
Petri net based Specification and Verification of

Globally-Asynchronous-Locally-Synchronous System

Filipe Moutinho
1,2

, Luís Gomes1,2, Paulo Barbosa3, João Paulo Barros
2,4

,

Franklin Ramalho3, Jorge Figueiredo
3
, Anikó Costa

1,2
 and André Monteiro

3
,

1
 Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Portugal

2
 UNINOVA, Portugal

{fcm, lugo, jpb, akc}@uninova.pt
3
 Universidade Federal de Campina Grande, Brazil

{paulo, franklin, abrantes, andre}@dsc.ufcg.edu.br
4
 Instituto Politécnico de Beja, Escola Superior de Tecnologia e Gestão, Portugal

Abstract. This paper shows a methodology for Globally-Asynchronous-
Locally-Synchronous (GALS) systems specification and verification. The
distributed system is specified by non-autonomous Petri net modules,
obtained after the partition of a (global) Petri net model. These modules are
represented using IOPT (Input-Output Place-Transition) Petri net models,
communicating through dedicated communication channels forming the
GALS system under analysis. This set of modules is then automatically
translated into Maude code through a MDA approach. As the modules of

GALS systems run concurrently, the Maude semantics for concurrent objects
is used along with message representation. Finally, as a particular case, the
system state space is generated from the Maude specification of the GALS
system, allowing property verification.

Keywords: GALS, Embedded Systems, Petri Nets, Maude, Verification.

1 Introduction

Embedded systems are increasingly present in people's lives, for instance in

people's pockets, homes, cars and in industrial machinery. Many embedded systems

are synchronous systems implemented in a single device, but there are embedded

systems that can not be implemented using the synchronous paradigm, either due to

the need of having multiple devices in different physical locations, or due to the

simple fact that a single device is not enough to implement the system, or even when

it is necessary to use devices containing multiple clock domains.

These systems are Globally-Asynchronous-Locally-Synchronous (GALS). They

support features like asynchronous messaging and multiple concurrent synchronous

modules with different clock domains. But these features make GALS systems
development not a simple task, and with greater challenges (for example the

verification of GALS systems components interaction) compared to the

development of synchronous systems. This was the environment where was found

the research question of this work, which is How to specify, simulate, verify and

234 F. Moutinho et al.

implement a GALS system described through a set of IOPT Petri net sub-models

supported by automatic code generation?

The methodology proposed here to develop GALS systems for embedded

systems applications was initially formulated within the FORDESIGN project [1],

which had the objective to center the development effort in the system modeling,

relying in a model-base development attitude and taking advantage of automatic

code generation tools. However, the FORDESIGN project did not fully consider the

development of GALS systems. The chosen modeling formalism was the Input-

Output Place-Transition (IOPT) Petri net, a class of non-autonomous Petri nets

defined in [2] that extends the well-known Place-Transition (P/T) Petri net class

with inputs and outputs signals and events (among other characteristics).

The Net Splitting Operation proposed in [3], allowing model partitioning into

several components, is here used to split centralized models of GALS systems into
GALS components. These components will be interconnected through lossless

communication channels with undetermined propagation time for all the messages.

To allow property verification of the GALS systems, modeled by IOPT net

models, are performed a set of transformations from the IOPT net representation to

Maude specifications [4]. Those transformations rely on a Model-Driven

Architecture (MDA) [5] approach, using IOPT nets and Maude metamodels. The

resulting Maude specifications support the verification of several properties.

The reference development methodology fully integrate design automation tools,

namely the PNML2C [6] and PNML2VHDL [7] tools, which automatically

generate, respectively, C or VHDL code from IOPT net models represented in the

PNML format [8].

Section 2 briefly presents the technological contribution of the paper to
sustainability. Section 3 presents the proposed methodology with the help of a

running example that will be used throughout the paper for an easier understanding

of the development flow. Section 4 describes the executable semantics of GALS

systems. Section 5 briefly explains the GALS System representation in Maude

language, and the running example verification. Section 6 gives an overview of

some related work. And finally section 7 presents some final remarks.

