
Asynchronous-Channels and Time-Domains Extending

Petri Nets for GALS Systems

Filipe Moutinho and Luís Gomes

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Portugal

UNINOVA – CTS, Portugal

{fcm, lugo}@uninova.pt

Abstract. A specific class of Petri nets was extended with Asynchronous-

Channels (ACs) and Time-Domains (TDs) to support Globally-Asynchronous

Locally-Synchronous (GALS) systems’ modeling, analysis and implementation.

This non-autonomous class of Petri nets is targeted to support the development

of automation and embedded systems using a model-based development

approach. It benefits from a tool chain framework previously developed,

covering the whole development flow, from specification to hardware and

software deployment. With the extended Petri net class is possible to model

GALS systems, and use the specification to generate the corresponding state

space supporting the behavior verification and providing valuable information

for implementation.

Keywords: GALS embedded systems, Model-based development, Petri nets.

1 Introduction

With the increase in the number of requirements, embedded systems are becoming

larger and more complex. Synchronous specifications are widely used in hardware

and software systems development due to simplicity in the verification and synthesis

processes. Using software platforms it is common not to reach the desired processing

performance, requiring a full or a partially hardware implementation. In hardware,

large synchronous designs with the need for high clock frequencies are complex to

develop. This can occur because it is difficult to make a proper clock tree

distribution, and the signal propagation time may be higher than the clock period.

High power consumption and Electromagnetic Interference (EMI) are also common

problems of large synchronous circuits, that can be minimized with the use multiple

synchronous components. In software, multiple components also enables the number

of clocks (processor clock ticks per second) reduction and as a consequence power

consumption reduction. Distributed embedded systems are a possible solution for

complex embedded system; also allowing the reuse of old previously designed

components.

Globally-Asynchronous Locally-Synchronous (GALS) systems proposed in [1] are

intrinsically distributed systems and combine advantages of synchronous systems

with asynchronous systems. Synchronous systems are easier to develop and rely on a

144 F. Moutinho and L. Gomes

set of available tools. On the other hand, asynchronous systems are faster, with lower

power consumption and higher performance. In GALS systems, each local component

is synchronous with a local clock tick, which determines its evolution; as each

component has a different clock domain, the global system is asynchronous.

Interaction can occur through asynchronous wrappers, such as those proposed in [2].

Petri net classes have been proposed by several authors to develop embedded

systems through a model-based development approach. The Input-Output Place-

Transition (IOPT) Petri net [3] is one of those classes, with an available tool

framework allowing: (1) models edition; (2) models partition [4] (producing a set of

synchronous sub-models interconnected through synchronous communication

channels and supporting the application of hardware-software co-design techniques in

embedded systems design); (3) automatic generation of the state space for properties

verification; (4) automatic generation of C and VHDL codes for implementing system

controllers; (5) the generation of Graphical User Interfaces.

However, since we need to face distributed implementation and to accommodate

different time domains associated with the components of the GALS system, it is

necessary to handle asynchronous communication between components, where

specific asynchronous wrappers can be used to assure robust communication. As the

IOPT net class does not allow GALS systems specification, the following research

question appear: How to specify GALS systems using the IOPT net class, in order to

verify GALS systems properties, to support behavior verification and to obtain the

required information for components and asynchronous wrappers implementation?

This paper presents an extension to the IOPT net class, introducing Asynchronous-

Channels (ACs) and Time-Domains (TDs), making possible the specification of

GALS systems through the extended IOPT net class. From this specification it is

possible to generate the associated state space. Properties verification through the

state space will help to determine if the models specify the desired behavior and to

obtain required information to implement components and asynchronous wrappers.

2 Contribution to Value Creation

Using a model-based development approach to embedded systems, together with its

implementation as a GALS system, enables the design and implementation of more

complex systems, better documented, in less time, in a more automatic way, and

benefiting from reusability of models and code. In this sense, the model-based

development approach and this work in particular contribute with added value for the

system development. In addition, the system when implemented as a GALS system,

instead of being implemented as a global synchronous system, might have less EMI

and power consumption. To develop reliable systems is required to guarantee the

proper behavior of the embedded system, where this work gives an important

contribution, extending the IOPT net class with the ability of specifying GALS

systems, supporting its documentation, verification and implementation.

Asynchronous-Channels and Time-Domains Extending Petri Nets 145

3 Related Work

GALS embedded systems development presents greater challenges when compared to

synchronous embedded systems development, making the development method even

more crucial in the final system quality, time-to-market, reusability, etc. Model-based

development approaches proposed by several authors (such as in [5, 6, 7, 8, 9]) in the

recent years, for embedded systems development, may be an appropriate approach in

the development of GALS systems.

