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Abstract. This paper shows a methodology for Globally-Asynchronous-
Locally-Synchronous (GALS) systems specification and verification. The 
distributed system is specified by non-autonomous Petri net modules, 
obtained after the partition of a (global) Petri net model. These modules are 
represented using IOPT (Input-Output Place-Transition) Petri net models, 
communicating through dedicated communication channels forming the 
GALS system under analysis. This set of modules is then automatically 
translated into Maude code through a MDA approach. As the modules of 

GALS systems run concurrently, the Maude semantics for concurrent objects 
is used along with message representation. Finally, as a particular case, the 
system state space is generated from the Maude specification of the GALS 
system, allowing property verification.  
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1   Introduction 

Embedded systems are increasingly present in people's lives, for instance in  

people's pockets, homes, cars and in industrial machinery. Many embedded systems 

are synchronous systems implemented in a single device, but there are embedded 

systems that can not be implemented using the synchronous paradigm, either due to 

the need of having multiple devices in different physical locations, or due to the 

simple fact that a single device is not enough to implement the system, or even when 

it is necessary to use devices containing multiple clock domains. 

These systems are Globally-Asynchronous-Locally-Synchronous (GALS). They 

support features like asynchronous messaging and multiple concurrent synchronous 

modules with different clock domains. But these features make GALS systems 
development not a simple task, and with greater challenges (for example the 

verification of GALS systems components interaction) compared to the 

development of synchronous systems. This was the environment where was found 

the research question of this work, which is How to specify, simulate, verify and 
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implement a GALS system described through a set of IOPT Petri net sub-models 

supported by automatic code generation? 

The methodology proposed here to develop GALS systems for embedded 

systems applications was initially formulated within the FORDESIGN project [1], 

which had the objective to center the development effort in the system modeling, 

relying in a model-base development attitude and taking advantage of automatic 

code generation tools. However, the FORDESIGN project did not fully consider the 

development of GALS systems. The chosen modeling formalism was the Input-

Output Place-Transition (IOPT) Petri net, a class of non-autonomous Petri nets 

defined in [2] that extends the well-known Place-Transition (P/T) Petri net class 

with inputs and outputs signals and events (among other characteristics). 

The Net Splitting Operation proposed in [3], allowing model partitioning into 

several components, is here used to split centralized models of GALS systems into 
GALS components. These components will be interconnected through lossless 

communication channels with undetermined propagation time for all the messages. 

To allow property verification of the GALS systems, modeled by IOPT net 

models, are performed a set of transformations from the IOPT net representation to 

Maude specifications [4]. Those transformations rely on a Model-Driven 

Architecture (MDA) [5] approach, using IOPT nets and Maude metamodels. The 

resulting Maude specifications support the verification of several properties. 

The reference development methodology fully integrate design automation tools, 

namely the PNML2C [6] and PNML2VHDL [7] tools, which automatically 

generate, respectively, C or VHDL code from IOPT net models represented in the 

PNML format [8]. 

Section 2 briefly presents the technological contribution of the paper to 
sustainability. Section 3 presents the proposed methodology with the help of a 

running example that will be used throughout the paper for an easier understanding 

of the development flow. Section 4 describes the executable semantics of GALS 

systems. Section 5 briefly explains the GALS System representation in Maude 

language, and the running example verification. Section 6 gives an overview of 

some related work. And finally section 7 presents some final remarks. 

2   Contribution to Sustainability 

This work aims to contribute to the development of GALS systems in a more 

automated way relying in the Model-Driven Architecture (MDA) approach. This 

allows the development of complex systems in less time, while being more reliable 

and less vulnerable to development bugs, due to the fact that the only development 

errors that are introduced in the system are the modeling errors; there is no manual 

code generation, either simulation, verification, or implementation codes. Systems 

with bugs can cause unwanted effects, as in most cases they need to be replaced, 
wasting energy and resources. 
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3   Proposed Methodology 

The development flow proposed to GALS systems behavior verification comprises 

the following steps (described in Fig. 1): 

 

Fig. 1. Activity Diagram to GALS Systems Behavior Verification. 

- modeler activities: (1) modeling GALS system through IOPT nets; (2) splitting 

IOPT nets to obtain an IOPT net for each component of the GALS system;  

- verifier activities: (3) translation from IOPT net models to Maude models; (4) 

translation from Maude models to Maude concrete syntax language; (5) 

specification of system properties to be verified; and (6) properties verification. 

