8. UEML: a Further Step

Giuseppe Berio
Dipartimento di Informatica Universita di Torino berio@di.unito.it

This paper presents a further step towards a UEML (Unified Enterprise
Modelling Language) starting from the result of the UEML project, funded by
the European Commission under the IST-V" Framework Programme of
Research. Specifically, the paper provides the basic theories and thinking
underlying the project work as well as current improvements based on a data-
integration perspective.

1. INTRODUCTION

Many problems raising in Enterprise Integration (El) and Enterprise Engineering
(EE) are certainly due to the fact that there are many Enterprise Modelling
Languages (EMLs) and Enterprise Modelling Tools (EMTs), spanning from
industrial analysis, management analysis, strategic planning, human management,
budget and so on. Probably, the reasons are: because there is no one language
covering all the aspects required for modelling and on the other hand, each EMT
with the specific language is able to perform specific analysis or have more or less
direct link to enterprise software tools (i.e. enterprise software applications). The
major need facing to this situation is probably an environment in which both
enterprise models and enterprise tools can be integrated. In this way, integrated
models have more chance to be used and maintained in a consistent ways. However,
while integration of tools is usually perceived as really useful in practice and
feasible, integration of models” is the major challenge because focusing on the
integration of the content of models.

The idea of a UEML (Unified Enterprise Modelling Language) for improving
the situation described above was born in the context of ICEIMT initiatives (Petit et
al., 1997), further advocated and explored in recent papers, e.g. (Vernadat, 2002).
However, the first project on such a UEML started in 2002, funded by the European
Commission under the IST-V* Framework Programme of Research.

This paper reformulates the approach undertaken in the UEML project in term of
data-integration (Calvanese, et al., 2002, 2003) In fact, results of the UEML project
are really close to some data-integration approaches. Then, the paper presents a
possible further step towards the introduction of Enterprise Reference Architectures
(ERAs) (ISO 1998, IFAC-IFIP Task Force, 1999). The interest of ERAs is to
represent a coherent set of distinct modelling purposes for the same language (such

%5 In this paper integration of models comprises the exchange of models between distinct
EMTs.

94 Berio: UEML: a further step

as a UEML). With ERAs, it is therefore possible to differentiate between the
language and its various purposes.

The paper is organised as follow. Section 2 describes problems to be approached
by a UEML. Section 3 summarises the foundations of a UEML as defined in the
UEML project: the section especially describes the links between modelling
languages and databases. Section 4 provides an overview about data-integration
approaches; it also describes some simple examples. Section 5 describes how the
approach undertaken in the UEML project can be reformulated in term of data-
integration. Section 6 describes how data-integration approaches allow to easily
introduce ERAs with a UEML. Finally, section 7 summarises the contributions of
this paper.

2. UEML: PROBLEMS

The state of the art (Petit et al., 2002b) issued from the UEML project reveals that
distinct tools and languages are required because they can be used for achieving,
probably in the best way, specific objectives (i.e. UEML should not substitute
existing languages: though, UEML should be focused on model integration);

o most of the languages for enterprise modelling are not formalised in their
semantics (i.e. the semantics is not “mathematically” described) but they are in
their syntax i.e. it is known what is a model and what is not a model but it is less
known if the model is meaningful or not;

o this lack of semantics is managed by a correct understanding and usage of
modelling methodologies (methods) which allows to make right models;

e some semantics is added to models under specific purposes (for instance,
simulation of models) but this semantics is not explicitly stated (e.g. it is part of
simulation tools);

e it is very difficult and probably impossible to provide one formal semantics
which is good for every purpose;

o enterprise models are intended for a broad usage even by humans; models can be
used for teaching how the work should be, what an enterprise is, how it evolves,
why it evolves, how it can be improved and so on.

