

Creative Tower Generated by
Computational Intelligence

Xiyu Liu1, Hong Liu2

1School of Management & Economics, Shandong Normal University,
Jinan, China

2School of Information Science & Engineering, Shandong Normal
University, China

Email: xyliu@sdnu.edu.cn

Abstract. Based on previous works by the authors on evolutionary
architecture paradigm of evolving architectural form, new research is being
carried out to develop a virtual environment with system implementation
model of evolving creative tower designs. The solid models are created by
evolution with computational intelligence and enhanced mathematical models.
Models will evolve according to computational intelligence including generic
algorithms, particle swarm optimization. Mathematical models include
analytical functions, parametric functions and other nonlinear functions. We
also present analysis of relationship between evolution and exploration.

1. Introduction

Computational intelligence and computer modeling have been efficient ways in
architecture design (18). In this area much work has been achieved in natural model,
evolutionary models and revolutionary models (Frazer, 2002). In fact, computer
modeling has become so important that one can hardly find any design without the
help of it. And there are more and more artworks and designs that are called
generative art which have widely changed the conventional idea. As the work of
professor Celestino Soddu shows (http://www.celestinosoddu.com/), generative art is
one of the new ideas that can get artificial objects. In this way, we can work
producing three-dimensional unique and non-repeatable shapes.

Of the many computer aided design tools up to now, most of them provide hand-
made utilities, and a designer has to draw every sketch to get the outline of a product
(Frazer, 2002). And many generative tools are based on sketches. These limitations
motivate the conceptual design methodology introduced in this paper, which is
capable of using mathematical functions to get novel shapes.

The purpose of this paper is to report our new research in evolutionary towers by
computational intelligence. We will introduce some relations of computing to design

2 Xiyu Liu, Hong Liu

– a new bridge of design and enhanced computation algorithms. This is possible
because there is usually not a single optimal design for any problem, but rather
designs evolve. Concerning to computing design, we will introduce (1) computing
tools that is useful for creating and improving design alternatives, (2) creation of
conceptual resources that is helpful in order to create design concepts, (3) linear and
nonlinear algorithm for improving basic design concepts towards successful
solutions. A new system is developed to implement the design process with
enhanced computation techniques and complex functions. The system kernel is
compatible with object-oriented technology and component reusing. An evolutionary
architecture paradigm with a focus on how visionary and creative forms can be
achieved is demonstrated. We will present our complex form generation and
visualization system with images and rapid prototyping models that are otherwise
impossible to generate by normal CAAD systems without using generative and
evolutionary computation.

A new type of genetic algorithm is studied for our generative design system. We
extend the classical powerful techniques from modern nonlinear analysis theory to
selection and optimization of GA. These techniques include topological spaces and
partial ordering. A Zorn Lemma type of iterative procedure is introduced. This
attempt will partially overcome the difficulty in implementing effective automatic
selection in the application of genetic algorithms.

2. Mathematical models and 3D shapes

Apart from its computation functionality, mathematics indeed reveals the beauty of
nature. From symmetry to structure, from honeycomb to skyscraper, even giving a
glance to the crowding cars, we will find the beauty of mathematics everywhere.

However, it is not easy to look into this beauty without the help of artist or
computer. Of the early literatures, the book of Gerd Fischer (Gerd, 1986) is a
successful one that introduces the elegance and beauty of mathematics. This book
collected 132 images taken from real models of the most important mathematical
models, including differential geometry, projective models. It is this book that
changes the viewpoint of many people who always take mathematics as abstract, and
who reveals the beautiful and symmetric structures that are potentially virtual models
of architectures.

Nowadays, one of the most significant ways to understand a mathematical model
is computer visualization. However, due to the fully nonlinear nature of many
functions, it is not an easy work to develop accurate shapes for general nonlinear
functions. One way to solve this problem is the finite element method. There are
several approximate techniques for nonlinear functions. The simplest is planar piece.
In his work, Peter J. Bentley (1996) uses primitive shapes consist of a rectangular
block or cuboids with variable width, height and depth, and variable three
dimensional positions to construct nonlinear objects. His blocks are intersected by a
plane of variable orientation in order to approximate curved surfaces. More accurate
techniques include nurbs approximation, polynomials approximation and others. It
should be noted that one can hardly find the balance between a better approximation
and acceptable computing time.

