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This paper introduces an analytical approach for the evaluation of multi-user 
engineering systems presenting a failure delayed behaviour pattern, that is, systems 
whose performance decays progressively after the failures, due to internal fault 
tolerance mechanisms or to the complacency of the users regarding the temporarily 
unavailability of the services. The approach is based on the determination of 
analytical expressions for the reliability measures, e.g. frequency and probability of 
failure states, which may then be evaluated using general purpose mathematical tools. 
The paper discusses the rationale and the fundamental algorithms of the approach 
and presents a set of illustrative examples. 

 
 
1.  INTRODUCTION 
 
This paper presents the results of a research project aiming to develop a systematic 
approach for the reliability evaluation of systems containing multiple concurrent processes 
with generalized distributions. The approach was primarily developed to assist the steady-
state analysis of failure delayed systems (FDS), i.e. systems whose performance decays 
progressively in the sequence of a failure. The paper presents a definition of these systems 
and shows that they present a non-Markovian behavior pattern and that the existing 
methodologies present a number of shortcomings regarding the evaluation of FDS 
systems. Then, the paper introduces the fundamental aspects of the new approach and 
presents a set of numerical results in order to illustrate its practical application and 
usefulness.  
 
 
2.  FAILURE DELAYED ENGINEERING SYSTEMS 
 
In many situations, the users of an engineering system are complacent about a temporary 
unavailability of the service provided to them by the system. This means that, at first, the 
disturbances of a system failure are often negligible. However, if the failure persists for a 
long time, the system will enter into successive degraded operational modes where its 
quality of service decays progressively, until a successful repair action is undertaken and 
the system restores its normal operation, or a catastrophic failure occurs.  

27 



 
 
 
 
 
 
 
246                                              Innovation in Manufacturing Networks 

 

 
As practical examples, consider the two models presented in the next figure. In the two 

models, s0 corresponds to the normal operating state of the system, and sfi to the failure 
states. The failure, repair and propagation (or delay) processes are represented 
respectively by p i, p i and p i. The model of figure 1.a represents a production system 
with intermediate work-in-process (wip) buffers between the manufacturing cells. The 
cells and plant controllers of the manufacturing system get their data from a plant data 
server. If this server becomes unavailable (process p ), the plant will be able to continue 
producing, because the cell and plant level production plans are frozen some time in 
advance of the physical production (processes p c1 and p p). However, the plant will enter 
a sub-optimal mode because it will not be possible to react to production events, such as 
new urgent orders. If an upstream cell halts its operation, the downstream cells will 
continue to be fed by the intermediate work in process buffer (processes p b). Only when 
there is a shortage of products at the output of this buffer, will the consequences of the 
failure propagate downstream. If this production system belongs to a just-in-time supply 
chain, the severity of the damages is likely to increase dramatically.  

The model in figure 1.b sketches the information system of a business company from 
the retail sector. End users execute intra and inter-site transactions (which both depend on 
the availability of a number of remote data servers) and may tolerate a temporary 
unavailability of the information services. However, this complacency is different 
regarding intra and inter-sites transactions, and regarding the operations executed in each 
site  (end  consumers’  point  of  sales,  or  logistical  support).  This  behaviour is represented in 
the model by two concurrent failure propagation processes p 1 and p 2. 

These two examples show that a progressive decay of performance after a failure, due 
to an internal temporal redundancy mechanism, or to the complacency of the users 
regarding the temporary unavailability of the services provided to them, is a common 
behaviour pattern in engineering systems. The analysis of these systems also shows that 
FDS systems present a number of common features that directly impact on their reliability 
and performance evaluation. Suppose that S is a repairable failure delayed system and M 
is its behaviour model (figure 2).  
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Figure 1. Failure delayed systems examples 
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In this case, the following assumptions regarding S and M will be considered in the 
context of this paper: 
 S provides services to multiple users (e.g. downstream manufacturing cells, electrical 

consumers or information systems users) each of which presents its own complacency 
regarding the unavailability of the services of S. 