3.1   Running Example  

The following example will be used through the paper to present the proposed 

methodology steps. The example is a very simplified condominium alarm system, 

which is used to detect events and control alarms of buildings. If an event occurs in 

one of the buildings, their alarm along with their neighbor buildings must ring. 

In this example there are three buildings in a row, the building "1" has the 
neighbor building "2", the building "2" has the neighbor buildings "1" and "3", and 

building "3" has neighbor building "2". 

3.2   System Modeling  

This example was modeled by an IOPT net model, and is presented in Fig. 2. As 

previously mentioned, the IOPT Petri net is a class of non-autonomous Petri nets 

that extends the Place-Transition (P/T) Petri net class with inputs and outputs. These 
can be input and outputs signals and also input and output events. 
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Fig. 2. IOPT model of an oversimplified condominium alarm system. 

Transition firing depends not only on the net marking, but also on the associated 

input events as well as the guard expression attached to the transition. Output 

expressions affecting output signals can be associated with places. When compared 

to Place-Transition nets, IOPT nets have other specific characteristics, as test arcs 

and priorities, which are described in [2]. 

The example has three input events (ev1, ev2, and ev3) associated with transitions 
governing the evolution of the IOPT net, and three output signals (alarm1, alarm2, 

and alarm3) that receive the value “1” when the corresponding place has one or 

more tokens. 

3.3   Model Splitting  

Considering that the system example will be implemented in a distributed way using 
three controllers (a controller in each building), the IOPT net model presented in 

Fig. 2, was divided into the three sub-models presented in Fig. 3, through the Net 

Splitting Operation. 

 

Fig. 3. IOPT sub-models resulting from the Net Splitting Operation. 

The first step of Net Splitting Operation is the definition of a valid cutting set, which 

finds a set of nodes with specific characteristics that will be used to divide the 

original net. The splitting was applied through the nodes T1, T2, and T3, generating 

the resulting sub-modules interconnected through the transitions T1m/T1slave, 

T2m/T2slave1/T2slave2, and T3m/T3slave, with associated output events (for 

instance oet1m) in the master transitions, that will be the input events (for instance 

iet1m) of slave transitions in other components. In this sense, the distributed 

execution model is composed by a set of parallel components communicating 

through a set of events. 
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4   Executable Semantics 

GALS (Globally Asynchronous Locally Synchronous) systems are composed of 

several interacting components. Each component is synchronous, which means that 

its evolution is made at specific instants in time, controlled by a local clock. On the 

other hand, the global system is asynchronous. As there is no global clock 

synchronizing the components, each component is evolving at its own clock rate. 

The interaction between components is made sending messages through 

communication channels. In this sense, GALS systems have interleaving semantics. 

IOPT nets were used in this work to model the whole GALS system, as well as 

GALS components. The firing of the transitions in one IOPT net (net evolution in 

one component) is done synchronously at specific instants in time (the synchronized 

paradigm), normally referred as tics or global clock; this means that, for that 
component, between these instances, net marking will not change. The external 

clock or tic defines the moments in which enabled and ready transitions can fire. 

The enabled transition concept refers to the net marking dependency, as usual, while 

the ready transition concept is associated with the non-autonomous attributes 

evaluation. The IOPT nets have maximal step semantics, which means that all 

transitions that are enabled and ready at a specific instant in time will fire in that 

instant. 

Fig. 4 presents a GALS system composed by three sub-models (components), 

each of them modeled with IOPT nets, representing the three components of the 

running example obtained through the net splitting operation (each of the clouds is 

associated with one sub-model of Fig. 3). Each sub-model will be potentially 

associated with a component running on an autonomous platform. The interaction 
between the various components is modeled through a set of events and 

accomplished through specific communication channels, for example direct 

connections, connections via asynchronous wrappers, NoC (network-on-chip), or 

any other type of networks, as common in distributed systems.  

From the IOPT net model viewpoint, the border of each of these components is a 

set of nodes composed only by transitions. However, as far as the synchronous 

paradigm can not be applied to the whole system, the events used to assure the 

communication between components were replaced by places, modeling the 

separation of time instants associated with the firing of a master transition (emission 

of the output event from one component) and the firing of a slave transition 

(reception of the input event by the other component). 
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Fig. 4. IOPT nets modeling a GALS system. 

