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Abstract. A specific class of Petri nets was extended with Asynchronous-

Channels (ACs) and Time-Domains (TDs) to support Globally-Asynchronous 

Locally-Synchronous (GALS) systems’ modeling, analysis and implementation. 

This non-autonomous class of Petri nets is targeted to support the development 

of automation and embedded systems using a model-based development 

approach. It benefits from a tool chain framework previously developed, 

covering the whole development flow, from specification to hardware and 

software deployment. With the extended Petri net class is possible to model 

GALS systems, and use the specification to generate the corresponding state 

space supporting the behavior verification and providing valuable information 

for implementation. 
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1   Introduction 

With the increase in the number of requirements, embedded systems are becoming 

larger and more complex. Synchronous specifications are widely used in hardware 

and software systems development due to simplicity in the verification and synthesis 

processes. Using software platforms it is common not to reach the desired processing 

performance, requiring a full or a partially hardware implementation. In hardware, 

large synchronous designs with the need for high clock frequencies are complex to 

develop.  This can occur because it is difficult to make a proper clock tree 

distribution, and the signal propagation time may be higher than the clock period. 

High power consumption and Electromagnetic Interference (EMI) are also common 

problems of large synchronous circuits, that can be minimized with the use multiple 

synchronous components. In software, multiple components also enables the number 

of clocks (processor clock ticks per second) reduction and as a consequence power 

consumption reduction. Distributed embedded systems are a possible solution for 

complex embedded system; also allowing the reuse of old previously designed 

components. 

Globally-Asynchronous Locally-Synchronous (GALS) systems proposed in [1] are 

intrinsically distributed systems and combine advantages of synchronous systems 

with asynchronous systems. Synchronous systems are easier to develop and rely on a 
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set of available tools. On the other hand, asynchronous systems are faster, with lower 

power consumption and higher performance. In GALS systems, each local component 

is synchronous with a local clock tick, which determines its evolution; as each 

component has a different clock domain, the global system is asynchronous. 

Interaction can occur through asynchronous wrappers, such as those proposed in [2]. 

Petri net classes have been proposed by several authors to develop embedded 

systems through a model-based development approach. The Input-Output Place-

Transition (IOPT) Petri net [3] is one of those classes, with an available tool 

framework allowing: (1) models edition; (2) models partition [4] (producing a set of 

synchronous sub-models interconnected through synchronous communication 

channels and supporting the application of hardware-software co-design techniques in 

embedded systems design); (3) automatic generation of the state space for properties 

verification; (4) automatic generation of C and VHDL codes for implementing system 

controllers; (5) the generation of Graphical User Interfaces. 

However, since we need to face distributed implementation and to accommodate 

different time domains associated with the components of the GALS system, it is 

necessary to handle asynchronous communication between components, where 

specific asynchronous wrappers can be used to assure robust communication. As the 

IOPT net class does not allow GALS systems specification, the following research 

question appear: How to specify GALS systems using the IOPT net class, in order to 

verify GALS systems properties, to support behavior verification and to obtain the 

required information for components and asynchronous wrappers implementation? 

This paper presents an extension to the IOPT net class, introducing Asynchronous-

Channels (ACs) and Time-Domains (TDs), making possible the specification of 

GALS systems through the extended IOPT net class. From this specification it is 

possible to generate the associated state space. Properties verification through the 

state space will help to determine if the models specify the desired behavior and to 

obtain required information to implement components and asynchronous wrappers. 

2   Contribution to Value Creation 

Using a model-based development approach to embedded systems, together with its 

implementation as a GALS system, enables the design and implementation of more 

complex systems, better documented, in less time, in a more automatic way, and 

benefiting from reusability of models and code. In this sense, the model-based 

development approach and this work in particular contribute with added value for the 

system development. In addition, the system when implemented as a GALS system, 

instead of being implemented as a global synchronous system, might have less EMI 

and power consumption. To develop reliable systems is required to guarantee the 

proper behavior of the embedded system, where this work gives an important 

contribution, extending the IOPT net class with the ability of specifying GALS 

systems, supporting its documentation, verification and implementation. 
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3   Related Work 

GALS embedded systems development presents greater challenges when compared to 

synchronous embedded systems development, making the development method even 

more crucial in the final system quality, time-to-market, reusability, etc. Model-based 

development approaches proposed by several authors (such as in [5, 6, 7, 8, 9]) in the 

recent years, for embedded systems development, may be an appropriate approach in 

the development of GALS systems. 

Some authors, like in [10], proposed textual languages for GALS systems 

specification and verification, while others (such as in [11, 12]) used graphical-based 

descriptions. In [11], the Place/Transition net class (P/T nets, an autonomous Petri net 

class) [13] is extended with localities. It is used to model and make the behavioral 

analysis of GALS systems. Localities are assigned to transitions, making them part of 

specific components of the GALS system. 

