
Automatic Generation of Run-Time Monitoring

Capabilities to Petri Nets based Controllers with

Graphical User Interfaces

Fernando Pereira
1,2

, Luis Gomes1,3, Filipe Moutinho1,3,
1
 FCT/UNL Universidade Nova de Lisboa

2
 ISEL Instituto Superior de Engenharia de Lisboa

3
 UNINOVA, Portugal

fjp@deea.isel.ipl.pt, lugo@fct.unl.pt, fcm@uninova.pt

Abstract. The growing processing power available in FPGAs and other
embedded platforms, associated with the ability to generate high resolution

images and interface with pointing devices, opened the possibility to create
devices with sophisticated user interfaces. This paper presents an innovative
tool to automatically generate debug, diagnostic and monitoring graphical
interfaces to be integrated in embedded systems designed using Petri net
based controllers. Devices powered with the new debug and diagnostic
interfaces benefit from lower maintenance costs and simplified failure
diagnostic capabilities, leading to longer product life cycles with the
corresponding environmental and sustainability gains. To demonstrate the
validity of the tools proposed, the paper presents an application example for a

Car Parking controller, including results on a working prototype.

Keywords: Embedded Systems, Petri nets, Design automation, Modeling,
Graphical User Interfaces

1 Introduction

Graphical debug and monitoring tools have always played a very important role in

the development of embedded and automation systems. Due to the lack of resources

and processing power available in hardware used to deploy these solutions, the tools

have traditionally relied on software running on external personal computers.

However, the growing adoption of reconfigurable hardware platforms (ex.

FPGAs) in embedded and industrial automation solutions brought increased

processing power associated with the capability to generate high resolution images

and interface with pointing devices, as mice and touch-screens, with no significant
additional cost.

This paper presents a tool framework to the automatic generation of graphical

debug, diagnostic and monitoring interfaces directly in FPGA hardware. This

approach has many advantages over traditional solutions because the tools can be

used after the development, test and validation phase terminates, to perform

maintenance tasks and help diagnose mechanical and electrical faults.

The new tool takes advantage and extends a previous framework [1] containing

design and modeling tools based on IOPT (Input-Output Place-Transition) Petri nets

244 F. Pereira, L. Gomes and F. Moutinho

[2], simulation and automatic code generation tools for micro-controllers or FPGAs,

plus an Animator tool to produce Graphical User Interfaces associated with the
IOPT model execution [3].

The proposed solution analyzes a PNML file [4] generated by the referred tool

chain describing an embedded system controller and automatically creates a set of

XML files to the Animator tool, containing a debug and monitoring animation

screen. This screen contains a graphical image of the IOPT Petri net model and a set

of animation rules to display the status of the model in real time, including net

marking, transition status and input and output signals. The system designer can

later integrate this animation screen in the final application user interface.

2 Contribution to technological innovation and sustainability

The main innovation presented in this paper is the capability to automatically

generate debug and monitoring graphical interfaces for embedded systems, with

zero additional design effort and negligible cost. The complete tool chain can

generate full embedded system controllers for FPGAs, including the controller and

an animated GUI with a debug and monitoring interface, without writing a single
line of code.

Adding graphical debug and monitoring interfaces to embedded devices can have

an enormous environmental impact and greatly contribute for sustainability. To

better understand those impacts, embedded devices should be separated into two

classes: industrial automation systems and end-user appliances.

Industrial automation systems generally have high availability requirements

because downtime in one system can stall entire production lines, causing effective

downtime over entire production plants, with the consequent delivery delays and

high labour loss. In light of this problem, the performance of maintenance and

technical assistance services is regarded with special importance.

Technical assistance interventions are generally characterized by a typical pattern:

whenever an assistance call is received by an equipment supplier, a technical team is
immediately scheduled to visit the costumer's site and diagnose the problem,

returning home to fetch the required parts, followed by a second visit to implement a

solution.

Embedding diagnostic and monitoring capabilities in the final systems can

effectively break this pattern, as machine operators and the factory's maintenance

engineers, with the help of the vendor's remote assistance, have the means to

diagnose problems and identify damaged parts, reducing the number of travels to

just one. Factory's maintenance engineers can even receive training to use auto-

diagnostic systems to solve most problems and replacement parts can be sent using

express mail services, avoiding the need to send technicians altogether. This solution

results in faster repair times, minimized down-times and equipment suppliers can
operate with smaller technical assistance vehicle fleets, reducing energy

consumption and contributing for sustainability.