Some authors, like in [10], proposed textual languages for GALS systems

specification and verification, while others (such as in [11, 12]) used graphical-based

descriptions. In [11], the Place/Transition net class (P/T nets, an autonomous Petri net

class) [13] is extended with localities. It is used to model and make the behavioral

analysis of GALS systems. Localities are assigned to transitions, making them part of

specific components of the GALS system.

The IOPT net class [3] extended with ACs and TDs is considered in this work to

support the complete development flow of GALS systems, and not only system

specification and verification, like in [11]. The IOPT net class was chosen based on its

characteristics that make it suitable for modeling automation and embedded systems.

It benefits from availability of a tool chain framework, used in this work to support

model edition, partitioning, properties verification and automatic generation of C and

VHDL codes for implementing GALS system components. In [14], the IOPT net class

(not extended) was used to specify GALS systems, where a set of sub-models was

used to specify a set of components, and the interaction between components was

modeled through single places. The use of IOPT nets as was done in [14] has two

limitations: (1) it is not possible to use two (separate) sub-models to specify a single

component; and (2) single places between components do not allow the specification

of asynchronous communication between components, as the maximal step execution

within each component, separately, is not assured.

4 The IOPT Petri Net Class

The IOPT net [3] is a class of Petri nets that extends the well known P/T net class [13]

with inputs, outputs and a set of additional characteristics. Inputs are used to model

the interaction between the environment and the system (making this class non-

autonomous); outputs are used to represent system actions in the environment. IOPT

nets have synchronous execution (the system evolution takes place at specific instants

of time controlled by a clock tick) and a maximal-step executable semantics, which

means that all enabled and ready transitions at a specific instant of time will fire. A

transition is enabled when the number of tokens in places from incoming arcs are

equal or bigger than the weight of the corresponding arc connecting the place to the

transition. A transition is ready when its guard is true and all input events occur.

In order to benefit from Model Driven Architecture (MDA – an initiative from

Object Management Group) artifacts and infrastructure, an IOPT Ecore representing

IOPT models was proposed in [15].

146 F. Moutinho and L. Gomes

A distributed embedded system with (two) components in interaction can be

specified through an IOPT net model. Fig. 1 (at the left and at the center) presents two

distinct ways to do it. But in both is not possible to specify components with distinct

time domains, disabling GALS systems specifications. In addition, the synchronous

channel (see [4]) of the left model considers a zero time delay between T1 and T2

firing, making it unsuitable to specify GALS components interaction. Furthermore,

using a specification through events, like in the center model, the output event #Z and

the input event #A should be related, but in IOPT net it is not possible to do it.

Fig. 1. A Petri net with a synchronous channel (left), a Petri net with a two components

interacting through events (center), and a GALS system model using AC and TDs (right).

5 ACs and TDs Extending the IOPT Net Class

Introducing a new annotation attribute referring the Time-Domain (TD) of each node

of the IOPT net (places and transitions) it is possible to associate each node to a

specific component. In addition, replacing in left model of Fig. 1 the synchronous

channel, or in center model of Fig. 1 the communication events, by an Asynchronous-

Channel (AC), the right model of Fig. 1 is obtained. Each AC (represented by a

dashed arrow with a cloud in the middle) has a specific TD.

All nodes of an IOPT net model, directly or indirectly connected through arcs to a

transition of a specific component, must belong to the same component of the

transition. In the right model of Fig. 1, nodes P1, T1 and P2 belong to component one

with TD 1 (td:1), nodes P3, T2 and P4 belong to component two with TD 2 (td:2),

and the AC named ac.T1.T2 has TD 3 (td:3).

5.1 Definition

An AC always connects two transitions with two different TDs. One transition is the

master and sends events to the other transition (the slave), events pass through the

AC. In right model of Fig. 1, T1 is the master transition and belongs to component

one with TD 1 (td:1), T2 is the slave transition and belongs to component two with

TD 2 (td:2). An IOPT Petri net extended with ACs and TDs can be defined by

()TDsACsIOPTGALSIOPT ,,2 = , (1)

Asynchronous-Channels and Time-Domains Extending Petri Nets 147

where: (1) an IOPT Petri net is defined as in [3]; (2) ACs are a set of Asynchronous-

Channels; and (3) TDs are a set of time domains.

()oscoeieisgpriorityweightTestweightMTAATPIOPT ,,,,,,,,,,,= . (2)

()TTACs ×⊆ . (3)

()sm ttAC ×⊆ . (4)

actp TDSTDsTDsTDs ∪∪= . (5)

mt is the master and st is the slave, such that () () ()smsm ttTtTt ≠∧∈∧∈ .

INPTDsp →: , INTTDst →: , and INACsTDsac →: .

