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This paper presents a new methodology for the deformation of soft objects by 
drawing an analogy between cellular neural network (CNN) and elastic 
deformation. An improved CNN model is developed to simulate the 
deformation of soft objects. A finite volume based method is presented to derive 
the discrete differential operators over irregular nets for obtaining the internal 
elastic forces. The proposed methodology not only models the deformation 
dynamics in continuum mechanics, but it also simplifies the complex 
deformation problem with simple setting CNN templates. 

 
 
1.  INTRODUCTION 
 
Deformable object modelling is essential for many industrial and medical 
applications such as assembly and disassembly of flexible parts, and surgery 
simulation. To this end, a significant amount of research efforts have been dedicated 
to simulating the behaviours of deformable objects. These research efforts can be 
divided into two classes. The first class of studies is focused on real-time simulation 
such as mass-spring models [Choi et al, 2003] and spline surfaces used for 
deformation simulation and visualization [Bockholt et al, 1999]. The advantage of 
these methods is that the computation is less time consuming and the algorithm is 
easier to be implemented. However, the method does not allow accurate modelling 
of material properties, and more importantly, increasing the number of springs leads 
to a stiffer system. The other class of investigations focuses on deformation 
modelling using techniques such as Finite Element Method (FEM) [Basdogan et al, 
2004] and Boundary Element Method (BEM) [Monserrat et al, 2001]. In FEM or 
BEM, rigorous mathematical analysis based on continuum mechanics is applied to 
accurately model the mechanical behaviours of deformable objects. However, these 
methods are computationally expensive and are typically simulated off-line. The 
pre-calculation [Monserrat et al, 2001], matrix condensation [Bro-Nielsen, 1998], 
the space and time adaptive level-of-detail [Debunne et al, 2001] and explicit finite 
element [Cotin et al, 2000] techniques are used to enhance the computational 
performance. 
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There are several investigations that combine neural network with deformable 
modelling [Nurnberger et al, 2001; Duysak et al, 2003]. However, in these methods, 
neural networks are mainly used to determine the parameters of mass-spring models. 
To the best of our knowledge, this study is the first to directly use neural network 
techniques to mimic the behaviours of deformable objects under externally applied 
loads. 

This paper presents a new methodology for accurate modelling deformable 
objects by drawing an analogy between cellular neural network (CNN) and elastic 
deformation. The deformation is formulated as a dynamic CNN. An improved 
autonomous CNN model is developed to mimic the deformation of soft objects 
through the CNN activity. The internal elastic forces are incorporated in the CNN 
model as the local connectivity of cells and the external applied force as the 
independent current source to model the deformation dynamics. A finite volume 
based method is presented to derive the discrete differential operators over irregular 
nets. The finite volume method enforces the conservation of energy in a discrete 
sense and provides an intuitively geometric discretization rather than an 
interpolating function in the finite element method to calculate internal elastic 
forces. The proposed methodology not only models the physical dynamics of soft 
object deformation, but it also simplifies the complex deformation problem with 
simple setting CNN templates. 
 
 
2.  DESIGN OF CNN MODEL 
 
2.1  CNN Analogy 
 
A CNN model can be applied to different grid types. Without loss of generality, we 
consider a CNN on a rectangular grid with M rows and N columns. Each node on 
the grid is occupied by a cell. The dynamics of the array of M×N cells is described 
by the following equation and conditions [Chua and Yang, 1988]: 
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where (i, j) refers to the cell associated with the node under consideration, (k,l) to a 
cell in the neighborhood of the cell (i, j), namely Nr(i, j), within a radius r of the cell 
(i, j) (r=1 for simplicity). C is the capacitance of a linear capacitor, xR  is the 
resistance of a linear resistor, Iij is the current of the independent linear/nonlinear 
current source, and A is the feedback template. )(tvuij , )(tvxij , and )(tvyij  denote 

the input, state and output of the cell (i,j) at the time t, respectively. )(tvyij  is a non-

linear function of )(tvxij . 
One significant feature of CNN, as well as the basic difference from other neural 

networks, is the local connectivity of cells [Chua and Yang, 1988], i.e. any cell in 
CNN is connected only to its neighbouring cells. Adjacent cells directly interact 
with each other. Cells not directly connected to each other have indirect effect 
because of the propagation effects of the continuous-time dynamics of CNN. 
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Therefore, given the initial state and the external environment, CNN activity is only 
determined by the local connectivity of cells. The local connectivity of cells is 
similar to the internal force since the deformation is only determined by the internal 
force under the given external force and the initial state. 

