
The Reasearch of Platform-based Product
Configuration Model

Huiqiang Yan1, Qunsheng Guan2, Qinghai Li1, Fei Lu 1, Xiujuan Wang 1

1Institute of Design for Innovation, Hebei University of Technology, 300130, TianJin, China
2Military Traffic and Transportation Research Institute, 300161, TianJin, P.R. China

{Huiqiang.Yan, Qunsheng.Guan, Qinghai.Li, Fei.Lu , Xiujuan.Wang,
transparentyan}@gmail.com

Abstract. Product configuration system, being a knowledge intensive system,
plays an important role in order to realize Mass Customization. The Platform-
based generic product configuration tool(PB-GPCT) being developed by
Institute of Design for Innovation, Hebei University of Technology. PB-GPCT
is a structure-based and domain independent configuration tool. For the
realization of PB-GPCT, UML is chosen to construct the configuration model
and OCL(Object Constraint Language) to express constraints. In order to
manage the constraints of product easily, the approach of checking consistency
of configuration model is presented. The theory of constraints hierarchies is
introduced into the system of PB-GPCT in order to express customer
requirements of different levels.

Keywords: Object Constraint Language, Constraint hierarchies, Configuration
model, Configuration model consistency

1 Introduction

Nowadays, companies must shorten product cycles and can meet individual
customer’s requirements at a lower price in order to survive. Product configuration is
a common method which is employed to realize mass customization. Mittal &
Frayman defines configuration as a form of design, which selects assembly of
components from a set of pre-defined components to meet customer’s requirements
[1]. “The result of each configuration will be a model of the configured product,
configured product model [2].” So that configuration is to instantiate configuration
model using pre-defined components. Configuration model is the product model
which is scoped within the conceptualization of configuration domain [3].

Distinguishing with other definitions, the platform-based configuration model is
defined as follows:

CM= ({C1,…, Cn}{P1,…,Pm}{R1,…,Rs}). Ci is the element of the configuration
model which is called component type; Pi is the platform which is composed of
component instances; Ri is the constraints among platforms and component types.

This paper is organized into 4 sections. In section 1, the definition of platform-
based configuration model is introduced. In section 2, the approach of representing

mailto:transparentyan@gmail.com

2 Huiqiang Yan1, Qunsheng Guan2, Qinghai Li1, Fei Lu 1, Xiujuan Wang 1

configuration model is presented. In section 3, the algorithm of checking
configuration model consistency is proposed. Lastly, the approach of constructing
configuration model is discussed.

2 Representation of configuration model

In this paper UML is employed to express the configuration models for the following
reasons [4]:
1. UML (Unified Modeling Language) is the leading industrial object-oriented

modeling language for software engineering.
2. UML is extensible for domain-specific purposes, for the semantics of the basic

modeling concepts can be further refined in order to be able to provide domain-
specific modeling concepts.

3. The Object Constraint Language (OCL) being a built-in constraint language can
perfectly describe the constraints about the objects in the model.

2.1 The elements of configuration model

According to the definition of configuration model stated above, the elements include
Component type, Component instance, Relations, Rules and Platforms. Part of
configuration model of configurable pc is showed in Fig. 1.

Fig. 1. Part of configuration model of configurable pc

Component type. There are two kinds of component types. One is virtual
component which does not have a physical correspondence, e.g. HD-Unit and CPU.
The other is physical component which typically has a bill-of-material associated with
it, e.g. VideoCard and MotherBoard.

Component instance. When all the properties of component are given values, we
call it Component instance. Virtual component and physical components all have
component instance associated with it. However, the properties of physical

The Reasearch of Platform-based Product Configuration Model 3

component are given by product experts before configuration, the properties of virtual
component are assigned by sales engineers at the configuration phase.

Relations. The taxonomies of relations are Part-of and Is-a. ComponentA part-of
componentB means that componentB is part of componentA, e.g. CPU, VideoCard
and HD-Unit are parts of MotherBoard. ComponentB Is-a componentA means that
componentB is a kind of componentA, e.g. IDE-Unit and SCSI-Unit are two kinds of
HD-Unit.

Rules. Rules not only include the constraints among component types, but also
include the constraints among component instances. The taxonomies of constraints
are unary, binary, global and incrementally constraints [5].

Platform. Platform consists of common elements from which a range of products
can be derived. For a configurable PC, the platform elements are MotherBoard and
CPU. Sales engineer first selects platform (determine the MotherBoard and CPU)
according to customers requirements, then based on the platform other components
are configured.