As a consequence, the first problem to be approached by a UEML is that models
made in languages with no semantics or an informal semantics or hidden semantics,
are more or less free of interpretation. The second problem is that, having some
Jformal semantics for languages and models is not enough. In fact, two distinct
models with the same mathematical semantics (i.e. formal) may be partially
equivalent in term of the real world phenomena they represent. A practical test for
understanding this problem is a process with just three activities: mathematically, it
may mean that there are three activities in sequence. However, two employees
looking to this process may interpret it in distinct ways, just because the names of
the activities suggest that the right interpretation is not a sequence but it is a
sequence. of requests that may be not fulfilled. There, where is the semantics
(Ushlod, 2003)? Part of the semantics is likely to be in the names of the activities
which can only be interpreted by the employees (because of their knowledge).
Therefore, given an enterprise model, its context of interpretation, mainly
distinguished in machines and humans, still remains an important aspect.

ICEIMT 04 95

Researches about onfologies (Gruber, 1993, Guarino (Ed.), 1998) try to take into
account the context of interpretation of a model both for humans and machines. In
fact, this is part of the following definition: “an ontfology is a specification of a
conceptualisation shared by a community”. Much of the power of ontologies is in
the fact every ontology specification should be “shared by a community”. However,
what does “sharing by a community” mean? What is a “community” and how is it
organised? Interesting examples come from the Jaws genesis. You have who defines
the laws, you have structures able to interpret the laws in the context, at different
levels, in a continuous cycle: however, contradictions are possible and acceptable.
Therefore, generally speaking, full sharing by a community of humans seems to be
rather difficult to be achieved. However, we may constrain as much as possible the
conceptual domains and try to achieve full sharing for a very limited number of
concepts. Nevertheless, it is not clear if the complexity is in the number of concepts
or is in the inherent complexity of the concepts (Corrrea da Silva, et al.).

Table 1: Analogies between modelling languages and databases

Database Modelling Language Samples of Model, Model
Glossary Glossary artefacts and Meta-model
Data (instances) | Model artefacts “Mount”, “Employee”, “Robin”
Database (a set of | Model (a set of related model {“Mount”, “Dismount”,
related instances) | artefacts) “Mechanical Part”, “Employee”,
Models (a set of models) “Robin”, “Edgar”}
Schema Meta-model (representing the way | Activity, ObjectClass, Role,
for providing an abstract syntax of | Object
a language)
Integrated Integrated meta-model Activity, ObjectClass, Role,
schema Object

The UEML project team has performed a study concerning possible solutions to the
problems mentioned above. On one hand, this study especially recognises that the
interpretation of an enterprise model is provided by its context of interpretation
(machines or humans). Whenever there are various contexts of interpretation and
various models, an integrated enterprise model (better defined in the remainder) is a
way to guarantee a consistent usage of distinct models within distinct contexts. To
make integrated enterprise models, a UEML is a prerequisite. On the other hand, the
study recognises the fact that extensive formalisations of semantics of a UEML is
probably not a key point towards effective solutions to model integration. Some of
the reasons are technical (Berio, Petit, 2003). In fact, if it is needed to formally check
a property, the techniques for checking this property are really various and based on
distinct formalisations (because incompleteness of some formalisations or
complexity of the checking technique). Thus, while formalisations are needed for
proving if an integrated model makes sense (i.e. no contradiction occurs), satisfies
some properties, and they might also be useful for driving the model integration,
they do not allow to infer how model integration should be performed and what an
integrated model should be.

96 Berio: UEML: a further step

3. UEML: FOUNDATIONS

Table 1 states some analogies between databases and modelling languages. These
analogies suggest that within the database area, database integration, database
architectures and schema integration techniques, have already approached the two
problems that should also be approached by a UEML.

These analogies can be stated because a syntax of a EML has not meaning per
se: its meaning is given elsewhere (i.e. by the context of interpretation). As data, a
syntax of a EML is interpreted by users or software components in various ways:
some of these ways are correct, some ones are not; some ones are mutually
consistent, some ones are contradictory. The main difference between databases and
languages is probably that databases have a narrow scope than languages.