Another indirect result is the reduction of redundant production units: to minimize

downtime, industrial facilities generally purchase spare units of the most sensitive

machinery. The number of redundant units is calculated according to past failure

Automatic Generation of Run-Time Monitoring Capabilities to Petri Nets 245

statistics (MTBF) and average repair time. Lower average repair times enable the

reduction of spare units, contributing even more to sustainability.

Embedded systems present in end-user appliances can also benefit from internal
diagnostic and monitoring interfaces. In this class of systems, a high percentage of

technical assistance incidents is related to improper user operation and bad device

configuration, as users did not receive adequate training, resulting in unnecessary

travels to support centers. The addition of internal diagnostic graphical interfaces

provide an effective way to simplify the communication between end-users and

help-desk staff, allowing to solve most problems remotely.

When devices suffer from real defects, internal debug and diagnostic interfaces

can provide the same gains experienced by industrial systems: end-users and help-

desk staff can cooperate, diagnosing failures remotely and making possible to send a

technician with all the necessary parts to quickly solve the problem.

Due to the lack of capability to diagnose and solve problems in a single visit, most

brand-name manufacturers strategy consists in immediately replacing systems
covered by warranty with new units. This approach poses many environmental

hazards, as the consumables present in the old systems are simply disposed as

garbage and the old systems cannot be resold as new after repair, being often also

disposed.

When appliances malfunction after warranties expire, there is a common

perception that they are not worth repair, due to the low cost of new units, high

transportation costs and high technical-center fees. This happens even when faults

are caused by trivial problems as a loosen screw, a melted fuse or a wrong EPROM

configuration.

The addition of integrated debug and diagnostic interfaces can help users detect

most problems and repair the most trivial ones or use the service of local repair
shops. These shops used to be very popular several decades ago, but the advent of

ever increasing complex electronic devices, requiring the use of specialized

diagnostic equipment, turned the repair of sophisticated electronic devices almost

impossible. The addition of integrated diagnostic and debug interfaces can revive

local repair shops and allow end users repair trivial problems, largely increasing the

useful life cycle of consumer devices, minimizing the creation of hazardous garbage

and contributing to great environmental and sustainability gains.

3 Comparison with present solutions

Debug and monitoring interfaces present in embedded systems development tools

generally run on external computers connected to the physical embedded systems

using special purpose data cables. This is the usual method employed in industrial

programmable logic controllers. However, an industrial facility generally contains

many systems from multiple vendors and it is not always possible to hold the

development tools for all of them.
Even the development tools may not be enough to run diagnostics because the

tools often require access to the real model files used during system development.

However, equipment suppliers may deny access to the development model files to

246 F. Pereira, L. Gomes and F. Moutinho

hide implementation secrets and to prevent unauthorized changes that may

compromise safety and regulation compliance, leading to possible legal problems.
On the contrary, the diagnostic interfaces produced by the new tools are available

to end users without requiring any dedicated hardware or software, yet do not allow

system changes. To prevent access to implementation secrets, vendors can choose to

install a simplified debug model, providing enough information to diagnose failures,

but hiding sensitive information.

Most current end-user appliances include some degree of self-test and diagnostic

utilities. For example, some printers have self-test pages and many devices generate

error codes presented as display messages or blinking LED counts.

However, the self-test routines must be specifically programmed during the

development phase and only detect typical failures predicted by system developers.

On the contrary, the new tools do not require programming and automatically
append a debug and diagnostic interface to the final system, helping diagnose all

types of failures, including those not originally foreseen.

More importantly, the traditional diagnostic routines do not work when a device

reaches a deadlock situation. To perform diagnostics the device must be restarted,

failing to identify transient error conditions. In alternative, the new diagnostic

interfaces run in parallel with the system controller and can be recalled at any time,

independently of the main controller status and without causing any state changes,

thus allowing the detection of deadlock and transient faults.

Finally, the error codes generated by current devices often have no value to the

end users because the meaning of the codes is only available to manufacturer's

technical staff. On the opposite, the new debug and diagnostic interfaces provide an

intuitive animated graphical user interface, displaying the state of the system in real
time as a Petri net model, which is the underlying modeling formalism.

4 Related work

Embedded systems design based on Petri net models has been the subject of many
research publications, ranging from Low level nets [2][5] to High level colored nets

[6][7][8].

Most development frameworks based on Petri net models include debug and

visualization interfaces [8][9], to exhibit the system state, but these tools generally

work only during simulations running on personal computers and have not been

ported to physical embedded devices.

Some Petri net frameworks include tools to create interactive animations [8][10].

For instance, the Colored Petri net Tools, a very successful modeling tool-chain,

contains animation design tools [11][12] to enhance user-friendliness and simplify

communication with persons with no knowledge about Petri net formalisms.