2.2 The Object Constraint Language

We select OCL to express constraints among components for the following reasons
[6]:

(1)OCL is a formal language which is easy to read and write for users.
(2)OCL is a pure specification language; therefore, an OCL expression is

guaranteed to be without side effects. When an OCL expression is evaluated, it simply
returns a value. It cannot change anything in the model.

OCL is a typed language so that each OCL expression has a type. Examples of the
operations on the predefined types are showed in table1. Collection types are also
supported besides predefined types, the operations frequently used are select(),
reject(), size() etc.

Table 1. The predefined types of OCL

Type Operations
Integer
Real
Boolean
String

*, +, -, /, abs()
*, +, -, /, floor()
and, or, xor, not, implies, if-then-else
Concat(), size(), substring()

2.3 Constraint hierarchies

Constraint hierarchies theory is presented by Alan Borning [7]. A labeled constraint is
defined as: a constraint labeled with strength, written sc, where s is strength and c is a
constraint. A constraint hierarchy is defined as a multiset of labeled constraints. Given
a constraint hierarchy H, H0 denotes the required constraints in H. In the same way,
the sets H1, H2, Hn for levels 1, 2,…, n. For k>n ,Hk =φ. Constraints H are also called
hard constraints, and constraints H1, H2,…,Hn are called soft constraints. The

4 Huiqiang Yan1, Qunsheng Guan2, Qinghai Li1, Fei Lu 1, Xiujuan Wang 1

constraints hierarchies are divided into required, strong, medium, weak and weakest
[8].

We introduced the constraint hierarchies into configuration system in order to
express the customer’s requirements of different levels. The constraints are divided
into five levels, required, strong, medium, weak and weakest, and each constraint has
a weight associated with it. At the same time, the OCL is expanded to express the
constraint hierarchies and the following is an example.

Context MotherBoard inv:
Self.CPUPortType = CPU.PortType required 1
The keyword Context introduces the constraints belong to which components. In

this example, the constraint is belong to the component MotherBoard. The keyword
inv denotes stereotypes of the constraints. For inv, the constraint must be true when
the component is instantiated. This constraint means the selected MotherBoard’s port
type must be in line with the port type of CPU which is chosen. The keyword
required indicates the level of the constraint. The value “1” is the weight of this rule,
and the scope of weight is between 0 and 1.

Writing constraints in OCL is a time consuming and an error prone task. So that we
developed an edit window which is showed in Fig. 2. The main function of this
window is lexical analysis, syntactic analysis and semantic of analysis [9]. Utilizing
this window, users can easily write correct constraints for the configuration model.

Fig. 2. Constraint edit window

3 Configuration model consistency

3.1 Constraint graph of configuration model

For the component Ci, Rj is one of the constraints of Ci. Rj =f (Ci, Cm,…, Cn) means Rj
has relationship with components Cm,…, Cn. According to this constraint Rj, drawing

The Reasearch of Platform-based Product Configuration Model 5

directed edges start from Ci to components Cm,…, Cn. If one edge has been existed,
the action is ignored. For the configuration model of Fig 3, the following rules exist.

RA1=f (A, B); RB1=f (B, C); RB2=f (B, D); RE1=f (E, F);
According this conversion method, the corresponding constraint graph is showed

in Fig 4.

Fig. 3. Configuration model

Fig. 4. Constraint graph

3.2 Component consistency

We define function (,)Sat Hθ as follows:
; () ()

((), ())
; () ()

k i i
k i i

k i i

True C H C
Sat C H C

False C H C
θ

θ
θ

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

satisfies

 does not satisfies

H is the hard constraints of the component Ci; θk(Ci)={CIk,CIm,…,CIn}, CIk is one
of instance of component Ci, Cm,…,Cn are the children or brothers of component Ci in
constraint graph, CIm,…,CIn are the instances of components Cm,…,Cn. For example,
θk (B) = (BIk,CIm,DIn). The component consistency is defined as: for any instance CIk
of component Ci, there is valuation θk (Ci) which satisfies the hard constraints of
component Ci, or formally,

, ((), ())
(, ,...)
k k k i i

k k m n

CI Sat C H C true
CI CI CI
θ θ

θ
∀ ∃ =

=

6 Huiqiang Yan1, Qunsheng Guan2, Qinghai Li1, Fei Lu 1, Xiujuan Wang 1

3.3 Path consistency

In the constraint graph, there may be more than one path from root component to
another component. For instance, there are two paths from component A to
component D in the figure 5, namely, P1=A→B→C→D and P2=A→B→D. The
component B is cross component of these two paths. The path like this is called cross
path. We define path consistency as: there are at least two valuations along the cross
paths from the cross component to the target component which satisfy all the
constraints of the two paths, and the valuations have the same cross component
instance and target component instance, or formally,

(, ()) (, ())

(,...,); (,...,)
m m i n n j

m s t n s t

Sat H P true Sat H P true

CI CI CI CI

θ θ θ θ

θ θ

∃ = ∧∃

= =

=

Fig. 5. Cross path and parallel path

The indegree of component C is two too and there are two paths, namely,
P1=A→B→C and P2=G→C. However, there is no cross component between these
two paths, we call it parallel path. It is unnecessary to check consistency of parallel
path.