4. DATA-INTEGRATION

The objective of this section is not to present data-integration per se: though, this
section describes some important aspects which are required for understanding the
contributions of this paper to the UEML development.

Data-integration (Calvanese, et al., 2002, 2003) provides the theoretical base for
database integration. Database integration is much more than the well known
classical schema integration because it directly works on data: in fact, schema-
integration and data-integration may refer to distinct phases of the lifecycle,
respectively design and implementation. Within data-integration, a query result is
based on data currently stored in several databases. Data-integration is very
relevant whenever these databases are highly autonomous both at schema and data
levels. There are four approaches to data-integration:

GAV (global as view),

LAV (local as view),

GLAYV (generalisation of GAV and LAV),
P2P (peer to peer).

Apart the P2P approach, the other ones need an explicit integrated schema (i.e.
schema integration is a prerequisite to data-integration).The LAV and GLAV
approaches explicitly acknowledge that it is not possible to infegrate distinct
databases but these distinct databases (qualified as local) can be understood as views
on a global database (and also vice-versa in the GLAV approach). In other words,
they do not provide effective ways for directly making one integrated database, i.e.
a database which represents some equivalence of data stored in the various
databases (as we will see in the remainder). Therefore, Table 1 can be completed by
the following analogy:

Database Glossary Modelling Language Glossary
Integrated database Integrated model

being an integrated model defined as a model where two distinct model artefacts
should never be equivalent (in term of the real world phenomena they represent).

ICEIMT 04 97

Because of their relevance to the UEML, two important aspects concerning data-
integration need to be carefully analysed:

o differences with schema integration,

e mappings.

Both aspects are discussed using some simple examples which are also useful in
other sections of the paper.

Let suppose to have three relational schema (two qualified as local and one
qualified as integrated) containing respectively three tables (T1, T2, T3), and three
databases (two qualified as local and one qualified as global) (Figure 1). In the
integrated schema, we have deliberately added the column Database to clearly show
differences with schema integration.

Following the LAV approach, it is possible to represent mappings between one
database and another one, by using any available query language and schema
information. In the example of Figure 1 below, mappings may be as follows:

Select(T2(OrderN, Supplier Name) where database=1) = T1(OrderCode, Supplier);
Select(T2(OrderN, Supplier Name) where database=2) = T3(Order, Supplier ID).

Integrated
schema

Global

Database l:

T1

de pplie ame Datab
IBM 1
IBM

ol O

local schema

Order code Supplier Order Supplier ID

local databases

e >

Figure 1: Example of data-integration

]

In general, the LAV approach allows:

e given one global database, fo derive the local databases; i.e. mappings can be
used as kind of export mechanism;

o given the local databases fo partially derive a global database; i.e. mappings can
be used as kind of import mechanism.

In the example of Figure 1, for instance, the export mechanism allows to derive data
in T1 by applying the related query (because of the equivalence “="). The import
mechanism is more interesting. In fact, the equivalence “=" in the mappings makes
possible to fully derive the global database from the local ones: however, from a
strictly theoretical point of view, this derived global database is only one of the
possible global databases (for instance, in the global database we may freely add
data unrelated with the two local databases i.e. with database<>1,2). In the general
case of LAV (and GLAV), the ‘=’ can be a set inclusion ‘2’.

98 Berio: UEML: a further step

In the GLAV approach both import and export mechanisms are partial. To illustrate
this point, the previous example is further extended to the GLAV approach by
introducing the couple of mappings below:

Select(T2(OrderN, Supplier Name) where database=1) =
SomeQueryl(T1(OrderCode, Supplier))

Select(T2(OrderN, Supplier Name) where database=2) =
SomeQuery2(/T3(Order, Supplier ID)).

where SomeQueryl and SomeQuery2 indicate some queries involving available
tables and colummns (for instance, SomeQueryl may be Select(T1(OrderCode,
Supplier) where Supplier=IBM))).