Creative Tower Generated by Computational Intelligence 3

With the help of solid modelling libraries, we developed 3D solid model
visualizations for complex functions in this project. A prototype system has been
implemented based on an integration of ACIS 3D solid modelling kernel and
MatLab with a C++ graphical user interface. Our basic geometrical objects for
approximation are nurbs surfaced units. Our system is fully compatible with
commercial CAAD tools and systems, as well as rapid prototype facilities. A large
number of object-oriented components of sophisticated surfaces and envelopes based
on taxonomy of generic form have been built. In particular, complex forms are
classified as linear, quadratic, trigonometric function, exponential functions, root
functions compounded functions, rotations, sphere and cylinder co-ordinates,
implicit function. Computational mechanisms have also been developed with which
these basic data structures and components can be visualized, combined or split to
allow new data structures or new forms to be derived using generative techniques.

3. Theoretical structure: the concept of homotopy

What is homotopy? Intuitively, a homotopy is a constant deformation from one
shape to another according to some rules. Although homotopy itself is an important
concept in geometry and topology, we only borrow the idea here to describe our
problem. These rules are called homotopy map. By defining various maps we can
generate different homotopies. However, we should remember that there are indeed
shapes that are not homotopic, that is, we can not find homotopy to transform one
into another.

Fig3.1 is a curve illustrating homotopy. The left one is the original curve while
transforming to the final curve, the right one. Intermediate curves show that
homotopy is a continuous shaping process.

Whenever we use homotoopy to generate towers, the outline of the building is
often the most attracting factor. This is the second factor just following its high and
extruding illusion in a city landscape. In fact, a special tower in a city even becomes
the representation of the city. In this paper, our main concern is to study generated
towers with outlines determined by mathematical functions and evolution. We use a
multi-coding schema to represent phenotypes, that is, the continuous schema
corresponding to continuous functions, and the discrete schema corresponding to
discretization of functions.

4 Xiyu Liu, Hong Liu

Fig 1. The two images are Homotopic curves (parameter = 0.3 and 0.6 respectively).

It is well known that one of the most important and difficult problem in evolution
based applications is the appropriate definition of fitness function. It is this function
that determined the selection and optimization of the evolution and the final solution.
In the literature, many authors use the artificial selection technique which indeed can
solve part of this problem, but delimitates some of the evolutionary nature of the
problem and adds some uncertainty caused by human determining.

To solve this problem and for the use of the specific application in this paper, we
apply a multi-objective fitness function for optimization. And another feature is that
we use a partial ordering technique derived from nonlinear analysis to represent the
complicated relationship in candidate solutions from the population. Fig3.2 is a
diagram of the functional units of the system.

Outline and center
 axis generator

Data and tower
 evolver

Optimizer

Fig 2. System functional units

4. Genetic algorithms and evolutionary models

Having become widely used for a broad range of optimization problems in the last
ten years, the GA has been described as being a "search algorithm with some of the
innovative flair of human search". GAs are today renowned for their ability to tackle
a huge variety of optimization problems (including discontinuous functions), for
their consistent ability to provide excellent results and for their robustness. Natural
evolution acts through large populations of creatures which reproduce to generate

Tower generator Coded tower

Creative Tower Generated by Computational Intelligence 5

new offspring that inherit some features of their parents (because of random
crossover in the inherited chromosomes) and have some entirely new features
(because of random mutation). Natural selection (the weakest creatures die, or at
least do not reproduce as successfully as the stronger creatures) ensures that, on
average, more successful creatures are produced each generation than less successful
ones. As described previously, evolution has produced some astonishingly varied,
yet highly successful forms of life. These organisms can be thought of as good
’solutions’ to the problem of life. In other words, evolution optimizes creatures for
the problem of life.

Any evolutionary models require architectural concepts to be described in forms
of genetic codes. Then these codes are mutated and developed by computer programs
into a series of models called population. While models are evaluated in optimization
or selection sub-systems, the codes of successful models are constantly picked up
until a particular stage of development is selected for prototyping in the real world.

In order to achieve the evolutionary model it is necessary to define the following:
a genetic code script, rules for the development of the code, mapping of the code to a
virtual model and, most importantly, the criteria for selection. The representation of
phenotypes is a fundamental element of any evolutionary system. Phenotypes will
define the representation of designs, which will formulate all allowable solutions that
can be evolved by the system. Moreover, the phenotype representation plays a
significant role in determining the size and complexity of the genotype. The two
main representation methods are the surface representations (or boundary
representations) and constructive solid geometry (CSG). The first method typically
uses combinations of equations and control points to specify shapes, while CSG
combines different primitive shapes to form more complex shapes. There are a third
of the commonly used solid representations which are called spatial partitioning.
This is to decompose a solid into a collection of smaller, adjoining, non-intersecting
solids that are more primitive than the original solid. There are a number of
variations including: cell decomposition, spatial-occupancy enumeration, octrees,
and binary space-partitioning trees.