 S has a regenerative state which is represented in M as sup. 
 In sup, one or more failure processes are active. Each one of those processes 

corresponds to a particular failure. 
 The execution of a failure process leads the state of S to one of the initial failure states 

where the disturbances for the users will typically be negligible. 
 In each failure state, several concurrent delay processes, p , may be active. Each 

one of them corresponds to the complacency of a particular type of user regarding the 
failures of the system.  

 The execution of a delay process leads the system to a delayed failure state, e.g. ns  
with n 0, where the severity of the damage will typically increase.  

 In each initial or delayed failure state, a repair process p may be active. The 
execution of this process leads the system to the sup. In other words, it is assumed that 
repair is a regenerative process that completely restores the normal operating 
condition (the extension of the model to non-regenerative repair will be discussed in 
Section 6). 

 Failure, delay and repair processes may present arbitrary distributions (deterministic 
or stochastic). 

 When a transition occurs from a failure state, the other processes that were 
simultaneously active in that state may be deactivated, reinitialized or remain active 
(keeping their firing time). Simultaneously, other repair or delay processes may be 
activated on the arrival at the new state. 

 
 
 
 

sup

sn
0

p n

s1
0 ...

...
...

...

normal 
operating 
state

initial 
failure 
states

delayed 
failure 
states

p

p 1 p 2

p 1p 2
p 3

p 3 p 4

p

p

p

...

sn
1 sn

2

sn
3

sn
4

sn
5

sn
6

 

p

...
...

...

sup

...

s1 s2

s3 s4

s5

s0

s7

...

 
  

Figure 2. Failure delayed system models  Figure 3. Alternative trajectories  
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3.  REVIEW OF EXISTING METHODS 
 
The assessment of non-Markovian systems remains a largely open issue in reliability 
analysis, despite the significant progress achieved in the last two decades, mostly based on 
stochastic Petri nets. The device of stages is one of the well proved techniques for the 
evaluation of non-Markovian systems, which makes it possible to model a large range of 
experimental probability density functions. For example, a log-normal distribution often 
found in repair processes may be represented through a combination of a series of states 
with two states in parallel, as shown in (Singh 77) and (Pages 80).  

First introduced in (Cox 65), it has been applied to the reliability evaluation of fault 
tolerant computer systems (Laprie 75), and to the reliability analysis of electrical power 
systems (Singh 77). An extension of the method has been proposed in (Haverkort 93), to 
allow the assignment of a memory policy to any timed transition. One of the important 
features of the method is the possibility of designing automated tools to support its 
application, as presented in (Cumani 85). This tool uses Petri nets as the modelling tool 
and converts the reachability set of the net into a continuous time Markov chain defined 
over an extended state space. Although very flexible, this method restricts the firing times 
of the stochastic processes so that they are PH distributed (Neuts 81). Consequently, it 
presents a major limitation when the systems under analysis contain deterministic or 
quasi-deterministic processes, because the number n of additional states rises 
quadratically with the ratio between the standard deviation and the mean of the 
distribution.  

In the past two decades, several evaluation techniques based on stochastic Petri nets 
(SPN) modelling have been developed in order to support the reliability analysis and the 
performance evaluation of complex systems. When SPN were first introduced (Molloy 
82), all the random variables associated with the transitions were assumed to be 
exponentially distributed, so that the evolution of a Petri net could be mapped into a 
continuous Markov chain. Since then, and in order to broaden the field of application of 
SPN, several classes of Petri nets incorporating non-exponential features in their 
definition have been proposed. This is the case of the deterministic and stochastic Petri 
nets defined in (Marsan 87), in which a single deterministic transition may exist in each 
marking. Subsequently, it was observed in (Choi 95) that the underlying marking process 
is a Markov regenerative process. This allowed the extension of the model in order to 
accommodate immediate transitions, exponentially distributed timed transitions and 
generally distributed timed transitions but with the important restriction that at most one 
generally distributed timed transition be enabled in each marking (Choi 94). Two 
evaluation approaches were then developed: one based on the derivation of the time 
dependent transition probability matrix in the Laplace transform (Choi 94), the other 
based on the supplementary variables method (German 94). In spite of this progress, 
several restrictions still apply to the analytical evaluation of non-Markov systems, and no 
general solution is available 
 