3.4 Configuration model consistency

M.Wahler [10] defines that a UML/OCL model M is strongly-consistent if and only if
there exists a state in which all classes of M are instantiated. The state of a given
UML/OCL model can potentially contain an infinite number of objects, however the
state of a given configuration model contains a finite number of component instances.
Consequently, we only discuss the problem of finite states. Configuration model CM
is consistency if and only if all the components and paths is consistency.

4 Constructing the configuration model

For customers the process of configuration is to instantiate the elements of
configuration model. Configuration model is constructed by product engineer. The
proposed development process for constructing configuration model is shown in Fig 6
and it is divided into six steps. (1) Firstly, the platform of the product is designed by
platform designer. (2)The product engineers build the product tree. The product tree is

The Reasearch of Platform-based Product Configuration Model 7

composed of components type. (3)In terms of component type of the product tree, the
component instances are created. (4)According to the platform designed at first step,
input the platform elements into the product tree and the configuration model is
constructed. (5)The consistency of the configuration model has to be checked. The
consistency checking has to be done repeatedly to ensure the configuration model is
consistent. (6)All the elements have to be stored into Database which is called
knowledge base.

product engineer

Build product tree

Check consistency

Create component instance

Design the platform

Generate knowledge base

Input platform elements

Iterate

DBA

Platform designer

Fig. 6. construct the configuration model

5 Conclusion and future works

In this paper, the configuration model of platform-base configuration system is
presented. PB-GPCT has been developed utilizing the theory stated above and has
been applied to TIANJIN NO. 2 MACHINE TOOL CO., LTD. The main GUI of PB-
GPCT is showed in Fig. 7. But a lot of effort have to be done in the future, for
example, the evaluation of configuration, automatic configuration etc.

8 Huiqiang Yan1, Qunsheng Guan2, Qinghai Li1, Fei Lu 1, Xiujuan Wang 1

Fig. 7. The system of PB-GPCT

Acknowledgements

This research is supported in part by he Key Project of the Ministry of Science and
Technology of the People’s Republic of China under Grant Numbers
2008IM030100，and the science and technology key project of Hebei Province under
Grant Numbers 09212102D, the Natural Science Foundation of Hebei under Grant
Numbers E2008000101.

Reference

1. Mittal, S. & Frayman, F.: Towards a generic model of configuration tasks. In the
11th IJCAI, pp. 1395-1401, San Mateo, CA, Morgan Kaufman (1989).

2. Kaj, A, Jørgensen.: Manufacturing Information Systems, Proceedings of the Fourth
SMESME International Conference (2001)

3. Tiihonen, J, Lehtonen, T, Soininen, T, et al.: “Modeling Configurable Product
Families[C]” . In: 4th WDK Workshop on Product Structuring, Delft University of
Technology. October 22-23, 1998

4. A. Felfernig, A. Salbrechter, Applying function point analysis to effort estimation
in configurator development, in: International Conference on Economic, Technical
and organisational aspects of Product Configuration Systems, Kopenhagen,
Denmark, 2004, pp. 109-119.

5. Ander Altuna, Alvaro Cabrerizo. “Co-operative and Distributed Configuration”.
NOD 2004 September, pp27-30. Erfurt, Germany (2004)

6. OMG.: Object Constraint Language Specification (2006)
7. Alan Borning, Bjorn Freeman-Benson, and Molly Wilson.: Constraint Hierarchies.

Lisp and Symbolic Computation, 5(3):233-270, September (1992)

The Reasearch of Platform-based Product Configuration Model 9

8. M, Sannella.: The SkyBlue Constraint Solver, R 92-07-02, Department of
Computer Science and Engineering, University of Washington, February (1993)

9. Yan, H.Q，Xiao, G.X.:The research and realization of configuration tool based on
OCL[J].Computer Engineering and Applications, vol. 45, 6, pp 73-77.(2009)

10. Wahler ,M.: Using Patterns to Develop Consistent Design Constraints. PhD
thesis, ETH Zurich (2008)