Each component is an IOPT net model with a maximal step execution, but the 

evolution tics of one component is different from the evolution tics of the other 

components, supporting the global asynchrony. In this sense, between components 

there is an interleaving execution semantics, while each component is governed by a 

maximal step execution semantics (each component is in a distinct execution 
temporal domain). 

5   From IOPT Models of GALS Systems to Rewriting Logic 

Objects in Maude 

5.1   Maude Language 

The Maude language is a declarative language [4]. The basic programming 

statements are equations and rules, with simple rewriting semantics. Rules can be 

applied concurrently, which means that System modules can be highly concurrent 

and non deterministic. In the Maude language it is possible to support objects and 

distributed objects interactions with rewrite rules. Objects interactions can be made 

through messages. Maude modules can be used: (1) as programs; (2) as executable 

specification; and (3) as models, that can be verified. In this work these modules will 

be used as models in which systems properties will be verified. 

5.2   MDA Transformations 

The MDA approach is used to make the transformation from IOPT net models to the 

concrete syntax of Maude language. Two transformations were made: (1) model-to-

model transformation using the IOPT net metamodel proposed in [9] and Maude 

metamodel, and (2) model-to-text transformation to obtain Maude code. Model-to-

model transformations were achieved using ATL transformation language and 

model-to-text transformations were made using MOFScript (a tool for model to text 

transformation). 
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5.3   GALS System Representation in Maude Language 

GALS components modeled by IOPT nets are translated into Maude concurrent 

objects that interact through asynchronous messages. These messages represent the 

interleaving semantics of the Globally Asynchronous part of the GALS systems. 

Maude code of GALS components obtained through the MDA transformation 

from IOPT net models have interleaving semantics (which is the naturally Maude 

semantics), although IOPT nets components have a maximal step semantics. This 

means that the behavior of this Maude code: (1) has exactly the same behavior of the  

IOPT net model, if and only if, in the each component IOPT net model at most one 

transition fires at each execution cycle, or (2) has a consistent behavior with the 

IOPT net model when, the change of, firing at most one transition per execution 
cycle over several execution cycles, rather than, firing several transitions in just on 

execution cycle, do not change the GALS components requirements/properties. In 

the running example, if the transitions T1m and T2slave1 fires in the same execution 

cycle or if they fire in two consecutive execution cycles, the system requirements 

remain unchanged. 

The generated Maude code for the running example is composed of 2 modules: 

PETRI_NET_GALS and PETRI_NET_GALS_RULES, an excerpt of it is presented 

below. Maude notation is presented in Maude manual in [4]. 

PETRI_NET_GALS module has the structure of the IOPT nets, in line 2 is made 

the inclusion of the CONFIGURATION module, which declares sorts representing 

concepts of objects, messages, and configurations that will be needed to represent 

the three IOPT nets, and the communication between them (represented by P7, P8, 
P9, and P10). In line 16 the three IOPT nets class identifiers are defined. 

PETRI_NET_GALS_RULES module contains the transition rules, in line 31 is 

presented the rule for transition T1m, which removes one token from place P1 and 

creates one token in P2, and one token in P7, that represents a message going from 

component 1 (building 1) to component 2 (building 2). 

1   mod PETRI_NET_GALS is 
2     including CONFIGURATION . 
3     sorts LocalTokens GlobalTokens Marking IOPT . 
4     ops P1 P2 P3 P4 P5 P6     : -> LocalTokens . 
7     ops P7 P8 P9 P10          : -> GlobalTokens . 
16    ops Petri1 Petri2 Petri3  : -> Cid [ctor] . 
17  endm 
18 
19  mod PETRI_NET_GALS_RULES is 
20    protecting PETRI_NET_GALS . 
21    protecting META-LEVEL . 
24    var O1 O2 O3                 : Object . 
25    vars AP7 AP8 AP9 AP10        : GlobalTokens . 
26    var petri                    : Oid . 
27    vars AP1 AP2 AP3 AP4 AP5 AP6 : LocalTokens . 
29    var S                        : String . 
31    rl [T1m] : < petri : Petri1 | m (P1 AP1,    AP2) >,  
   O2, O3, (   AP7, AP8, AP9, AP10), S =>  
                 < petri : Petri1 | m (   AP1, P2 AP2) >,  
   O2, O3, (P7 AP7, AP8, AP9, AP10), "T1m " . 
53  endm 



 

 

 

 

 

 
 

240 F. Moutinho et al. 

 

5.4   Verification 

As described in Section 3 about the example: (1) if an event occurs in building "1", 

the alarms of buildings "1" and "2" should begin to ring; (2) if an event occurs in 

building "2", the alarms of buildings "1", "2", and "3" should begin to ring; and (3) 

if an event occurs in building "3", the alarms of buildings "2" and "3" should begin 

to ring. These are the 3 properties that should be verified. Alarm of building "1" 

rings if the marking of place P1 is equal or greater than 1, and so on. 