With these set of mappings, on one hand, we may freely add data to the global
database (as before) and, on the other hand, we can add data to the local databases
which do not satisfy both SomeQueryl and SomeQuery2 respectively (for instance,
orders of any supplier which is not IBM).

Now, the field Database has deliberately been added: this allows to manage
situations in which we do not know how much data in the local databases are related
(e.g. referring to the example in Figure 1, if the two orders represent the same order)
but we are able to integrate, at some extent, the schema. In this sense, the integrated
schema in Figure 1 might be “correct” but while “IBM is a supplier”, the meaning
of orders might not be the same: “order 1” in T1 could be “order to supplier”, “order
1” in T3 could be “order from supplier”. Which would be the meaning of the table
T2 in the integrated schema? T2 would be a generic relationship between order and
supplier with specific interpretation in specific contexts (i.e. local databases): thus,
the column Database takes into account these contexts of interpretation for the same
generic relationship. The previous examples show that while local schema have been
integrated, local databases remain distinct in the global database: if it is known the
Database 1 only contains “orders to supplier” and Database 2 only contains “orders
from supplier”, the global database is also an integrated database.

So far, the global database depicted in Figure 1 still distinguishes between the
two orders stored respectively in T1 and T3. It is possible that after some extensive
analysis, it is decided (by contexts of interpretation) that there is a final integrated
database in which these two orders have been compared and their equivalence has
finally been stated.

The equivalence of the two orders can be represented within the GLAV approach
by a couple of mappings involving an integrated database (numbered as 3 on
Figure 2) in which equivalent data are never replicated:

Select(T2(OrderN, Supplier Name) where database=3) =

SomeQueryl(T1(OrderCode, Supplier));
Select(T2(OrderN, Supplier Name) where database=3) =

SomeQuery2(/T3(Order, Supplier ID)).

Therefore, the table T2 in the integrated schema is representing the same
relationship which exists in the two local schema.

ICEIMT 04 99

T2

Integrated Order N“—| Supplier N Database

database I: 1 IBM 3

T1 T3

Order code Supplier

1 IBM

Order Supplier ID

Figure 2: Example of integrated database

As it can be noted, the same integrated schema (i.e. T2) is able to “host” both (the
interesting data of) the local databases and integrated databases. Therefore, the
following GLAV mappings without the Database column generalises the situations
depicted in Figuresl and 2:
Select(T2(Order N, Supplier Name)) o SomeQueryl(T1(OrderCode, Supplier)),
Select(T2(Order N, Supplier Name)) 2 SomeQuery2(T3(Order, Supplier ID)).

The couple of mappings above which does not differentiate between situations
depicted in Figures 1 and 2, can be specialised if some information concerning the
contexts of interpretation suggest that some data(bases) should never be integrated
(as the case depicted in Figure 1). On the other hand, integrated databases cannot be
inferred from the two local databases by using this last couple of mappings:
additional external information is eventually required.

5. UEML AND DATA-INTEGRATION

The UEML project states that at least two main components should be developed for
a UEML:

e An integrated meta-model called UEML meta-model which should be able to
accommodate both models to be integrated and results of integration; however,
why and how to integrate models is provided elsewhere;

o A set of mappings which relates meta-models of EMLs (called originating meta-
models) to the UEML meta-model, and #races how meta-models of EMLs
contribute to the UEML meta-model.

o The UEML set of mappings is characterised by two facts:

o Mappings should be stable i.e. they should remain valid across specific
situations;

¢ Mappings should be standardised.