Another significant feature of CNN is that the individual cells are non-linear 
dynamical systems, but that the coupling between them, i.e. the local connectivity of 
cells, is linear [Slavova, 2003]. The feature makes CNN very suitable for modelling 
non-linear materials since CNN conserves the physical properties of the continuous 
structure. 

Further, CNN offers an incomparable computation speed due to the collective 
and simultaneous activity of all cells [Roska et al, 1995; Kozek et al, 1995]. The 
computation advantage of CNN is very suitable for real-time the computation 
requirement of deformable object simulation. 

In the proposed CNN analogy, the deformation of soft objects is treated as the 
activity of a CNN. The object surface is treated as a CNN by using a number of 
locally connected cells. The external force is treated as the current source of the 
contact cell. The local interactions generated by the local connectivity of cells are 
treated as internal forces, and the CNN dynamic activity is treated as the dynamics 
of deformation. Therefore, such a CNN with the current source, the local 
connectivity and the dynamic activity can be seen as a communication medium 
among an external force, internal forces and deformation. 
 
2.2  CNN Model for Deformation 
 
The dynamics of soft object deformation is usually described by the Lagranage 
dynamics. Therefore, the CNN model is formulated as the Lagrange dynamics to 
describe the dynamics of soft object deformation. 

When an external force is applied to a soft object, the contact point of the 
external force is replaced with a new position. As a result, the other points not 
influenced by the external force are in an unstable state. The external force is 
propagated among mass points to establish a new equilibrium state by generating the 
corresponding internal forces. Based on the equilibrium state, the new position of 
each point is obtained. The dynamic deformation process is governed by the 
Lagrangian equation, which is to balance the externally applied force with the 
internal forces due to the deformation of the soft object. The Lagrange equation that 
governs the motions of each node is [Goldsteln, 1980]: 
 

ii
i

i
i

i dt
d

dt
dm FGUU

=++ γ2

2
 (2) 

 

where iU  is the position vector of node i at time t, and im and iγ  are the mass and 

damping constants of node i, respectively, iF  is the external force applied to node i 

at time t, and iG  is the net internal force applied to node i at time t. In the case of 
linear elasticity, the linear strain makes the internal force linear with respect to the 
position vector, i.e. 

iii K UG =  (3) 
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where Ki is a coefficient at node i, which is related with the stiffness of a material. 
The second-order differential equations can be divided into a system of first 

order differential equations by introducing a velocity function iV . 
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According to Eq. (4), the CNN model for dynamic deformations is designed as a 
second-order autonomous CNN: 
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where 
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In most of CNN applications, the independent current source of each cell has the 
same value. For the purpose of soft object deformation, the independent current 
source is only set by the external force. Therefore, the current source value at the 
contact cell is directly obtained from the external force, and the current source 
values of other cells are set to zero since there is no external force applied to them. 

Due to the fact that any CNN has only one output, a three-lay CNN is 
constructed to compute the X, Y and Z coordinates of displacement vectors. 

The solution of the Lagrangian equation needs initial values and boundary 
conditions. The initial values and boundary conditions should also be incorporated 
in the CNN model. The initial values can be directly associated with the initial state 
of the CNN. The simplest boundary condition is the Dirichlet boundary condition, 
i.e. the given boundary values. The Dirichlet boundary condition is realized by using 
fixed-state cells. 
 
 
3.  FORMULATION OF LOCAL CONNECTIVITY OF CELLS 
 
From the above section, it is obvious that the local connectivity of cells is related to 
the internally elastic forces. A straightforward approach to derive the internal elastic 
force is the Hooke’s law, and the relationship between the displacement u and the 
applied internal elastic force F is [Timoshenko and Goodier, 1970]: 
 

)]()([ uuF •∇∇++Δ= μλμS  (7) 
 

where ∆ is the Laplace operator, ∇  is the gradient operator, •∇  is the divergence 
operator and S is the measure of the area the force applied on. 

