead to the discretization of the parameter space are presented in Table 1. The design 

is also subjected to other technical constrains as described in [15]. 

4.1   Dual-Objective Optimization 

The optimization scheme has two simultaneous objectives 

• To maximize the inductors quality factor (Q). 

• To minimize the inductance deviation���� − ��������� � ��������� ! ". 
 

These objectives may not be simultaneously fulfilled as improving the inductors 

precision generally leads to a decrease on the quality factor. Therefore some trade-off 

needs to be found.  

To this purpose the niching PSO algorithm from section 3 is applied to 2 different 

swarms. One is aimed to minimize the inductance deviation. The other one aims to 

maximize Q, with the additional constrain that the inductance deviation must not 

become greater than 5 %. 

The local optimal solutions obtained from both swarms is merged into Fig. 3.a. 

Only solutions corresponding to a precision under 1% are presented. It must be 

stressed that, as the parameter space is of discrete nature, only a discrete set of 

solutions is feasible.  

Analysing the results it is easily found that only 5 of the displayed solutions 

correspond to an optimal trade-off (marked as O). For all the other solutions it is 

possible to increase the quality factor without losing precision (or vice-versa). From a 

Pareto-optimal approach these 5 solutions correspond to the set from which the 

designer ought to select. 

   
 (a) (b) 

Fig. 3. a) Local optima from niching PSO; b) Post-processing of the local optima (worst case 

approach). The O corresponds to the Pareto-optima solutions 
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Table 1. Spiral Inductor Design Constraints 

Parameter Min Step Max 

w (µm) 5.0 0.5 100.0 

din (µm) 20.0 0.5 200.0 

n 1.5 1.0 15.5 

Nside Square (4) / Hexagonal (6) / Octagonal (8) 

4.2   Analysis of the Sensitivity to Parameter Variation 

In this section we present a simple study to illustrate the fact that the set of solutions 

to take under consideration should not be restricted to the Pareto-optimal set from Fig. 

3.a. 

We will assume that the actual implemented values for the track width (w) and the 

internal diameter (din) may differ from the design values. The maximum tolerance for 

each of these parameters is assumed to be equal to the value of step from Table 1. 

For each of the local solutions presented in Fig. 3.a the values for Q and precision 

are re-evaluated taking into account these tolerances. The results from this procedure 

are determined through a worst case approach (Fig. 3.b). 

Not surprisingly the worst case inductance deviation values are larger than in the 

error free case. More relevant, however, is the fact that not all the previous Pareto-

optimal solutions still appear at the new set of best trade-off solutions (Table 2). Also, 

from Fig. 3.b, it is clear that this worst case procedure leads to the inclusion of new 

solutions as possible design choices.  

Of course the proposed procedure may be integrated in the optimization algorithm, 

however, its inclusion would heavily increase the overall computational burden. It is 

therefore preferable to use it to post-process the optimization solutions. 

Table 2. Spiral Inductor Optimization Results 

Q Qworst case 

Inductor 

deviation 

( % ) 

Inductor 

deviation 
(worst case)

 

w (µm) din (µm) n Nside 

12.3978 12.0862 0.0048 0.8978 8.7500 76.7500 5.5000 6.0000 

13.7986 13.3919 0.0169 1.6995 9.0000 46.7500 6.5000 8.0000 

14.6640 14.2776 0.1187 1.5074 10.5000 56.2500 5.5000 4.0000 

15.0764 14.6753 0.1254 1.5703 10.7500 55.7500 5.5000 4.0000 

15.4917 15.0764 0.7821 2.2540 11.0000 55.5000 5.5000 4.0000 

5   Conclusions 

The work addressed the design of RF integrated inductors as an optimization-based 

problem. The methodology presented deals with the complexity of the design by 

formulating it as a multi-objective optimization problem. 

The fact that different combinations of the design parameters may lead to similar 

results enhances the need for methods capable of dealing with multiple local optimal 
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solutions. The local-optima were determined using a niching PSO algorithm with ring 

swarm topology. The PSO algorithm was used to simultaneously optimize the 

precision and quality factor of the inductor, while taking into account the discrete 

nature of the design parameters. 

A simple example showed that the outcome of the optimization algorithm must 

include both the Pareto-optimal solutions and the set of quasi-optimal solutions. 
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