 
4.  NEW APPROACH FUNDAMENTALS 
 
This Section introduces the mathematical foundations of the procedures for the 
determination of the frequencies and the probabilities of a non-Markovian model M. The 
analytical expressions for the frequencies will be considered first in paragraph 4.1, then 
the states probabilities expressions will be addressed in paragraph 4.2. The procedure is 
based on the notion of state trajectory: immediately after a failure, the system occupies 
one of the initial failure states. Then, it returns to the normal operating state following one 
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of the several possible trajectories, as shown in figure 3. A trajectory is an ordered set of 
failure states { ns , ns  , ns  ,  …   ns } that starts at one of the regenerative initial failure 

states ns , and such that, for each pair of consecutive states, ns and ns , there is a delay 

process p  in M whose execution causes the transition from ns  to ns . In the 
presentation of the procedure, the following notation will be adopted: 
 M and PM: two vectors such M(s) and PM(s) contain the frequency and the 

probability of state s, respectively; 
 sup: the normal operating state, 
 p : the failure process corresponding to failure mode ; 

 0s : the initial failure state corresponding to failure mode ; 

 p  and p : the processes corresponding to the propagation delay  and the 

repair action , respectively; 
 ns : a delayed failure state subsequent to 0s  (n 1); 
 fp(t): the probability density function of process p. 

 
4.1. Failure states frequency  
 

Suppose that ns is a failure state whose frequency is to be determined and that n  is the 

set of trajectories starting at 0s and ending at ns . The frequency of the failure 

state ( )ns  results from the sum of the frequencies of each trajectory  of n : 

( )  ( )
n

ns        (1)  

The frequency of each trajectory  comes from the product of (i) the frequency of 0s  

and (ii) the probability that, once arrived at 0s , the system follows the trajectory : 

0( ) ( )  P( )
n

ns s       (2) 

The determination of P( ) will be addressed hereafter, whereas that of 0( )s will be 
postponed to paragraph 4.3 because it requires formulae introduced in 4.2.  
 
4.1.1. Probability of a trajectory  
 
The probability of a trajectory comes from the product of the probabilities of each one of 
its transitions. Consider, as an example, the following trajectory: 

 = { 0s , as , bs ,    …   rs , ss } 
Its probability will be: 



 
 
 
 
 
 
 
250                                              Innovation in Manufacturing Networks 

 

P( ) 
= P( 0s Æ as ) P( as Æ bs ) … P( rs Æ ss )  

 
For the sake of simplicity of the expressions, it will be considered that, within each 

trajectory, the states are renumbered according to their order, as exemplified in figure 4 
for the three trajectories considered above. If the random variable ti represents the time 
elapsed between the arrival at the initial failure state 0s  and the arrival at the ith state is , 

the probability of a trajectory leading to the nth state, ns , may be expressed as: 

1 1 2 n-10 1 t 1 2 t t t n-1 nP( ) =P(s s ) P (s s ) .. P .. (s s )   or as: 

1 i-1

n
t ..t i-1 i

1
P( ) = P (s s )

i
      (3) 

where 
1 i-1t ..t i-1 iP (s s )  represents the conditional probability of transition from si-1 to si 

given that the previous transitions of  have occurred at t1..ti-1. These conditional 
probabilities may, in turn, be evaluated from the following expression:  

 

1 2 i-1 1 1
t , t ..t i-1 i 2 10P (s s ) = .. ( ) ..

i i it t T t dt dt dt     (4) 

where ( )iT t is the density function of the random variable ti. This time depends, in turn, 
on the set of stochastic processes that are active in state si-1. If k is the set of processes 
that are active in a state sk, and pi is the process that causes the transition from i-1th to the 
ith state of the trajectory (figure 5), then the expression for T(ti) comes from the product of 
the density function of this process, ( )

ip if t , and the probability that the other processes p 

of i-1 do not occur before ti ( i-1p Ω and ip p ). If p is a process of i-1 that became 

active at a previous instant 0
pt , then the density function for the execution of this process 

is: 

1
0

0
'

10

( )
( ) ,

1 ( )i

p

p p
p it

p pt

f t t
f t t t

f t d
 

where  is an auxiliary variable with local scope. Therefore, it results for T(ti): 
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Figure 4. Renumbering of the states within each 
trajectory 

 

Figure 5. Arrival at the ith state of 
the trajectory  
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where: 
 0

pt  is the instant of activation of process p, which will always coincide with one of the 
random variables tj, with j < i -1; 

 
1

0

0

0

( )

1 ( )
i i

i
i ipi

p i p
t

p pt

f t t

f t d
represents the density function of the instant of transition from 

si-1 to si due to pi; 

 
1

0

0

0

( ' )
'

1 ( ) )
i

i

p

p pt
t

p pt

f t
d

f t d
 represents the probability that another process p of i-1 

does not occur before pi. 
 