In the UEML project, three (originating) EMLs, IEM (Jochem and Mertins, 1999),
EEML (External, 2000) and GRAI/Actigrams (Doumeingts, et al, 1992,
Doumeingts, et al., 1998), have been selected for making a first version of a UEML
named UEML 1.0. An integrated meta-model has been defined by following some
steps (Berio et al., 2003) which are based on database schema integration
suggestions (Petit, 2002a). The key point is the usage of a scenario (i.e. a set of
models, analogous to databases in Table 1, in which it is possible to recognise
equivalent model artefacts belonging to the distinct models). Specifically, given two
models (part of the scenario) represented in two modelling languages, the first step

100 Berio: UEML: a further step

is to make meta-models (as UML class models (OMG, 2002b)) corresponding to the
abstract syntax of these modelling languages. Then, model artefacts are explicitly
related with the meta-model artefacts (e.g. it should be clear that the model artefact
“produce” is related to the meta-model artefact “Activity” because the former is
“instance” of the latter).

As explained in section 4, the data-integration approaches take into consideration
both schema integration (as a prerequisite) and mappings between databases.
Therefore, in (Berio et al., 2004) the steps for building the two components
mentioned above have been reformulated in term of data-integration by using the
P2P and GLAV approaches. The resulting rule for building an integrated meta-
model and a set of mappings is as follow:

Given two meta-models artefacts, C and K, belonging to two distinct EMLs
respectively, if there exist two predicates Queryl and Query2 (expressed, for
instance, in OCL (OMG 2002a) if meta-models are represented in UML) such that
Queryl(C) o> Query2(K) or Queryl(C) = Query2(K) are true according to the
scenario, then a meta-model artefact H is introduced in the UEML meta-model;

H satisfies the two GLAV mappings

Select(H) 2 Queryl(C);

Select(H) o Query2(K).
The next example (Figure 3 below) is very similar to the previous ones on databases.
It is however based on “names” often found in EMLs and the rule provided above (it
should be noted that, even possible, we do not add any identifier that may be used to
identify distinct model artefacts inside each model).

_Activity

Activity Input Integrated

name meta-model

produce this part 1

Models artefacts | |produce this part 2

Meta-model artefact
Action :l 4> Process

Action name | Input

produce this part ||

Process name | Input

[| produce this part

< Model artefacts P

Figure 3: Example of integrated meta-model
A set of GLAV mappings is:

Select(Activity(Activity Name, Input)) D
SomeQueryl(Action(Action Name, Input));
Select(Activity(Activity Name, Input)) 2
SomeQuery2(Process(Process Name, Input))

ICEIMT 04 101

6. UEML AND ENTERPRISE REFERENCE
ARCHITECTURES

The column Model on Figure 3 is a generic way to maintain the context of
interpretation of models as in previous examples with the Database column. As
explained in section 4, any information about the context of interpretation is
important to differentiate data in a set of databases (then to differentiate model
artefacts in a set of models). A possible generalisation simply states that meta-model
artefacts should be related to an Enterprise Reference Architecture. In fact, ERAs
concepts can be used for representing information about contexts of interpretation.
For instance, concepts as lifecycle (phases), life history, enterprise entity type and
modelling framework (with views) within the GERA nomenclature (IFAC-IFIP Task
Force, 1999), are really useful for distinguishing if a generic meta-model artefact
such as Activity is referring to processes built in the requirement phase. Other
concepts, such as domains, layers, usage context, may also be introduced.

A UEML meta-model and an ERA can be related by using some kind of
projection of meta-model artefacts (e.g. Activity) onto the ERA (instead of using
additional columns as in the examples about databases in section 4). For instance,
we can project Activity that we are assuming part of the UEML meta-model, to
phases such as requirement or design. These projections of Activity state that one
meta-model artefact (i.e. Activity) is used according to the specifically related ERA
concepts.

These projections essentially make copies of the specified UEML meta-models
artefact. This also means that one meta-model artefact can be projected several
times. The idea underlying copies is to make explicit as much as possible that the
same meta-model artefact (e.g. Activity) whenever used for distinct purposes (i.e.
distinct contexts of interpretation) also requires distinct model artefacts. For
instance, Activity whenever projected onto requirement and design phases, makes
two copies of Activity itself (possibly renamed) which should not share model
artefacts but they are the same in term of the original meta-model artefact.