The IOPT Ecore proposed in [15] was extended in order to include ACs and TDs.

Fig. 2 presents the new package extending the IOPT Ecore. Two annotations were

inserted: (1) the AsynchronousChannel and the TimeDomain. An IOPT net Page can

have one or more AsynchronousChannels. An AsynchronousChannel has a

TimeDomain and links one master transition to one slave transition. Master and slave

transitions must belong to different components (with different time domains). When

modeling GALS systems, IOPT net Nodes belong to specific GALS components

(identified by its time domain).

Fig. 2. Asynchronous-Channels package extending IOPT net Ecore.

5.2 AC Executable Semantics

Considering Fig. 1 (right), each time the master transition fires, an event is sent to the

slave transition through the AC. The time spent between master and slave transition

(always different from zero, contrary to what happens in the synchronous channels)

depends on the AC TD. The proposed executable semantics considers that the slave

component consumes the received events in the next execution tick.

The executable semantics of ACs can be described using IOPT nets, in two distinct

(and equivalent) ways (Fig. 3): in the left model, using synchronous channels [4]

148 F. Moutinho and L. Gomes

(represented by dashed arrows between transitions); or in the right model using a test

arc (represented by a line with an arrow in the middle) between a place and a

transition (also known as read arc). In both models: (1) each time master transition

fires tokens are inserted in P5; (2) transition T4 models asynchronous nature of the

channel, with the specific TD of the AC (td:3), it consumes tokens from P5 and insert

tokens in P6; (3) in the next clock tick cycle of component two with TD 2 (td:2),

tokens are removed from P6 through T5 (left) or T3 (right) and T2 if enabled, fires.

Using one of the models of Fig. 3 to describe the behavior of ACs, it will be possible

to analyze the generated state space, getting through the maximal bound of AC places

(P5 or P6), the buffer length of the communication channels implementing the ACs.

This information is very important for a robust implementation of the whole system.

Fig. 3. AC model using synchronous channels (left) and AC model using a test arc (right).

6 Validation

An IOPT net editor supporting ACs and TDs was developed as a textual editor

automatically generated from the extended Ecore in Eclipse Modeling Framework

(EMF). This editor guarantees well-formed models in fully concordance with the

IOPT Ecore metamodel. A set of examples was used to validate the proposed ACs and

TDs. Due to space limitations, in this paper is presented a very simple one, modeling

a manufacturing system with one machine and two conveyor belts. Each conveyor

belt feeds the machine with one type of components, two components are needed to

build a piece. Output signals #M1 and #M2 make the conveyor belts move. Two

sensors (input events #S1 and #S2) detect components arriving. After components

arrive, output event #Build is generated by the system controller, putting the machine

to work. Input event #Done indicates the end of machine building process.

The system was first specified through a (centralized) IOPT net. After the model

edition and translation into Petri Net Markup Language (PNML) format, the model

from the manufacturing system, was divided into three sub-models using the net split

tool [4], in order to implement the distributed controller with three components: (1)

component C1 controlling the machine, (2) component C2 controlling one conveyor

belt, and (3) component C3 controlling the second conveyor belt.

In order to move away from synchronous paradigm, and include different time

domains for the generated components, synchronous channels were replaced by the

proposed ACs and each IOPT Petri net node was associated with one TD (one

component of the GALS system). The GALS system model of the distributed

manufacturing system is presented in Fig. 4.

The generated PNML [15] was used to feed the state space generator tool for

GALS systems based on the algorithm proposed in [16], which generates state spaces

Asynchronous-Channels and Time-Domains Extending Petri Nets 149

from IOPT models of GALS systems, allowing property verification of the behavior

of the global GALS system (including each component behavior and its interaction).

From the state space and performing queries, was verified that the system has the

desired properties: no deadlocks; the machine build a new piece when both

components are available; etc. It was also verified that the maximal bound of all

places of the IOPT net is one, which means that the length of implementation registers

and wrapper buffers is equal to one. Due to space limitation is not possible to present

the generated state space and the performed queries. VHDL code for hardware and C

code for software implementations were automatically generated from the PNML file

to implement each GALS system component, using the tools [17, 18].

Fig. 4. The IOPT Petri net model with ACs and TDs modeling a GALS system.

7 Conclusions and Future Work

With the proposed ACs and TDs extending IOPT nets it is possible to specify GALS

systems behavior. This class is used in a model-based development approach to verify

GALS systems properties, supporting behavior verification and implementation.

The proposed extension was validated with several examples, where GALS

systems were initially modeled: (1) with a set of models specifying a set of

components, interacting through events; or (2) with one centralized model and then

partitioned using the net splitting operation, and interacting through synchronous

channels. In both approaches models rely on a synchronous paradigm, which means

that all components have to be synchronous within the same clock domain. The TDs

and ACs proposed in this paper allowed the development of distributed

implementations with components at different clock domains, and its interaction.