Now, combining (3), (4) and (5) the expression for the probability of the trajectory  
may be obtained from: 

1
1 2 2 10 1( ) ( ) ( ).. ( ) ..

n n nt tP T t T t T t dt dt dt      (6) 

If a process p stays active from state sk (i.e., 0
pt = tk) to state sm, its density function 

will participate in the expressions ( )jT t  for k j m. Therefore, the contribution of p to 

P( ) will be: 

1 2 1

1

( ' ) ' ( ' ) ' ( ) '
..

1 1 ( ) 1 ( )
k k m

k m
k k

p k p k p kt t t
t t

p k p kt t

f t d f t d f t d

f t d f t d
 

Once 
1

( )
l p kt f t d  equals ( 11 ( )l

l

t
p kt f t d ), the global contribution of p to 

T(tk) will be equivalent to  
1

( )
m p kt f t d . This means that, if a process p is active 

from sk to sm. it is possible to consider its contribution to T(ti) only at state sm. This fact 
leads to a significant simplification of the density functions: 

1

0 0( ) ( ) ( ( ) )
i i i

i
i
i

i p i p pp t
p
p
p p

T t f t t f t d      (7) 

 
4.2. Failure states probability 
 
Here, the procedure introduced in paragraph 4.1 will be extended in order to address the 
probability of the failure states. Assuming, as before, that ns  is a failure state of a model 

M, that n is the set of trajectories leading to ns  and that P( ) is the probability of the 

trajectory , then the probability of ns may be obtained from: 
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n

0( ) ( ) ( )n ns s P tP         (8)  

where the new term nt  represents the mean sojourn time in ns  when this state is 
achieved following trajectory . If p is a processes of n, the mean sojourn time in 
state ns when the transition to next state is caused by p results from the product of (i) the 
mean execution time of p and (ii) the probability that the other processes of n do not 
occur before p, that is: 

1
1 1 0 ' 0 ' 1

'
'

( ) ( ) ( ( ´ ) ')
n n

n

n n p n p p p nt t
p
p p

t t f t t f t t dt dt  

As the output transition from state ns  may be caused by any of the processes 

belonging to n, the total sojourn time nt may be obtained from: 

1

0 0
1 1 ' ' 1

'
'

( ) ( ) ( ( ) )
n n

n n

n n n p n p p p nt t
p p

p p

t t t f t t f t d dt  (9) 

The expression of nt  depends on the instants of the previous transitions of  (due to 

the instants of activation 0
pt and 0

'pt  of the processes belonging to n. Therefore, this 

expression should be combined the probability of   (6), yielding: 

1
0 10( ) (s ) ( )... ( )

n
n

n nts T t T tP      

 
1

0 0
1 1 ' ' 1 1 1

'
'

( ) ( ) ( ( ) ) ..
n n

n n

n n p n p p p n nt t
p p

p p

t t f t t f t d dt dt dt    (10) 

 
The expressions for the states probabilities (as the previous expressions for the states 

frequencies) depend on the frequency of arrival at the initial failure state, 0(s ) , which 
is addressed in the next paragraph. 
 