Other authors have worked on automatic code generation from Petri net models
[13][14][15], to allow the rapid development of embedded applications. These tools

automatically generate software source code and low level hardware descriptions

implementing the behavior described by the model.

 The contribution presented in this paper is based on a previous work [1][3]

combining automatic software and hardware co-generation with the capability to

design animated graphical user interfaces for embedded systems. The animations are

Automatic Generation of Run-Time Monitoring Capabilities to Petri Nets 247

automatically generated from the original Petri net model and a set of rules

associating the visibility and position of graphical objects, varying according to the

system state evolution.
Using the previous tools, a designer could rapidly create embedded applications

with sophisticated graphical user interfaces, without writing code and without

needing deep understanding about software and hardware design, thus bringing

embedded systems design to a much broader audience.

In fact, the previous generation of tools already included the capability to

implement debug and diagnostic interfaces, but those interfaces had to be designed

by human operators, drawing a background image and defining a large set of rules

to display the system state, one at a time. However, this operation was repetitive,

error prone and time consuming, specially with large models. In contrast, the new

tool generates the desired results without any human intervention.

5 Development flow

The tools introduced in this paper are based on a development flow presented in

[16], beginning with the analysis of system behavior through the identification of

patterns of use, leading to the creation of UML Use-Case diagrams. The captured
use-cases will then be modeled using IOPT Petri nets [2], with the help of the

Snoopy IOPT net editor. After a first version of the controller model is finished, the

editor will generate a PNML [4] file, with the corresponding XML representation.

This PNML file will be the base for all subsequent development steps.

IOPT nets are a non-autonomous Petri net class inheriting the characteristics from

the well known Place-Transition nets [17], with the capability to associate input and

output signals and events to model elements, enabling the deterministic specification

of the interaction between models and the external environment. IOPTs also benefit

from maximal step semantics, meaning that all autonomously enabled transitions

will immediately fire as soon as the associated guard conditions and events are

active. To enable automatic conflict resolution, IOPT nets include transition

priorities and other characteristics, like test arcs and arc weights that improve
modeling capabilities.

Automatic code generation is performed through two applications, PNML2VHDL

and PNML2C, that create system controllers based on VHDL hardware descriptions

or “C” source code, according to the desired embedded target device.

Using the PNML file as input to an “Animator” tool, the developer can create a

graphical user interface, consisting of multiple screens containing animated

graphical objects. The PNML model is used as a base to define a set of rules

describing the evolution of the animated graphical objects.

The animations created in the previous step can be presented on a personal

computer during model simulations, to debug, validate and correct the designed

controller model. Another tool – GUIGen4FPGA - will automatically generate
VHDL code and EEPROM image files, to enable the execution on FPGAs.

248 F. Pereira, L. Gomes and F. Moutinho

Fig. 1. Proposed development framework

To finally generate a running embedded application it is necessary to configure the

physical hardware platform, through the association of model signal names and

events to real FPGA pins, using a Xilinx UCF file.

The proposed development flow includes a simulation and animation step where

the user can test and correct the designed model, returning to the first development

stage whenever incorrect behavior is detected. However, the validity of the

simulation phase largely depends on the ability to also model and simulate the
physical environment surrounding the embedded controller, which can be a complex

task. In those cases the validity of the models can only be checked on a physical

prototype.

One of the goals of the present work is to provide tools to help debug and identify

mistakes during the prototype test phase. This way, the former development flow

has been improved and a new tool “PNML2Anim4Dbg” was developed to

automatically generate debug and diagnostic animation screens. Figure 1 displays a

diagram describing the improved development tool chain.

6 Implementation

The tool introduced in this work, “PNML2Anim4Dbg”, receives input from a

PNML file containing a IOPT Petri net model describing a system controller and

automatically generates a set of XML files for the “Animator” tool.

As both the input and output files are encoded using XML, the XSLT (Extensible

Style-sheet Transformation) [18] framework was selected to implement the new
tool, due to the capability to automatically validate syntactic grammars using DTDs

or Schema and XML pattern matching, XML tree navigation and query tools

(XPATH).

The usage of XSL transformations applied to PNML files is as old as the PNML

format itself, since the first documents introducing the PNML standard [4], already

proposed XSL transformations as a tool to convert models between different Petri

net classes.

As seen in figure 2, the PNML2Anim4Dbg creates 5 files: A SVG background

image, a «rul» file containing all generated animation rules, an «env» file

associating a list of BMP image files to shortcut names present in the animation

Automatic Generation of Run-Time Monitoring Capabilities to Petri Nets 249

rules, an «ov» file with a list of output values generated by the controller and a

«pdc» file containing a list of input signals and the corresponding user interface

methods.