2 Contribution to Sustainability

This work aims to contribute to the development of GALS systems in a more

automated way relying in the Model-Driven Architecture (MDA) approach. This

allows the development of complex systems in less time, while being more reliable

and less vulnerable to development bugs, due to the fact that the only development

errors that are introduced in the system are the modeling errors; there is no manual

code generation, either simulation, verification, or implementation codes. Systems

with bugs can cause unwanted effects, as in most cases they need to be replaced,
wasting energy and resources.

Petri net based Specification and Verification 235

3 Proposed Methodology

The development flow proposed to GALS systems behavior verification comprises

the following steps (described in Fig. 1):

Fig. 1. Activity Diagram to GALS Systems Behavior Verification.

- modeler activities: (1) modeling GALS system through IOPT nets; (2) splitting

IOPT nets to obtain an IOPT net for each component of the GALS system;

- verifier activities: (3) translation from IOPT net models to Maude models; (4)

translation from Maude models to Maude concrete syntax language; (5)

specification of system properties to be verified; and (6) properties verification.

3.1 Running Example

The following example will be used through the paper to present the proposed

methodology steps. The example is a very simplified condominium alarm system,

which is used to detect events and control alarms of buildings. If an event occurs in

one of the buildings, their alarm along with their neighbor buildings must ring.

In this example there are three buildings in a row, the building "1" has the
neighbor building "2", the building "2" has the neighbor buildings "1" and "3", and

building "3" has neighbor building "2".

3.2 System Modeling

This example was modeled by an IOPT net model, and is presented in Fig. 2. As

previously mentioned, the IOPT Petri net is a class of non-autonomous Petri nets

that extends the Place-Transition (P/T) Petri net class with inputs and outputs. These
can be input and outputs signals and also input and output events.

236 F. Moutinho et al.

Fig. 2. IOPT model of an oversimplified condominium alarm system.

Transition firing depends not only on the net marking, but also on the associated

input events as well as the guard expression attached to the transition. Output

expressions affecting output signals can be associated with places. When compared

to Place-Transition nets, IOPT nets have other specific characteristics, as test arcs

and priorities, which are described in [2].

The example has three input events (ev1, ev2, and ev3) associated with transitions
governing the evolution of the IOPT net, and three output signals (alarm1, alarm2,

and alarm3) that receive the value “1” when the corresponding place has one or

more tokens.

3.3 Model Splitting

Considering that the system example will be implemented in a distributed way using
three controllers (a controller in each building), the IOPT net model presented in

Fig. 2, was divided into the three sub-models presented in Fig. 3, through the Net

Splitting Operation.

Fig. 3. IOPT sub-models resulting from the Net Splitting Operation.

The first step of Net Splitting Operation is the definition of a valid cutting set, which

finds a set of nodes with specific characteristics that will be used to divide the

original net. The splitting was applied through the nodes T1, T2, and T3, generating

the resulting sub-modules interconnected through the transitions T1m/T1slave,

T2m/T2slave1/T2slave2, and T3m/T3slave, with associated output events (for

instance oet1m) in the master transitions, that will be the input events (for instance

iet1m) of slave transitions in other components. In this sense, the distributed

execution model is composed by a set of parallel components communicating

through a set of events.

Petri net based Specification and Verification 237

4 Executable Semantics

GALS (Globally Asynchronous Locally Synchronous) systems are composed of

several interacting components. Each component is synchronous, which means that

its evolution is made at specific instants in time, controlled by a local clock. On the

other hand, the global system is asynchronous. As there is no global clock

synchronizing the components, each component is evolving at its own clock rate.

The interaction between components is made sending messages through

communication channels. In this sense, GALS systems have interleaving semantics.

IOPT nets were used in this work to model the whole GALS system, as well as

GALS components. The firing of the transitions in one IOPT net (net evolution in

one component) is done synchronously at specific instants in time (the synchronized

paradigm), normally referred as tics or global clock; this means that, for that
component, between these instances, net marking will not change. The external

clock or tic defines the moments in which enabled and ready transitions can fire.

The enabled transition concept refers to the net marking dependency, as usual, while

the ready transition concept is associated with the non-autonomous attributes

evaluation. The IOPT nets have maximal step semantics, which means that all

transitions that are enabled and ready at a specific instant in time will fire in that

instant.