Primarily, our model in this paper is the boundary representation model. In this
representation, towers will be represented by the mathematical data of the main
model geometry. Changing the surfaces would be simply achieved by adding or
subtracting the mathematical data. The second problem is the data model. In
accordance with the mathematical functions type data, we will use the cell division
model. A cell division model is based on the structure of a living creature. As in
nature, the shape of a living creature is constructed from the basic genetic
information to the cells and organisms. The genotype contains information that is the
basic construction unit of everything, called the chromosome. Chromosomes will
form proteins and other large molecules. Chains of molecules will form tissues and
organisms till the whole body. In natural environment, development begins with
the chromosome, which forms the base. Then a number of smaller cells are
constructed. Large cells are resulted from joining and other operations and form a
multi-cellular structure. In a word, the cell division models simple divide the whole
into a basic units and operations.

For better description of the combinations of functions, we will use the item jelly
model. This is a derivation of the cell model. A layer called the jelly layer is added to
represent a compounded structure. We will use this model to represent functions in

6 Xiyu Liu, Hong Liu

various combinations. Basically, the model has three layers, that is, the gene layer,
the cell layer and the jelly layer.

The second model in our project is the discrete model. The two basic structures in
this model are the section and outline data structure. Each of these two outlines is an
ordered set of double numbers, with auxiliary data indicating steps and size. To
eliminate the discontinuities caused by data, a mollifier operation is introduced.

Mollifiers act as a function smoother. They can smooth a discontinuous function
by substituting the value at one point by some average in a neighbourhood. In the
one dimensional case, a mollifier is a nonnegative, real-valued
function 0 ()J C R∞∈ such that () 0J x = if , and | | 1x ≥ () 1

R
J x dx =∫ .

5. Particle swarm optimization

Particle swam optimization is a stochastic optimization technique motivated by the
behavior of a flock of birds or the sociological behavior of a group of people. There
are many improvements to the original PSO. In this section, we briefly introduce the
traditional PSO and its variations.

5.1 Basic PSO algorithm

The PSO is a population based optimization technique, where the population is
called a swarm. Each particle represents a possible solution to the optimization
problem. Unlike evolution process, PSO does not use genetic operations. Instead,
particles fly in the n-dimensional search space according to a speed.

Suppose that 1 2(, , ,)n
i i i ix x x x= L is the current position of the particle with index

. We use to represent the current velocity of particle number i .
Let be the current personal best position of particle i and
i 1 2(, , ,)n

i i i iv v v v= L
1 2(, , ,)n

i i i ip p p p= L

()f x be the target function which will be minimized. Now we write the size of the
population, that is, the number of all particles, by s , and denote the current global
best position found by all particles during previous steps be . Therefore, the
evolution equation of basic PSO is

()gp t

1 1 2 2(1) () ()(() ()) (() ())

(1) () (1)
i i i i g

i i i

v t v t c r t p t x t c r p t x t

x t x t v t

ω+ = + − + −⎧⎪
⎨

+ = + +⎪⎩

i (5.1)

Where and are the acceleration coefficients, , are elements from two
uniform random sequences in the range (0,1).

1c 2c 1r 2r

5.2 PSO with constriction factor

An alternative version of PSO incorporates a parameter called the constriction factor
and the swarm is manipulated according to the equations 12.

Creative Tower Generated by Computational Intelligence 7

1 1 2 2(1) (() ()(() ()) (() ()))

(1) () (1)
i i i i g i

i i i

v t v t c r t p t x t c r p t x t

x t x t v t

χ+ = + − + −⎧⎪
⎨

+ = + +⎪⎩
 (5.2)

Here χ is the constriction factor, and denote the cognitive and social parameters
respectively. It is usually chosen with uniform distribution in the interval [0,1]. The
value of the constriction factor χ is typically obtained through the formula

22 / 2 4χ κ φ φ= − − − φ where 4φ > , 1κ = , and 1c c2φ = + . Different

configurations of χ , as well as a theoretical analysis of the derivation of χ can be
found in 12.