Copies of a meta-model artefact can be used to define new mappings which
should be consistent with the previously stated (i.e. part of the set of GLAV
mappings associated to a UEML). New mappings are useful to represent specific
situations and they should represent explicit decisions on how to use languages (such
as a UEML) inside a given ERA. The consistency condition is:

If Queryl(C) o Query2(K) is in the UEML set of GLAV mappings and
Query3(H) o Query4(K) or Query3(H) = Query4(K) is the additional set of
mappings involving copies,
Then H=Projection(C;...) (i.e. H should be a copy of C)

102 Berio: UEML: a further step

The consistency condition is represented by the diagram below (Figure 4).

c > H
Queryl(C) = Query2(K) T tiery3(H) = Query4(K) or
« Query3(H) = Query4(K)

Figure 4: Consistency condition on set of mappings involving copies

referring to the GLAV mappings corresponding to the example shown in Figure 3, if
the following projections are defined (represented as arrows and boxes, still named
as Activity on Figure 5 below):

e Projection(Activity; Design, Process View) defining a copy of Activity which
is used in the design phase for modelling processes;

e Projection(Activity; Requirement) defining a copy of Activity which is used in
the requirement phase;

o itisnot allowed to map Action onto any copy of Object.

Copies can explicitly be related by using new relationships: in fact, the GLAV
approach allows to define new relationships in the integrated schema that do not
appear in the local databases and schema. These new relationships are really relevant
in case of modelling languages because they allow to sifuate models in specific
contexts of interpretation. For instance, if there are two languages, one for
representing (aspects of) processes and the other one for representing (aspects of)
services, a new relationship might be introduced between process and services with
the following meaning: “process delivers service”. These new relationships might
also be due to methodologies used with ERAs. This point is shared with the method
engineering discipline (Brinkkemper, et al., 1999).

Projection(Activity; Requir%:t) Requirement ERA
> (copy of)
Activity
Projection(Activity; Design, Prockss Vie Design
P>
(copy of)
Activity
UEML meta-model
Activity Process
Object Resource
Product

Figure 5: Example of UEML with ERA

ICEIMT 04 103

7. CONCLUSIONS

This paper discusses how the perspective of data-integration can be used for
improving the approach undertaken in the UEML project to a UEML development.
The data integration perspective allows:

o To make clearer the distinction between integrated meta-model (analogous to
integrated schema) and integrated model (analogous to integrated database)
(sections 3 and 4);

o To clarify the role of mappings between a UEML and other EMLs as
- mechanisms to trace how a UEML meta-model has been generated from

meta-models of other EMLs (which is often not traced in classical schema
integration) (see Section 5);
- mechanisms to help model integration (section 4);

e To provide a base for taking into account information provided by ERAs about
the contexts of interpretation of enterprise models (by re-using the mechanisms
of mappings); in this way, model integration can become safer because model
artefacts are much better differentiated (section 6).

Acknowledgement

The author would like to thank all the UEML IST-2001-34229 core members for
their scientific contribution to the work. This work is partially supported by the
Commission of the European Communities under the sixth framework programme
(INTEROP Network of Excellence, Contract N° 508011, <http://www.interop-
noe.org>).

8. REFERENCES

Berio, G. Anaya Fons, V. Ortiz Bas, A. (2004). Supporting Enterprise Integration
through (a) UEML. To appear in Proceedings of EMOI Workshop joint with
CaiSE04 — Riga — Latvia — June 2004.

Berio, G. Petit, M. (2003). Enterprise Modelling and the UML: (sometimes) a
conflict without a case. In Proc. of Concurrent Engineering Conference 03, July
26-30, Madeira Island, Portugal.

Berio, G. et al. (2003). D3.1: Definition of UEML — UEML project, IST-2001-
34229, www.ueml.org.