The new tool used to generate the global state space of GALS systems modeled

through extended IOPT nets (with ACs and TDs) will be publicly available in the near

future. The generated state space allows properties verification of the entire system

(as if it is a single synchronous system). The tool will have a comprehensive interface

allowing queries on the state space, and will be integrated in the tool chain framework

currently under development, including a new graphical editor supporting ACs and

TDs edition.

150 F. Moutinho and L. Gomes

Acknowledgment. The first author work is supported by a Portuguese FCT

(Fundação para a Ciência e a Tecnologia) grant, ref. SFRH/BD/62171/2009.

References

1. Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems, Ph.D. Thesis:

Stanford University, (1984)

2. Bormann, D. S., Cheung, P.Y.K.: Asynchronous wrapper for heterogeneous systems,

International Conference on Computer Design (ICCD), (1997)

3. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net

Class and Associated Tools, in Proceedings of the 5th IEEE International Conference on

Industrial Informatics (INDIN’07), Vienna, Austria, (2007)

4. Costa, A., Gomes, L.: Petri net partitioning using net splitting operation, in Proceedings of

the 7th IEEE International Conference on Industrial Informatics, Cardiff, UK, (2009)

5. Schatz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of embedded

systems, in Advances in Object-Oriented Information Systems, Springer, France, (2002)

6. De Niz, D., Bhatia, G., Rajkumar, R.: Model-Based Development of Embedded Systems:

The SysWeaver Approach, in Proceedings of the 12th IEEE Real-Time and Embedded

Technology and Applications Symposium, Washington, DC, USA, (2006)

7. Borcsok, J., Chaaban, W., Schwarz, M., Sheng, H., Sheleh, O., Batchuluun, B.: An

automated software verification tool for model-based development of embedded systems

with Simulink, in XXII International Symposium on Information, Communication and

Automation Technologies (ICAT 2009), Bosnia, (2009)

8. Bunse, C., Gross, H.G., Peper, C.: Applying a model-based approach for embedded system

development, in Proceedings of the 33rd EUROMICRO Conference on Software

Engineering and Advanced Applications, Washington, DC, USA, (2007)

9. Gomes, L., Fernandes, J.: Behavioral Modeling for Embedded Systems and Technologies:

Applications for Design and Implementation, IGI Global’s, (2009)

10. Carloni, L.P., Sangiovanni-Vincentelli, A.L.: A formal modeling framework for deploying

synchronous designs on distributed architectures, in In FMGALS: Formal Methods for

Globally Asynchronous Locally Asynchronous Architecture. Elsevier, (2003)

11. Kleijn, H., Koutny, M., Rozenberg, G.: Processes of Petri nets with localities, Technical

Report CS-TR-941, School of Computing Science, Newcastle upon Tyne, UK, (2006)

12. Suhaib, S., Mathaikutty, D., Shukla, S.K.: Dataflow architectures for GALS, Electronic

Notes in Theoretical Computer Science, 200:33--50, (2008)

13. Reisig, W.: Petri nets: an introduction, Springer-Verlag New York, Inc., NY, USA, (1985)

14. Moutinho, F., Gomes, L., Barbosa, P., Barros, J.P., Ramalho, F., Figueiredo, J.: A. Costa,

and A. Monteiro, Petri Net Based Specification and Verification of Globally-Asynchronous-

Locally-Synchronous System, in 2nd DOCEIS - Doctoral Conference on Computing

Electrical and Industrial Systems. Springer, (2011)

15. Ribeiro, J., Moutinho, F., Pereira, F., Barros, J.P., Gomes, L.: An Ecore based Petri net Type

Definition for PNML IOPT Models, INDIN'2011 - 9th IEEE International Conference on

Industrial Informatics, Caparica, Lisbon, Portugal, (2011)

16. Moutinho, F., Gomes, L.: State Space Generation Algorithm for GALS Systems Modeled

by IOPT Petri Nets, 37th Annual Conf. of the IEEE Industrial Electr. Society, Australia,

(2011)

17. Gomes, L., Rebelo, R., Barros, J., Costa, A., Pais, R: From Petri net models to C

implementation of digital controllers, Proceedings of the ISIE'2010 - IEEE International

Symposium on Industrial Electronics, Bari, Italy, (2010)

18. Gomes, L., Costa, A., Barros, J., Lima, P.: From Petri net models to VHDL implementation

of digital controllers, 33rd Annual Conf. of IEEE Industrial Electr. Society, Taiwan, (2007)