Fig. 4 presents a GALS system composed by three sub-models (components),

each of them modeled with IOPT nets, representing the three components of the

running example obtained through the net splitting operation (each of the clouds is

associated with one sub-model of Fig. 3). Each sub-model will be potentially

associated with a component running on an autonomous platform. The interaction
between the various components is modeled through a set of events and

accomplished through specific communication channels, for example direct

connections, connections via asynchronous wrappers, NoC (network-on-chip), or

any other type of networks, as common in distributed systems.

From the IOPT net model viewpoint, the border of each of these components is a

set of nodes composed only by transitions. However, as far as the synchronous

paradigm can not be applied to the whole system, the events used to assure the

communication between components were replaced by places, modeling the

separation of time instants associated with the firing of a master transition (emission

of the output event from one component) and the firing of a slave transition

(reception of the input event by the other component).

238 F. Moutinho et al.

Fig. 4. IOPT nets modeling a GALS system.

Each component is an IOPT net model with a maximal step execution, but the

evolution tics of one component is different from the evolution tics of the other

components, supporting the global asynchrony. In this sense, between components

there is an interleaving execution semantics, while each component is governed by a

maximal step execution semantics (each component is in a distinct execution
temporal domain).

5 From IOPT Models of GALS Systems to Rewriting Logic

Objects in Maude

5.1 Maude Language

The Maude language is a declarative language [4]. The basic programming

statements are equations and rules, with simple rewriting semantics. Rules can be

applied concurrently, which means that System modules can be highly concurrent

and non deterministic. In the Maude language it is possible to support objects and

distributed objects interactions with rewrite rules. Objects interactions can be made

through messages. Maude modules can be used: (1) as programs; (2) as executable

specification; and (3) as models, that can be verified. In this work these modules will

be used as models in which systems properties will be verified.

5.2 MDA Transformations

The MDA approach is used to make the transformation from IOPT net models to the

concrete syntax of Maude language. Two transformations were made: (1) model-to-

model transformation using the IOPT net metamodel proposed in [9] and Maude

metamodel, and (2) model-to-text transformation to obtain Maude code. Model-to-

model transformations were achieved using ATL transformation language and

model-to-text transformations were made using MOFScript (a tool for model to text

transformation).

Petri net based Specification and Verification 239

5.3 GALS System Representation in Maude Language

GALS components modeled by IOPT nets are translated into Maude concurrent

objects that interact through asynchronous messages. These messages represent the

interleaving semantics of the Globally Asynchronous part of the GALS systems.

Maude code of GALS components obtained through the MDA transformation

from IOPT net models have interleaving semantics (which is the naturally Maude

semantics), although IOPT nets components have a maximal step semantics. This

means that the behavior of this Maude code: (1) has exactly the same behavior of the

IOPT net model, if and only if, in the each component IOPT net model at most one

transition fires at each execution cycle, or (2) has a consistent behavior with the

IOPT net model when, the change of, firing at most one transition per execution
cycle over several execution cycles, rather than, firing several transitions in just on

execution cycle, do not change the GALS components requirements/properties. In

the running example, if the transitions T1m and T2slave1 fires in the same execution

cycle or if they fire in two consecutive execution cycles, the system requirements

remain unchanged.

The generated Maude code for the running example is composed of 2 modules:

PETRI_NET_GALS and PETRI_NET_GALS_RULES, an excerpt of it is presented

below. Maude notation is presented in Maude manual in [4].

PETRI_NET_GALS module has the structure of the IOPT nets, in line 2 is made

the inclusion of the CONFIGURATION module, which declares sorts representing

concepts of objects, messages, and configurations that will be needed to represent

the three IOPT nets, and the communication between them (represented by P7, P8,
P9, and P10). In line 16 the three IOPT nets class identifiers are defined.

PETRI_NET_GALS_RULES module contains the transition rules, in line 31 is

presented the rule for transition T1m, which removes one token from place P1 and

creates one token in P2, and one token in P7, that represents a message going from

component 1 (building 1) to component 2 (building 2).