The IOPT net class [3] extended with ACs and TDs is considered in this work to 

support the complete development flow of GALS systems, and not only system 

specification and verification, like in [11]. The IOPT net class was chosen based on its 

characteristics that make it suitable for modeling automation and embedded systems. 

It benefits from availability of a tool chain framework, used in this work to support 

model edition, partitioning, properties verification and automatic generation of C and 

VHDL codes for implementing GALS system components. In [14], the IOPT net class 

(not extended) was used to specify GALS systems, where a set of sub-models was 

used to specify a set of components, and the interaction between components was 

modeled through single places. The use of IOPT nets as was done in [14] has two 

limitations: (1) it is not possible to use two (separate) sub-models to specify a single 

component; and (2) single places between components do not allow the specification 

of asynchronous communication between components, as the maximal step execution 

within each component, separately, is not assured. 

4   The IOPT Petri Net Class 

The IOPT net [3] is a class of Petri nets that extends the well known P/T net class [13] 

with inputs, outputs and a set of additional characteristics. Inputs are used to model 

the interaction between the environment and the system (making this class non-

autonomous); outputs are used to represent system actions in the environment. IOPT 

nets have synchronous execution (the system evolution takes place at specific instants 

of time controlled by a clock tick) and a maximal-step executable semantics, which 

means that all enabled and ready transitions at a specific instant of time will fire. A 

transition is enabled when the number of tokens in places from incoming arcs are 

equal or bigger than the weight of the corresponding arc connecting the place to the 

transition. A transition is ready when its guard is true and all input events occur. 

In order to benefit from Model Driven Architecture (MDA – an initiative from 

Object Management Group) artifacts and infrastructure, an IOPT Ecore representing 

IOPT models was proposed in [15]. 
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A distributed embedded system with (two) components in interaction can be 

specified through an IOPT net model. Fig. 1 (at the left and at the center) presents two 

distinct ways to do it. But in both is not possible to specify components with distinct 

time domains, disabling GALS systems specifications. In addition, the synchronous 

channel (see [4]) of the left model considers a zero time delay between T1 and T2 

firing, making it unsuitable to specify GALS components interaction. Furthermore, 

using a specification through events, like in the center model, the output event #Z and 

the input event #A should be related, but in IOPT net it is not possible to do it. 

 

Fig. 1. A Petri net with a synchronous channel (left), a Petri net with a two components 

interacting through events (center), and a GALS system model using AC and TDs (right). 

5   ACs and TDs Extending the IOPT Net Class 

Introducing a new annotation attribute referring the Time-Domain (TD) of each node 

of the IOPT net (places and transitions) it is possible to associate each node to a 

specific component. In addition, replacing in left model of Fig. 1 the synchronous 

channel, or in center model of Fig. 1 the communication events, by an Asynchronous-

Channel (AC), the right model of Fig. 1 is obtained. Each AC (represented by a 

dashed arrow with a cloud in the middle) has a specific TD. 

All nodes of an IOPT net model, directly or indirectly connected through arcs to a 

transition of a specific component, must belong to the same component of the 

transition. In the right model of Fig. 1, nodes P1, T1 and P2 belong to component one 

with TD 1 (td:1), nodes P3, T2 and P4 belong to component two with TD 2 (td:2), 

and the AC named ac.T1.T2 has TD 3 (td:3). 

5.1   Definition 

An AC always connects two transitions with two different TDs. One transition is the 

master and sends events to the other transition (the slave), events pass through the 

AC. In right model of Fig. 1, T1 is the master transition and belongs to component 

one with TD 1 (td:1), T2 is the slave transition and belongs to component two with 

TD 2 (td:2). An IOPT Petri net extended with ACs and TDs can be defined by 

 

( )TDsACsIOPTGALSIOPT ,,2 =  , (1) 
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where: (1) an IOPT Petri net is defined as in [3]; (2) ACs are a set of Asynchronous-

Channels; and (3) TDs are a set of time domains. 

 

( )oscoeieisgpriorityweightTestweightMTAATPIOPT ,,,,,,,,,,,=  . (2) 

( )TTACs ×⊆  . (3) 

( )sm ttAC ×⊆  . (4) 

actp TDSTDsTDsTDs ∪∪=  . (5) 

 

mt  is the master and st  is the slave, such that ( ) ( ) ( )smsm ttTtTt ≠∧∈∧∈ . 

INPTDsp →: , INTTDst →: , and INACsTDsac →: . 

The IOPT Ecore proposed in [15] was extended in order to include ACs and TDs. 

Fig. 2 presents the new package extending the IOPT Ecore. Two annotations were 

inserted: (1) the AsynchronousChannel and the TimeDomain. An IOPT net Page can 

have one or more AsynchronousChannels. An AsynchronousChannel has a 

TimeDomain and links one master transition to one slave transition. Master and slave 

transitions must belong to different components (with different time domains). When 

modeling GALS systems, IOPT net Nodes belong to specific GALS components 

(identified by its time domain). 

