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This work present and demonstrated an applications of artificial neural network 
approach in optical sensing. The conventional matrix method used in simultaneous 
measurement of strain and temperature with optical Bragg gratings is compared with 
artificial neural network approach. The alternative method is proposed for reduced 
the error. 

 
 
1.  INTRODUCTION 
 
According to (Culshaw, 1996), a smart structure can be defined as one that monitors itself 
and/or its environment in order to respond to changes in its condition. Fibre Bragg grating 
sensors (FBG) can be very useful in applications where layered materials, such as 
composites, are involved. Due to the fact that fibre optic sensors are small, multiplexable, 
electrically isolated and immune to electromagnetic fields, they can give engineers the 
possibility to incorporate a fibre optic nervous systems into their composite material 
designs. These sensors allow measurement of parameters such as load/strain, vibration, 
temperature and detection of cracks and delamination phenomena (Culshaw, 1996). When 
FBGs are applied to the measurement of strain their cross-sensitivity to temperature is an 
issue that needs to be addressed. 

One approach to solve this problem it is to design sensing heads insensitive to 
temperature. Another one is the conception of structures with sufficient degrees of 
freedom to permit the simultaneous discrimination of these two parameters. However, 
when the sensing head contains two devices, the error increases due to the cross 
component of the physical parameter. Usually, the matrix method to solve the problem is 
acceptable, but when the instability of the matrix is high, it is necessary to apply other 
alternative solutions. Other disadvantage of the matrix method is when the response of the 
sensors is non linear. This problem appears when the sensors are characterized in 
temperature or embedded in laminated composites. 

In this work the authors present an alternative solution using an artificial neural 
approach to reduce the errors obtained by the matrix method in optical fibre Bragg grating 
embedded in laminated composite. The optical sensor presents linear response for strain 
and non linear response for temperature. 
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2.  ARTIFICIAL NEURAL NETWORK APPROACH  
 
An artificial neural network (ANN) approach is proposed to improve the strain and 
temperature measurements. ANN has been applied to temperature and strain 
measurements in the case of large cross-sensitivity sensors, whose matrix inversion causes 
significant errors due to the nonlinear evolution of the matrix coefficients as function of 
∆T and  ∆ε   

To avoid the matrix inversion, an ANN was trained to perform a nonlinear input-
output   mapping.   The   variations   ∆ 1 and   ∆ 2 were given as inputs to the ANN which 
provides  values  of  ∆T and  ∆ε as outputs. 

 An ANN is an interconnected group of simple processing units (neurons) that uses a 
mathematical or computational model for information processing based on a connectionist 
approach to computation (Fig. 1). Despite the simplicity of each processing unit, the use 
of many neurons guarantees the execution of multiple tasks. 

 The links between neurons are characterized by weights, wki, which modulate the 
effect of the associated input, xi, to a neuron, k. A pondered sum of the weighted input is 
then performed. The neuron transmits an activity level transduced by a function of 
activation, φ.  

 ANN is an adaptive model that can learn from the data and generalize it. It extracts 
the essential characteristics from the numerical data. This offers a convenient way to 
create an implicit model. 

 The chosen network was a multilayer perceptron (MLP) trained in supervised learning 
with the Levenberg-Marquardt algorithm. The MLP is based on an input, a hidden and an 
output layers interconnected in a feed-forward way (Haykin, 1999). Each neuron has 
directed connections to all the neurons of the subsequent layer (Fig. 2). The neurons 
activation function in the hidden layer is the non-linear sigmoid function whereas in the 
output layer it is the linear function. The network output is thus a linear combination of 
the outputs of the hidden neurons with αjk defining the synaptic weights of output layer. 

 The MLP outputs are compared to the pretended predefined target using an error-
function. This error is then fed back through the network. Using this information, the 
algorithm adjusts the weights of each connection in order to reduce the error value. The 
process is repeated until the network converges to some state where the error is small. In 
this case the network has learned a certain target function. 

 The universal approximation theorem for ANN states that every continuous function 
that maps intervals of real numbers to some output interval of real numbers can be 
approximated arbitrarily closely by a MLP with just one hidden layer (Bishop,  1995).  ∆T 
and  ∆ε can thus be approximated as follows: 
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where φ is the sigmoid function, bk the bias,   the approximation errors and m the number 
of neurons in the hidden layer. 
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Fig. 1. Model of a neuron. Fig. 2. Architectural graph of a MLP with one hidden 
layer. 