1 mod PETRI_NET_GALS is
2 including CONFIGURATION .
3 sorts LocalTokens GlobalTokens Marking IOPT .
4 ops P1 P2 P3 P4 P5 P6 : -> LocalTokens .
7 ops P7 P8 P9 P10 : -> GlobalTokens .
16 ops Petri1 Petri2 Petri3 : -> Cid [ctor] .
17 endm
18
19 mod PETRI_NET_GALS_RULES is
20 protecting PETRI_NET_GALS .
21 protecting META-LEVEL .
24 var O1 O2 O3 : Object .
25 vars AP7 AP8 AP9 AP10 : GlobalTokens .
26 var petri : Oid .
27 vars AP1 AP2 AP3 AP4 AP5 AP6 : LocalTokens .
29 var S : String .
31 rl [T1m] : < petri : Petri1 | m (P1 AP1, AP2) >,
 O2, O3, (AP7, AP8, AP9, AP10), S =>
 < petri : Petri1 | m (AP1, P2 AP2) >,
 O2, O3, (P7 AP7, AP8, AP9, AP10), "T1m " .
53 endm

240 F. Moutinho et al.

5.4 Verification

As described in Section 3 about the example: (1) if an event occurs in building "1",

the alarms of buildings "1" and "2" should begin to ring; (2) if an event occurs in

building "2", the alarms of buildings "1", "2", and "3" should begin to ring; and (3)

if an event occurs in building "3", the alarms of buildings "2" and "3" should begin

to ring. These are the 3 properties that should be verified. Alarm of building "1"

rings if the marking of place P1 is equal or greater than 1, and so on.

The generated Maude code, presented in section 5.3, was used in the Maude

system to verify the three mentioned properties. To verify property one, it was

checked all the possible final states of the system after event "1" occurs. To do this

the associated state space containing all reachable states was generated and
analyzed. To generate the state space in Maude, the search command (search <

petri1:Oid : Petri1 | m (P1, empty) >, < petri2:Oid : Petri2 | m (P3, empty) >, <

petri3:Oid : Petri3 | m (P5, empty) >, (none, none, none, none), "" =>! Any:Net .)

was used in the code presented in section 5.3, and to show it the command (show

search graph .) was used. It was verified that all possible final states of the system

after event “1” occurrence are (P2=1, P3=1, P4=1, P5=1), (P2=2, P4=2, P5=1,

P6=1), (P2=1, P3=1, P4=2, P6=1) or (P2=2, P4=3, P6=2). Analyzing them, it can

be concluded that the places P2 and P4 have always one or more tokens, which

means that alarms of buildings "1" and "2" ring in this situation, and can be

concluded that property one is successfully verified. Properties two and three were

also successfully verified.

Due to space limitations, it is not possible to present the complete state space,
even for such simple example in order to make evident the referred verified

properties. Instead, a simplified system composed by buildings 1 and 2 is

considered. Fig. 5 presents the partial state space of this simplified system,

considering the sub-models of Fig. 3 and Fig. 4 associated with buildings 1 and 2,

which means the models with the transitions T1m, T1slave, T2m, and T2slave1, and

places P1, P2, P3, P4, P7, and P8. This partial state space has 9 states, presented in

Fig. 5, while the full state space has 45 states. Each node of the state space presented

in Fig. 5 shows the marking of the relevant places, where the four nodes with P7 and

P8 holding no tokens are the ones observed in the initial model of Fig. 2.

Petri net based Specification and Verification 241

Fig. 5. Partial state space of the example.

6 Related Work

Since most of the embedded systems circuitry is made of synchronous circuits, they

became the starting point in the development of GALS systems. With this in mind,

there are several works proposing architectures, property verification,

implementations, and prototyping for GALS systems.

Some authors propose a verification approach for GALS systems (e.g. [10]),
taking as starting point the description of the systems’ behavior using textual

languages, instead of graphical-based descriptions like the ones being proposed in

this paper. Other authors use Petri nets to represent GALS systems behavior and to

verify its properties (e.g. [11]); however, the methodology does not cover the entire

GALS systems development flow, that starts with Petri net models. In [1], a full

development flow for embedded systems was proposed through automatic code

generation, from Petri net models, but without attempting to answer the specific

questions of GALS systems.