To get the internal elastic force at each node for setting the local connectivity of 
cells, Laplace operator and the gradient-of-divergence operator has to be discretized 
on the object surface. The discretization of these operators on a regular net is 
straightforward, and can be easily done by the techniques of finite difference. The 
difficulty is how to discretize these operators on an irregular net. 
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3.1  Finite Volume Method for Discrete Operators 
 
For the discretization of the operators on an irregular net, a finite volume method 
[Versteeg and Malalasekera, 1995] is used to aid establishing the discretization at 
each node. The finite volume method has the strength of dealing with unstructured 
grids and has been widely used in computational fluid and heat transfer. One 
straightforward finite volume method is Voronoi diagram [Barth, 1992], which 
derives the discretized equation at each node from the energy conservation law. It 
subdivides the domain into a finite number of non-overlapping cells or control 
volumes, over which the conservation of energy is enforced in a discrete sense. Fig. 
1(a) shows the finite volume constructed by the Voronoi scheme. The finite volume 
of point 0P  is constructed by connecting each intersection points between the 

perpendicular centerlines of each edges adjacent to point 0P . Fig. 1(b) shows a 
segment of the Voronoi finite volume. 
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               (a) A Voronoi finite volume           (b) A segment of the finite volume  

Figure 1 – Voronoi finite volume on a triangular net 
 

By derivations, Laplace operator at Pi may be written as: 
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where S is the measure of the finite volume, and iN  is the set of the neighbour 

points of point iP  (see Fig. 1(b)). 
By derivations, the gradient-of-divergence operator at point Pi may be written as: 
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3.2 Formulation for the Local Connectivity of Cells 
 
The local connectivity of cells is set by the internally elastic forces. Replacing Eqs. 
(8) and  (9) in Eq. (7), the internal force at Pi is: 
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Figure 2 – A triangular net 

 
From Eq. (10), the local connectivity of the CNN model, i.e. the template A can 

be obtained. For example, assuming the object surface is a net shown in Fig. 2, the 
template A is: 
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4. IMPLEMENTATION RESULTS AND DISCUSSIONS 
 
A prototype system has been implemented for interactive deformable object 
modelling with force feedback. A PHANToM haptic device is configured with the 
system to carry out the deformations of deformable objects with force feedback. The 
PHANToM is a six degree-of-freedom haptic device from Sensable Technologies, 
and provides force feedback to a user. A user can use the device to touch the soft 
object and deform it by pushing, pulling and dragging the object surface in a natural 
3D environment. 

Fig. 3 illustrates the deformations of an elliptic sphere with 400 mass points. Fig. 
3(a) shows the undeformed elliptic sphere. Fig. 3(b) and (c) show different views of 
the object deformed under a tensile force. Fig. 4 shows the deformation modelling of 
a shoes-shaped object under a compressive force. 

Compared to the mass-spring method, the proposed methodology is more 
accurate than mass-spring due to the formulation of the local connectivity of cells 
based on continuum mechanics. Compared to BEM and linear FEM, the proposed 
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methodology has the computational advantage due to the collective and 
simultaneous activity of all cells. In addition, the CNN model is easier to be 
formulated than the complex BEM and linear FEM models. Only surface mass 
points are involved in computation and rendering without any inside points, while 
the interior must be meshed and calculated in FEM. 
 

       
                    (a)                                          (b)                                       (c) 

Figure 3 – Deformations of an elliptic sphere 
 

    
                          (a)                                                                (b) 

Figure 4 – Deformations of a shoes-shaped object 
 
 
5. CONCLUSIONS 
 
Presented in this paper is a new methodology to mimic the deformation of soft 
objects by drawing an analogy between CNN and elastic deformation. The 
contribution of this paper is that the CNN techniques are used to describe the 
deformation dynamics through incorporating the externally applied force and the 
internally elastic forces, and new discrete differential operators are derived to ensure 
the conservation of energy and provide the geometric intuitiveness. An improved 
CNN model is developed to describe the dynamics of soft object deformation. A 
finite volume based method is presented to derive the discrete differential operators 
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over irregular nets for obtaining the internal elastic forces. The finite volume method 
enforces the conservation of energy in a discrete sense and also provides an 
intuitively geometric discretization rather than an interpolating function in finite 
element methods to calculate internal elastic forces. The proposed methodology not 
only models the physical dynamics of soft object deformation, but it also simplifies 
the complex deformation problem with simple setting CNN templates. 
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