Brinkkemper, S. Saeki, M. and Harmsen, F. (1999). Meta-modelling based assebly
techniques for situational method engineering, Information Systems, Vol 24,
N.3, pp.209-228.

Calvanese, D. De Giacomo, G. Lenzerini, M. (2002). Description logics for
information integration. In Computational Logic: From Logic Programming into
the Future (In honour of Bob Kowalski), Lecture Notes in Computer Science.
SpringerVerlag

Calvanese, D. Damaggio, E. De Giacomo, G. Lenzerini, M. and Rosati, R. (2003).
Semantic data-integration in P2P systems. In Proc. of the Int. Workshop on
Databases, Information Systems and Peer-to-Peer Computing.

Corrrea da Silva, F. Vasconcelos, W. Robertson, D. Brilhante, V. de Melo, A.
Finger, M. Augusti, J.. On the insufficiency of Ontologies. Knowledge Based
Systems Journal.

104 Berio: UEML: a further step

Doumeingts, G. Vallespir, B. and Chen, D. (1998). Decision modelling GRAIT grid.
In, P. Bernus, K. Mertins, G. Schmidt (Eds.) Handbook on architecture for
Information Systems, Springer-Verlag.

Doumeingts, G. Vallespir, B. Zanettin, B. and Chen, D. (1992). GIM, GRAI
Integrated Methodology - A methodology for designing CIM systems, Version
1.0, Unnumbered report, LAP/GRAI, University of Bordeaux 1, France.

DoW (2002). Description of the Work — UEML project, IST-2001-34229,
www.ueml.org.

EXTERNAL (2000). Extended Enterprise Resources, Networks and Learning,
External project, IST- 1999-10091.

Gruber, T.R. (1993). A translation approach to portable ontologies. Knowledge
Acquisition, vol. 5, no. 2, 199-220.

Guarino, N. (Ed.) (1998). Formal Ontology in Information Systesm. IOS Press.
Amsterdam.

IFAC-IFIP Task Force (1999). GERAM: Generalised Enterprise Reference
Architecture and Methodology, Version 1.6.

ISO (1995). ODP-Open Distributed Processing. ISO/IEC 10746.

ISO (1998). ISO DIS 15 704 Requirements for Enterprise Reference Architectures
and Methodologies, ISO TC 184/SC5/WG1.

Jochem, R. (2002). Common representation through UEML — requirement and
approach. In proceedings of ICEIMT 2002 (Kosanke K., Jochem R., Nell J.,
Ortiz Bas A. (Eds.)),, April 24-26 Polytechnic Univeristy of Valencia, Valencia,
Spain, Kluwer. IFIP TC 5/WG5.12.

Jochem, R. Mertins, K. (1999). Quality-Oriented Design of Business Processes.
Kluwer, Boston.

OMG (2002a). OCL 2.0 specification, www.omg.org.

OMG (2002b). UML 1.5 specification, www.uml.org.

Petit, M. (2002a). Some methodological clues for defining a UEML. In Proc. of
ICEIMT 2002 (Kosanke K., Jochem R., Nell J., Ortiz Bas A. (Eds.)), April 24-26
Polytechnic University of Valencia, Valencia, Spain, Kluwer. IFIP TC
5/WGS.12.

Petit, M. et al. (2002b). D1.1: State of the Art in Enterprise Modelling, UEML-IST-
2001-34229, www.ueml.org.

Petit, M. Gossenaert, J. Gruninger, M. Nell, J.G. and Vernadat, F. (1997). Formal
Semantics of Enterprise Models. In K.Kosanke and J.G Nell. (Eds.), Enterprise
Engineering and Integration, Springer-Verlag.

Ushlod, M. (2003) Where are the semantics in the semantic web? Al Magazine
24(3).

Vernadat, F. (2002). UEML: Towards a unified enterprise modelling language,
International Journal of Production Research, 40 (17), pp. 4309-4321.