To the best of our knowledge, no works addresses the complete development

flow (modeling, simulation, verification, and implementation) of GALS systems

through automatic code generation based on non-elementary Petri nets.

7 Conclusions

The methodology for specification and verification of GALS systems using IOPT

nets as modeling formalism was shown to be adequate in the testing phase of this
work. In all the validation examples it was possible to model distributed execution

of embedded systems as a GALS system using IOPT nets, and to verify systems

properties with Maude. Maude code was always automatically generated from IOPT

nets through model-to-model and model-to-text transformations.

The main conclusion is that the proposed development methodology has several

advantages compared to a development methodology that does not use models. It

also takes advantage from the usage of Petri nets as the underlying model of

computation, namely (1) the model clearly describes the system’s behavior; (2) it is

possible to start modeling the system with one centralized model, which is then

partitioned into a set of modules, the components of the GALS system; and (3) the

system verification and implementation codes are automatically generated from the

242 F. Moutinho et al.

model, which decreases the development time and the potential errors of manual

code generation.

Acknowledgments. This work is supported by the cooperation project funded by

Portuguese FCT through the project ref. 4.4.1.00-CAPES, and by Brazilian CAPES

through the project ref. 236/09. The first author work is supported by a Portuguese

FCT (Fundação para a Ciência e a Tecnologia) grant, ref. SFRH/BD/62171/2009.

References

1. Gomes, L., Barros, J.P., Costa, A., Pais, R., Moutinho, F.: Formal Methods for Embedded
Systems Co-design: the FORDESIGN Project. In: ReCoSoC'05- Reconfigurable
Communication-centric Systems-on-Chip - Workshop Proceedings. (2005)

2. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net

Class and Associated Tools. In: Proceedings of the 5th IEEE International Conference on
Industrial Informatics (INDIN'07), Vienna, Austria (2007)

3. Costa, A., Gomes, L.: Petri net partitioning using net splitting operation. In: 7th IEEE
International Conference on Industrial Informatics (INDIN 2009)., Cardiff, UK (2009)
Available at http://dx.doi.org/10.1109/INDIN.2009.5195804

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.:
Maude Manual (Version 2.5). Available at http://maude.cs.uiuc.edu/maude2-manual/edn.

5. OMG-MDA, “Omg mda guide version 1.0.1. formal doc.: 03-06-01,” Available at

http://www.omg.org/cgi-bin/doc?omg/03-06-01 (accessed January, 2010)
6. PNML2C: PNML2C - A translator from PNML to C. Available at

http://www.uninova.pt/fordesign/PNML2C.htm (accessed March 30, 2010)
7. PNML2VHDL: PNML2VHDL - A translator from PNML to VHDL. Available at

http://www.uninova.pt/fordesign/PNML2VHDL.htm (accessed March 30, 2010)
8. Billington, J., Christensen, S., Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R.,

Stehno, C., Weber, M.: “The Petri Net Markup Language: Concepts, Technology, and
Tools,” in Proceeding of the 24th International Conference on Application and Theory of

Petri Nets, ser. LNCS, W. van der Aalst and E. Best, Eds., vol. 2679. Eindhoven, Holland:
Springer-Verlag, June 2003, pp. 483–505.

9. Moutinho, F., Gomes, L., Ramalho, F., Figueiredo, J., Barros, J., Barbosa, P., Pais, R.,
Costa, A.: Ecore Representation for Extending PNML for Input-Output Place-Transition
Nets. In: IECON2010 - 36th Annual Conference of the IEEE Industrial Electronics
Society, Phoenix, AZ, USA (November 7-10, 2010)

10. Doucet, F., Menarini, M., Kruger, I., Gupta, R.: A Veri¯ cation Approach for GALS
Integration of Synchronous Components. (2005). Available at
http://www.irisa.fr/prive/talpin/papers/fmgals05a.pdf (accessed July 25, 2010)

11. Dasgupta, S., Yakovlev, A.: Modeling and Performance Analysis of GALS Architectures.
In: International Symposium on System-on-Chip 2006, Tampere, Finland (2006)