5.3 LBest model

Since the original PSO uses global best position, it is called Gbest model. In order to
avoid premature convergence, R. C. Eberhart, P. Simpson, and R. Dobbins 13
proposed the Lbest model. Instead of using a unique attractor, the Lbest model uses
multiple attractors. This approach divides the population into multiple
neighborhoods where each neighborhood maintains a local best position.

The evolution equation is described as in (5.3). Notice that the neighborhood
does not related to the actual position of particles in the searching space. Instead, it is
only related to the coding, or index position of particles.

iN

1 1 2 2

{ | 0,1, , 2 }, (1) () (1)
(1) { | ((1)) min ()}

(1) () ()(() ()) (() ())
i

i i l i i i

i i i x N

i i i i g

N p l x t x t v t
p t N f p t f x

v t v t c r t p t x t c r p t x t

σ σ

ω

− +

∈

⎧ = = + = + +⎪⎪ + ∈ + =⎨
⎪

+ = + − + −⎪⎩

L

i

 (5.3)

5.4 Improved PSO

There are many literatures focusing on variations and improvements of the
traditional PSO. For the purpose of this paper, we present several aspects of these
researches. Firstly in 1998, P.J. Angeline in 14 proposed a generalized PSO based on
selection, the tournament selection method. In this paper, an individual is compared
with others by fitness value. Next sort the population and replace part of the
population with worst fitness by other individuals with better fitness. The procedure
of the algorithm is as follows.

(1) Select an individual and compare its fitness value with every other individual.
If it is better, then add one score to itself. Repeat this procedure until every
individual has a score.

(2) Sort the population according to its score.
(3) Copy half of the population with higher score and replace the other half with

lower score.
In another paper 15, P.J. Angeline added reproduction to the traditional PSO.

According to a user predefined reproduction probability, some individuals are
selected into a crossover pool. Particles in this pool crossover pair-wisely and
reproduce the same number of offsprings. Then parents are replaced by offsprings.

8 Xiyu Liu, Hong Liu

The whole number of the population remains changed. The crossover operator is
shown as follows.

1 1

1 1

(1) () (1) ()
(1) () (1) ()

a a b

ab b

x t r x t r x t
x t r x t r x

+ = + −⎧
⎨ + = + −⎩ t

,
(1) [() ()] () / () ()

(1) [() ()] () / () ()
a a b a a b

b a b b a b

v t v t v t v t v t v t

v t v t v t v t v t v t

⎧ + = + +⎪
⎨

+ = + +⎪⎩
 (5.

4)

5.5 Niche technology and PSO

There are already several authors taking efforts to combine niche technology with
PSO. One of these efforts is made by P.N. Suganthan 16. This is a variation of the
Lbest model but neighbor is defined by space position rather than index position. In
each generation, distance between particles is calculated. The maximum distance is
marked by . For ever pair of particles, the ratio maxd max/a bx x d− is taken as

measure to define the neighbor, where a bx x− denotes the distance between them.
The neighbor of each particle is dynamic in the sense that this neighbor grows from a
one particle neighbor (the particle itself) to the whole population finally.

In another effort, J. Kennedy 17 discussed effects of neighbourhood topology to
the performance of PSO. He proposed several basic neighbourhood topologies: the
ring topology, wheel topology and its generalizations.

The most promising technique will be the integration of genetic algorithms with
PSO. This technique is achieved with population, or subpopulations, which are
evolving and flying simultaneously. In order to keep the genetic operations and the
flying operations together, we have two models, i.e., the Genetic PSO, and the
Swarm Evolution. Fig 5.1 shows the basic architecture of the two paradigms.

Fig 3. The Genetic PSO and swarm Evolution paradigms.

6. System implementation and generated towers and
architectures

Based on the theory described above, we build system implementations based on
solid modeling techniques. Two integrated design studio environments have been
developed under this project. The platform is personal computers under windows
2000 or windows XP of Microsoft. The programming languages are Microsoft

Genetic PSO

Genetic
operations

 Particles: Sorted population
PSO operations

 Genes: Sorted population
Genetic operations

PSO, flying
operations

Swarm evolution

Creative Tower Generated by Computational Intelligence 9

Visual C++ version 6.0, Acis 3d Kernel, and MatLab version 6.1 of Mathworks.
These systems are implemented based on an integration of ACIS 3D solid modeling
kernel and MatLab with a C++ graphical user interface. One of the features of the
systems is that they are fully compatible with commercial CAAD tools and systems,
as well as rapid prototype facilities. A large number of object-oriented components
of sophisticated surfaces and envelopes based on a taxonomy of generic form have
been built using evolutionary techniques and partial ordering theory, Computational
mechanisms have also been developed with which these basic data structures and
components can be visualized, combined or split to allow new data structures or new
forms to be derived using generative techniques. We are also exploring the
possibility to scale up the applications with potentially thousands of solid objects
with textual and spatial design details in our Global Virtual Design Studio powered
by high performance computer and multiple VR projection facilities.