 
The hidden layer of the chosen MLP is constituted of 10 neurons. Classical back-

propagation training algorithm is based on the gradient descent method. This method is 
often too slow for practical problems. The Levenberg-Marquardt back-propagation 
algorithm is then used here instead of MLP training because of having a faster 
convergence (Bishop, 1995). The performance of the trained ANN is measured using the 
mean square error. 

Data analysis was performed using MATLAB® Neural Network Toolbox (Demuth 
and   Beale).   The   network   inputs   consist   of   pairs   of   (∆ 1, ∆ 2). During the training the 
MLP  is  adjusted  to  relate  these  input  pairs  to  their  respective  target  pair  (∆T,  ∆ε).  

The training efficiency highly depends on the data used for training. This data must be 
representative  of  the  underlying  model.  Training  data  consisted  of  3400  pairs  of  (∆T,  ∆ε) 
values generated, within a range of 0-2700   με   and   0-45 ºC, by interpolation of the 
experimental   values.   The   respective   pairs   of   (∆ 1, ∆ 2) were obtained applying the 
equation (1). To improve the training efficiency the data was pre-processed. Inputs and 
targets were normalized to have zero mean and unity standard deviation to guarantee that 
they have the same relevance. 

The generalization ability of the trained MLP network was then verified with a set of 
another 100 pairs of simulated data. 
 
 
3.  RESULTS 
 
Two fibre Bragg gratings were embedded between layers of pre-impregnated carbon 
fibre/epoxy resin to produce a smart laminated composite. One of the Bragg gratings is 
located between two layers. The other Bragg grating is positioned between four layers. 
The smart composite was characterized concerning stain and temperature. The 
characterization consisted in temperature measurements holding strain constant (  = 0) 
and strain measurements induced by strain holding the temperature constant (T = 20ºC).  

The sensing head presents different strain sensitivities of the Bragg grating when 
embedded in different number of layers and when the smart composite is subjected to 
strain. Relatively to the temperature, a nonlinear response is obtained. These results allow 
to write a well-conditioned system of two equations for T and ε, given in a matrix form 
as: 
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and the solution obtained for T and ε is: 
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 Replacing all the coefficient parameters, we obtained the following results: 
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and the solution is: 
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The system performance was evaluated when the sensing head was simultaneously 

subjected to strain and temperature changes over strain and temperature ranges of 2700 
and 45 ºC, respectively. The results are shown in Fig. 3. The rms deviations were 

found to be ±1.47 ºC and ±5.7  for temperature and strain measurements, respectively. 
Usually the matrix method presents good performance when the sensing head shows 

linear response in all physical parameter characterization. In our design, the sensing head 
presents non linear response due to the optical fibre being embedded in laminated 
composite and presents a thermal differential between the optical glass and the polymer 
used in the pre-impregnated. In these cases alternative solutions are required and this work 
presents the results using ANN. 

The performance of the two techniques (matrix method and ANN) was evaluated 
when the sensing head undertook strain variations in a range of 2700 at a fixed 
temperature ( T = 20 ºC) and the other way around, i.e., temperature variations in a range 
of 50 ºC for a specific applied strain (  = 1250 ). See Figure 4. For the ANN method a 
satisfactorily generalization of data was achieved. The resulting maximum errors for the 
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ANN method were found to be ± 0.2 ºC and ± 1.9 for temperature and strain 
measurements, respectively. 
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Fig. 3. Sensor output as determined by matrix method. 
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Fig. 4. Sensor output as determined by ANN. 

 
 
4.  CONCLUSIONS 
 
In this work, the authors presented an intelligent composite based on optical Bragg grating 
structure embedded between of layers of pre-impregnated carbon fibre/epoxy resin. Due 
to its geometry, the smart composite can be simultaneously discriminate the strain and the 
temperature. To reduce the errors of the matrix methods, an artificial neural network 
(ANN) approach is proposed to improve the strain and temperature measurements cross-
sensitivity. The authors concluded that the ANN approach is an alternative method when 
the optical sensor presents non linear response to the physical parameters. The problem of 
the sensing head embedded in composite laminated is the non linear temperature response 
and the matrix method presents a high error for the temperature measurement. The results 
show that, for a particular sensor with large cross-sensitivity, temperature and strain 
measurement accuracy can be increased by 7 and 3 times, respectively, when compared 
with the matrix inversion method. 
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