4.3. Initial failure states frequency  
 
Depending on the distributions of the failure and the repair processes, four situations 
regarding the determination of frequencies of the initial failure states have to be 
considered: (i) exponential failure processes, and a common repair process, (ii) 
exponential failure processes, and several repair processes, (iii) non-exponential failure 
processes, and a common repair process and (iv) non-exponential failure processes, and 
several repair processes.  
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Hereafter, just the first one of these situations will be considered. This is the simpler 
and more common situation found in practical applications regarding FDS systems: the 
failure processes present exponential distributions; the repair processes are enabled 
immediately after the occurrence of the failures; and they remain active until the system 
re-enters the normal operating state sup. In this case, the set of failure states corresponding 
to a particular failure mode may be grouped in a single macro-state because all of them 
share the same repair process (figure 6). The mean sojourn time in the macro-state 
corresponding to failure mode  is: 

       μ0
t f (t) dtt  

where (t)μf  is the density function of the repair process. Once the failure rates  are 
constant and the state probabilities verify: 

 
up(s ) ( ) 1

Ms
P P s

F

 

where FM is the set of failure states of M, the probability of the normal operating state 
may be obtained from: 

      up

μ0

(s ) = 
t f (t) dt

P                  (12) 

Now, the frequency of the initial failure state corresponding to a particular failure 
mode  may be readily obtained from: 
 up(s )0(s ) = P      (13) 
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Figure 6. Macro-failure states 



 
 
 
 
 
 
 
254                                              Innovation in Manufacturing Networks 

 

5. NUMERICAL RESULTS 
 

This 
Section presents several results regarding the evaluation of the model represented in figure 
1.a. It is assumed that s5 is a catastrophic failure state and that its probability and 
frequency are to be evaluated. The analytical expressions for these two measures were 
already introduced in paragraphs 4.1 and 4.2 Two scenarios will be considered here for 
illustrative purposes: scenario 1 where all the processes present exponential distributions 
and scenario 2 where the repair and delay processes present 3rd order Erlang distributions.  

For the sake of simplicity, it is also be assumed that the three delay processes are 
identical and that their mean pm  is 3 hours. For the mean of the repair processes, 

several values will be considered for the mean ranging from pm /4 to 4 pm . Figure 7.a 
and 7.b represent the evolution of the probability and of the frequency of the catastrophic 
failure state with the ratio  = pm / pm , for the two scenarios.   
Figure 7.c provides another important result. It shows the error that will be introduced in 
the evaluation of a system presenting the non-Markovian behaviour corresponding to 
scenario 2, using the Markovian model of scenario 1 (which is something often done in 
reliability analysis). The error  in a reliability measure R is calculated from: 

1 2

2

 - ε =  R R
R  

where R1 and R2 are the values corresponding to the two scenarios. These results 
reinforce the idea that, when a model contains concurrent processes having non-
exponential distributions, the use of non-Markovian techniques becomes mandatory. In 
fact, even with this simple system, the error may be high then 1000%. 
 
 
6. DISCUSSON AND CONCLUSIONS 
 
The paper has presented an approach for the reliability and performance evaluation of 
ergodic repairable systems containing a Markov regenerative state (corresponding to 
normal operation) and multiple concurrent processes with generalized distributions. There 
are well established analytical solutions for the transient and steady state evaluation of 
regenerative Markov systems. These solutions allow immediate, exponentially distributed 
and generally distributed timed transitions to be considered but they require that all the 
non-exponential processes be enabled at the same instant.  

As it has been shown, the approach presented here does not impose this important 
restriction. Other approaches for the evaluation of non-Markovian systems require the 
consideration of additional variables, whose number increases quickly when the model 
contains several concurrent processes with narrow hyper-exponential distributions, i.e. 

a) b) c)
 

 

Figure 7. Numerical results 
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deterministic or quasi-deterministic processes, as happens with the device of stages. In 
these conditions, the approach presented here may offer a more straightforward solution. 
In fact, the analytical expressions for the relevant reliability measures may be obtained 
through a systematic procedure directly from the structure of the model and the 
distributions of the stochastic processes. There is no need for auxiliary variables, and the 
expressions may be evaluated using general purpose mathematical tools. The approach 
has been successfully applied to the study of non-Markov industrial manufacturing 
systems, distributed information systems and electrical power systems, and it constitutes 
an effective alternative to simulation based techniques. For relatively small models, 
containing just a few states and processes, the analytical expressions can be evaluated 
directly using general purpose mathematical tools. For the evaluation of larger models, the 
use of these general purpose tools may become ineffective, but it is possible to develop 
specialized evaluation tools. 
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