Fig. 2. PNML2Anin4Dbg data flow

Although other XSLT based PNML to SVG converters were available [19], a new

IOPT2SVG transformation was created, to account with the non-autonomous nature

of IOPTs, including input and output signal graphical representations, different test

and normal arc representations, transition priorities, etc.

The SVG background file contains an exact image of the IOPT model and can be

edited and rearranged using most vector graphics editors, and finally converted to

BMP format. During this phase it is possible to hide model comments and other

superfluous information. Together with the SVG background image, a set of static

image files is also appended to the animation project, containing pictures to display
tokens inside places, signs to highlight the autonomously enabled transitions and

LED signs to display active input and output signals.

 The rules file contains a large set of rules to draw the correct number of tokens

inside each place, to check if each transition is autonomously enabled and to check

for active I/O signals. For more information about implementation details, the

complete source code will be available online.

Complex hierarchical models, composed of several sub-net components, can be

processed at different abstraction levels. Developers can choose simplified models

showing only the top level components, full detailed models describing the entire

system in a flat network, or create an hierarchy of multiple interface screens

showing individual components. The tools do not require the entire model and can
work with partial models, just requiring identifier consistency with the final

controller system, maintaining the same place, transition and signal names.

7 Test and validation

To test and validate the new tools, a car parking lot controller IOPT model (fig. 3)

was processed using the proposed development flow to automatically generate a

working prototype with a debug and diagnostic interface. This model is simple

250 F. Pereira, L. Gomes and F. Moutinho

enough to eliminate the need for a detailed explanation, yet allows the

demonstration of the proposed tools.

Fig. 3. Demonstration example IOPT model

The hardware prototype was implemented using a Xilinx Spartan 3A 1800 Video

Kit, including a Spartan 3A-DSP 1800 Starter Board, an Avnet EXP PS Video

Module and a 1024x768 LCD panel. The starter board contains an FPGA and

several memory devices, including a parallel flash EPROM to store images and a

DDR2 RAM memory used to implement a video frame buffer.

Fig. 4. Prototype photos – Application GUI on the left and debug interface on the right

Figure 4 displays photos of the prototype showing the Parking Lot animation screen

and the corresponding debug and diagnostic screen. The car parking lot model

contains one entrance, one exit, parking places for up to N vehicles, entry and exit

barriers and inputs representing entry and payment sensors.

8 Conclusion and future work

An embedded system prototype was created and tested using the proposed tools,

demonstrating the capability to rapidly generate embedded applications with

Automatic Generation of Run-Time Monitoring Capabilities to Petri Nets 251

sophisticated user interfaces and embedded debug, monitoring and diagnostic

interfaces, using IOPT models and without the need to write any line of software

code or design hardware components.
The new tools fully automate the task of diagnostics interface creation, generating

a solution with minimal hardware requirements, just needing a few hundred Kbytes

of EPROM space to store the debug interface images and some FPGA space to

implement the animation rules. However, as most rules share code with the

controller implementation, the VHDL logic optimizer tools will greatly simplify the

generated hardware, removing duplicate signals. For example, both the controller

and debug animation modules check if transitions are autonomously enabled and

will share the same hardware. Image compression techniques, as simple as RLE

encoding, can further reduce the total EPROM memory consumption to less than

50Kb per animation screen, with performance gains and no additional complexity.

Although the prototype was implemented using a standard FPGA development

kit, it is possible to use the same tools to create very low cost production embedded
controllers using dedicated PCB boards, requiring just one FPGA/ASIC chip, 2Mb

of video RAM memory, one EEPROM, voltage regulators, interface logic and

connectors, competing with the equivalent micro-controller based solutions.

As a result, in the near future will be possible to add debug and diagnostic

interfaces to many embedded devices with no additional labour cost and irrelevant

hardware cost increments, turning all the environmental and sustainability gains

described in chapter 2 into a reality.

Future work include image the possibility to add pause and step-by-step execution

capabilities to the generated interfaces. While the implementation of step-by-step

execution mechanisms during simulation and software execution is trivial, it can

pose technical challenges for hardware implementations, specially on asynchronous
systems. Pausing and step-by-step execution on real hardware devices can create

additional difficulties because certain real-time functions cannot be safely

interrupted without the risk of causing permanent damages to external hardware

and mechanical components. To solve this problem, additional work must be carried

on.

Acknowledgment. The third author work is supported by a Portuguese FCT

grant ref. SFRH/BD /62171/2009.