 

 

Fig. 2. Asynchronous-Channels package extending IOPT net Ecore. 

5.2   AC Executable Semantics 

Considering Fig. 1 (right), each time the master transition fires, an event is sent to the 

slave transition through the AC. The time spent between master and slave transition 

(always different from zero, contrary to what happens in the synchronous channels) 

depends on the AC TD. The proposed executable semantics considers that the slave 

component consumes the received events in the next execution tick. 

The executable semantics of ACs can be described using IOPT nets, in two distinct 

(and equivalent) ways (Fig. 3): in the left model, using synchronous channels [4] 
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(represented by dashed arrows between transitions); or in the right model using a test 

arc (represented by a line with an arrow in the middle) between a place and a 

transition (also known as read arc). In both models: (1) each time master transition 

fires tokens are inserted in P5; (2) transition T4 models asynchronous nature of the 

channel, with the specific TD of the AC (td:3), it consumes tokens from P5 and insert 

tokens in P6; (3) in the next clock tick cycle of component two with TD 2 (td:2), 

tokens are removed from P6 through T5 (left) or T3 (right) and T2 if enabled, fires. 

Using one of the models of Fig. 3 to describe the behavior of ACs, it will be possible 

to analyze the generated state space, getting through the maximal bound of AC places 

(P5 or P6), the buffer length of the communication channels implementing the ACs. 

This information is very important for a robust implementation of the whole system. 

 

Fig. 3. AC model using synchronous channels (left) and AC model using a test arc (right). 

6   Validation 

An IOPT net editor supporting ACs and TDs was developed as a textual editor 

automatically generated from the extended Ecore in Eclipse Modeling Framework 

(EMF). This editor guarantees well-formed models in fully concordance with the 

IOPT Ecore metamodel. A set of examples was used to validate the proposed ACs and 

TDs. Due to space limitations, in this paper is presented a very simple one, modeling 

a manufacturing system with one machine and two conveyor belts. Each conveyor 

belt feeds the machine with one type of components, two components are needed to 

build a piece. Output signals #M1 and #M2 make the conveyor belts move. Two 

sensors (input events #S1 and #S2) detect components arriving. After components 

arrive, output event #Build is generated by the system controller, putting the machine 

to work. Input event #Done indicates the end of machine building process. 

The system was first specified through a (centralized) IOPT net. After the model 

edition and translation into Petri Net Markup Language (PNML) format, the model 

from the manufacturing system, was divided into three sub-models using the net split 

tool [4], in order to implement the distributed controller with three components: (1) 

component C1 controlling the machine, (2) component C2 controlling one conveyor 

belt, and (3) component  C3 controlling the second conveyor belt. 

In order to move away from synchronous paradigm, and include different time 

domains for the generated components, synchronous channels were replaced by the 

proposed ACs and each IOPT Petri net node was associated with one TD (one 

component of the GALS system). The GALS system model of the distributed 

manufacturing system is presented in Fig. 4. 

The generated PNML [15] was used to feed the state space generator tool for 

GALS systems based on the algorithm proposed in [16], which generates state spaces 



Asynchronous-Channels and Time-Domains Extending Petri Nets        149 

from IOPT models of GALS systems, allowing property verification of the behavior 

of the global GALS system (including each component behavior and its interaction). 

From the state space and performing queries, was verified that the system has the 

desired properties: no deadlocks; the machine build a new piece when both 

components are available; etc. It was also verified that the maximal bound of all 

places of the IOPT net is one, which means that the length of implementation registers 

and wrapper buffers is equal to one. Due to space limitation is not possible to present 

the generated state space and the performed queries. VHDL code for hardware and C 

code for software implementations were automatically generated from the PNML file 

to implement each GALS system component, using the tools [17, 18]. 

 

Fig. 4. The IOPT Petri net model with ACs and TDs modeling a GALS system. 

7   Conclusions and Future Work 

With the proposed ACs and TDs extending IOPT nets it is possible to specify GALS 

systems behavior. This class is used in a model-based development approach to verify 

GALS systems properties, supporting behavior verification and implementation. 

The proposed extension was validated with several examples, where GALS 

systems were initially modeled: (1) with a set of models specifying a set of 

components, interacting through events; or (2) with one centralized model and then 

partitioned using the net splitting operation, and interacting through synchronous 

channels. In both approaches models rely on a synchronous paradigm, which means 

that all components have to be synchronous within the same clock domain. The TDs 

and ACs proposed in this paper allowed the development of distributed 

implementations with components at different clock domains, and its interaction. 

The new tool used to generate the global state space of GALS systems modeled 

through extended IOPT nets (with ACs and TDs) will be publicly available in the near 

future. The generated state space allows properties verification of the entire system 

(as if it is a single synchronous system). The tool will have a comprehensive interface 

allowing queries on the state space, and will be integrated in the tool chain framework 

currently under development, including a new graphical editor supporting ACs and 

TDs edition. 
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