Now we describe some specific features of the design studio. The first one is
named as TowerDev. Features include fully controllable solid modelling
environment; nonlinear transform of existing solid models to give new designs; Acis
sat viewer; fly through viewer; colour and rendering; programmable design for
architecture. The main user interface is as in Fig 6.1.

Fig 4. Generated house by TowerDev.

Now we give some more examples of generated towers and other solid models by
the studio TowerDev.

10 Xiyu Liu, Hong Liu

Fig 5. Generated towers with rendering.

7. Acknowledgements

This work is carried out under the “Taishan Scholar” project of Shandong China. It is
also supported in part by the Natural Science Foundation of China, the Natural
Science Foundation of Shandong Province (No. Z2004G02), and the Scientific and
Technology Project of Shandong Education Bureau J05G01.

References

1. Frazer, J. H. (2002) A natural model for architecture —The nature of the evolutionary
model. In Cyber Reader, edited by Neil Spiller. Phaidon Press Limited. London, 2002.

2. Frazer, J. H. (2001) Design Workstation on the Future. Proceedings of the Fourth
International Conference of Computer-Aided Industrial Design and Conceptual Design
(CAID & CD '2001), International Academic Publishers, Beijing, 2001; 17-23.

3. Frazer, J. H. (1995) An Evolutionary Architecture. Architectural Association
Publications, London, 1995.

4. Frazer, J. H. (2000) Creative Design and the Generative Evolutionary Paradigm. In P.
Bentley ed. Creativity and Design. In press. 2000.

5. Gerd Fischer (editor), Mathematical Models, Friedr. Vieweg & Sohn Verlagsgesellschaft
mbH, Braunschweig, 1986.

6. Tang, M. X. Knowledge-based design support and inductive learning. PhD Thesis,
Department of Artificial Intelligence, University of Edinburgh, 1996.

7. Tang, M.X. A knowledge-based architecture for intelligent design support. The
Knowledge Engineering Review, 1997;12(4):387-406.

8. Peter J. Bentley (1996), Generic evolutionary design of solid objects using a genetic
algorithm. Thesis of doctor of philosophy, University of Huddersfield.

9. Xiyu Liu, Mingxi Tang and John H. Frazer (2002) Shape reconstruction by genetic
algorithms and artificial neural networks. Proceedings of The 6th world Multiconference
on systemics, cybernetics and informatics (SCI2002).

10. Foley, J., van Dam, A., Feiner, S., Hughes, J. (1990). Computer Graphics Principles and
Practice (second edition). Addison-Wesley.

11. Goldberg, D. E., (1989). Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley.

Creative Tower Generated by Computational Intelligence 11

12. M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a
multidimensional complex space,” IEEE Trans. Evolutionary Computation, vol. 6, pp.
58–73, Feb. 2002.

13. R. C. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools:
Academic, 1996, ch. 6, pp. 212–226.

14. P.J. Angeline, “Evolutionary optimization versus particle swarm optimization:
philosophy and performance differences”, in V. William Porto, N. Saravanan, Donald E.
Waagen, A. E. Eiben (Eds.): Evolutionary Programming VII, 7th International
Conference, EP98, San Diego, CA, USA, 1998, pp. 601-610.

15. P.J. Angeline, “Using selection to improve particle swarm optimization”, in Proc. IEEE
World Congress on computational intelligence, ICEC-98, Anchorange, Alaska, 1998,
pp.84--89.

16. P. Suganthan, “Particle swarm optimiser with neighbourhood operator”, in: Angeline, P.
J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.): Proceedings of the
Congress of Evolutionary Computation, Vol. 3. IEEE Press, 1999, pp.1958-1962.

17. J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance”, in Proc. Congress on Evolutionary Computation,
Piscataway, NJ: IEEE Service Center, 1999, pp.1931–1938.

18. R. Kicinger, T. Arciszewski, and KD Jong, "Evolutionary computation and structural
design: A survey of the state-of-the-art", Computers & Structures, Vol. 83, No. 23-24, pp.
1943-1978, September 2005.