References

[1] F. Moutinho and L. Gomes, “From models to controllers integrating graphical animation
in FPGA through automatic code generation,” in IEEE International Symposium on
Industrial Electronics (ISlE 2009), Seoul Olympic Parktel, Seoul, Korea, July 5-8 2009.

[2] L. Gomes, J. Barros, A. Costa, and R. Nunes, “The Input-Output Place-Transition Petri
Net Class and Associated Tools” in Proceedings of the 5th IEEE International Conference

on Industrial Informatics (INDIN’07), Vienna, Austria, July 2007.
[3] L. Gomes and J. Lourenco, “Rapid prototyping of graphical user interfaces for Petri-net-

based controllers,” in IEEE Transactions on Industrial Electronics, vol. 57, May 2010, pp.
1806 – 1813.

252 F. Pereira, L. Gomes and F. Moutinho

[4] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post, C.
Stehno, and M. Weber, “The Petri Net Markup Language: Concepts, Technology, and
Tools” in Proceeding of the 24th International Conference on Application and Theory of
Petri Nets, ser. LNCS, W. van der Aalst and E. Best, Eds., vol. 2679. Eindhoven, Holland:
Springer-Verlag, June 2003, pp. 483–505.

[5] J. Coolahan and N. Roussopoulos, “Timing requirements for time-driven systems using
augmented Petri nets” in IEEE Transactions on Software Engineering, Sep/83, pp. 603–
616.

[6] R. Esser, “An object oriented Petri net language for embedded system design,” in STEP
’97: Proceedings of the 8th International Workshop on Software Technology and
Engineering Practice (STEP ’97) (including CASE ’97). Washington, DC, USA: IEEE
Computer Society, 1997, p. 216.

[7] S. Chachkov and D. Buchs, “From an abstract object-oriented model to a ready-to-use
embedded system controller,” in Rapid System Prototyping, 12th International Workshop
on, 2001, Monterey, CA, June 2001, pp. 142 – 148.

[8] K. Jensen, “Coloured Petri Nets. Basic Concepts, Analysis Methods and Pratical Use” -

Volume 1 Basic Concepts. Berlin. Germany.: SpringerVerlag., 1997.
[9] Olaf Kummer, Frank Wienberg, Michael Duvigneau, Lawrence Cabac, “Renew – User

Guide ”, University of Hamburg, Department for Informatics, Theoretical Foundations
Group, Release 2.2, August 28, 2009

[10] H. Ehrig, C. Ermel, and G. Taentzer, “Simulation and animation of visual models of
embedded systems,” in 7th International Workshop on Embedded Systems Modeling
Technology, and Applications, June 2006, pp. 11–20.

[11] M. Westergaard and K. B. Lassen, “The Britney suite animation tool,” in S. Donatelli

and P.S. Thiagarajan (Eds.): ICATPN 2006. SpringerVerlag, Heidelberg, 2006, pp. 431–
440.

[12] J. B. Jorgensen, “Addressing problem frame concerns via Coloured Petri nets and
graphical animation,” in 2006 international Workshop on Advances and Applications of
Problem Frames, May 2006, pp. 49–58.

[13] S. Chachkov and D. Buchs, “From an abstract object-oriented model to a ready-to-use
embedded system controller,” in Rapid System Prototyping, 12th International Workshop
on, 2001, Monterey, CA, June 2001, pp. 142 – 148.

[14] P. Nascimento, P. Maciel, M. Lima, R. Santana, and A. Filho, “A partial reconfigurable
architecture for controllers based on Petri nets,” in 17th Symposium on Integrated Circuits
and System Design, September 2004, pp. 16 – 21.

[15] A. Costa; L. Gomes; J.P. Barros.; J. Oliveira; T. Reis; “Petri nets tools framework
supporting FPGA-based controller implementations”, Industrial Electronics, 2008. IECON
2008. 34th Annual Conference of IEEE , DOI 10.1109/IECON.2008.4758345 , 2008,
Page(s): 2477 - 2482

[16] L. Gomes; J.P. Barros; A. Costa; R. Pais; F. Moutinho; , "Towards usage of formal
methods within embedded systems co-design," Emerging Technologies and Factory

Automation, 2005. ETFA 2005. 10th IEEE Conference on , vol.1, no., pp.4 pp.-284, 19-22
Sept. 2005 doi: 10.1109/ETFA.2005.1612535

[17] W. Reisig, Petri nets: an introduction. New York, USA: SpringerVerlag New York,
1985.

[18] Doug Tidwell: “XSLT”, O’Reilly, ISBN 978-0-596-00053-0, August 2001
[19] ISO/IEC JTC1/SC7 N3298, ISO/IEC 2005