The generated Maude code, presented in section 5.3, was used in the Maude 

system to verify the three mentioned properties. To verify property one, it was 

checked all the possible final states of the system after event "1" occurs. To do this 

the associated state space containing all reachable states was generated and 
analyzed. To generate the state space in Maude, the search command (search < 

petri1:Oid : Petri1 | m (P1, empty) >, < petri2:Oid : Petri2 | m (P3, empty) >, < 

petri3:Oid : Petri3 | m (P5, empty) >, (none, none, none, none), "" =>! Any:Net .) 

was used in the code presented in section 5.3, and to show it the command (show 

search graph .) was used. It was verified that all possible final states of the system 

after event “1” occurrence  are (P2=1, P3=1, P4=1, P5=1), (P2=2, P4=2, P5=1, 

P6=1), (P2=1, P3=1, P4=2, P6=1) or (P2=2, P4=3, P6=2). Analyzing them, it can 

be concluded that the places P2 and P4 have always one or more tokens, which 

means that alarms of buildings "1" and "2" ring in this situation, and can be 

concluded that property one is successfully verified. Properties two and three were 

also successfully verified.  

Due to space limitations, it is not possible to present the complete state space, 
even for such simple example in order to make evident the referred verified 

properties. Instead, a simplified system composed by buildings 1 and 2 is 

considered. Fig. 5 presents the partial state space of this simplified system, 

considering the sub-models of Fig. 3 and Fig. 4 associated with buildings 1 and 2, 

which means the models with the transitions T1m, T1slave, T2m, and T2slave1, and 

places P1, P2, P3, P4, P7, and P8. This partial state space has 9 states, presented in 

Fig. 5, while the full state space has 45 states. Each node of the state space presented 

in Fig. 5 shows the marking of the relevant places, where the four nodes with P7 and 

P8 holding no tokens are the ones observed in the initial model of Fig. 2. 
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Fig. 5. Partial state space of the example. 

6   Related Work 

Since most of the embedded systems circuitry is made of synchronous circuits, they 

became the starting point in the development of GALS systems. With this in mind, 

there are several works proposing architectures, property verification, 

implementations, and prototyping for GALS systems. 

Some authors propose a verification approach for GALS systems (e.g. [10]), 
taking as starting point the description of the systems’ behavior using textual 

languages, instead of graphical-based descriptions like the ones being proposed in 

this paper. Other authors use Petri nets to represent GALS systems behavior and to 

verify its properties (e.g. [11]); however, the methodology does not cover the entire 

GALS systems development flow, that starts with Petri net models. In [1], a full 

development flow for embedded systems was proposed through automatic code 

generation, from Petri net models, but without attempting to answer the specific 

questions of GALS systems. 

To the best of our knowledge, no works addresses the complete development 

flow (modeling, simulation, verification, and implementation) of GALS systems 

through automatic code generation based on non-elementary Petri nets. 

7   Conclusions 

The methodology for specification and verification of GALS systems using IOPT 

nets as modeling formalism was shown to be adequate in the testing phase of this 
work. In all the validation examples it was possible to model distributed execution 

of embedded systems as a GALS system using IOPT nets, and to verify systems 

properties with Maude. Maude code was always automatically generated from IOPT 

nets through model-to-model and model-to-text transformations. 

The main conclusion is that the proposed development methodology has several 

advantages compared to a development methodology that does not use models. It 

also takes advantage from the usage of Petri nets as the underlying model of 

computation, namely (1) the model clearly describes the system’s behavior; (2) it is 

possible to start modeling the system with one centralized model, which is then 

partitioned into a set of modules, the components of the GALS system; and (3) the 

system verification and implementation codes are automatically generated from the 
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model, which decreases the development time and the potential errors of manual 

code generation. 
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