

Web Teaching and Learning Programming
Environment Based on Plan Method and

Constructs

Alireza Ebrahimi, Ph.D.
 Management, Marketing, and Information Systems

School of Business – SUNY College at Old Westbury
Old Westbury, New York 11568 ebrahimia@oldwestbury.edu

WWW home page: http://www.drebrahimi.com

Abstract. Plan integrations and misconception of programming language
constructs have been two major errors of novice programmers. A good design
model can have a great impact on the effectiveness of these systems. A plan is
an abstraction that visually provides a solution to a problem or to a sub-
problem representing a problem from its macro level down to its micro level.
Any important concept is a plan and it is up to the educator and level of learner
to decide a particular plan. A plan can be visually represented by a dot, a
geometric shape or an image. The Web Visual Learning System (WVLS)
divides the process of learning and its enforcement into three selectable phases
known as plan observation, plan integration, and plan creation. WVLS
initially provides a library of sample problems (plans) working with all three
phases. A learner can observe the process of solving a problem, become
involved in a partial solution, or solve the problem entirely from beginning to
end. A mixture of learning strategies and techniques is incorporated in WVLS
to satisfy a wide range of learners. WVLS will identify and report the cause of
problems to the learner. A systematic approach to analysing a solution based
on plan relationships indicates whether a plan is missing, misplaced,
malformed, or has a misconception.

1 Web tools for a learning design

In the design of a learning system on the web, like any other web system, there are a
number of tools available. With the current technology, learning a web tool should
be as easy as learning word processing. A common available web tool could be
Microsoft Office FrontPage or even Microsoft Word when a document is saved as a

310 Alireza Ebrahimi

web page. Alternatively, a sophisticated learning system can be created using
Dreamweaver and Flash from Macromedia company. WebPages created with
FrontPage, Word, or any other web tool automatically generate HTML (Hyper Text
Markup Language) tags which are the backbone of every webpage [4]. To view a
webpage's HTML, one can right-click on the mouse to view the source. By viewing
a sample source, it is possible to figure out some of the styles and approaches in the
design of a learning system. While it is not necessary to learn HTML tags to build a
learning system, learning (memorizing) the 10 most important commands of HTML
makes up about 90 percent of all web page design [1].

By adding a little program, which is called a script, to HTML, it is possible to
make the learning system powerful and innovative. Two known script languages are
JavaScript and VBScript; most designers choose JavaScript over VBScript. While it
is not necessary to become a programmer, with a little knowledge of common built-
in script functions, one can make a better learning system. Many novice designers
become frustrated and overwhelmed with the current web tools and surrounding
technology. The same group has also enjoyed the learning and experience as a
result. While some stayed with their own design, others ask professional designers
to design the new learning system, with one difference that they were able to
delegate the instruction and build a customized web learning system. An important
lesson learned from the design a web learning system is to separate what is important
and what is less important. Designers should focus on the major issues rather than
getting involved in the jargon of instructions and details.

2 Problem, plan, visualization, and web

Breaking down a problem into smaller units, makes the problem easier to understand
and easier to solve. Therefore, a plan to solve a problem is set aside and sub-plans
are made for sub-problems. Once the plan is broken down into sub-plans, then each
sub-plan can be tackled separately. To build a learning system one needs to identify
the plans, explain the plans using a language that is easy to understand, and propose
a plan solution.

Visualization plays an important role in illustrating the plan and sub-plan and
their relationships. A plan is an abstraction that represents the solution to a problem,
such as the entire solution or the smallest component that is crucial to solving a sub-
problem. The plan abstraction applies information hiding so that the learner is not
overwhelmed with information that is not necessary at the moment. WVLS is an
environment that provides an incremental way of learning and problem solving,
rather than requiring the problem to be solved all at once. WVLS assures the
learner's capability and assesses the learner’s problem at an early stage and grows as
the learner grows.

Another example of an interactive web-based system is Environment for
Learning to Program (ELP), which helps teaching programming to the novice by not
having the need for a program development environment and installation of
programming language. Using ELP, students use template exercises through the web
to build their programming and problem solving skills [6].

Web teaching and learning programming environment based on plan method 311

2.1 Phase 1 of learning: Plan observation

By observing how a problem is solved step by step, the learner will be able to repeat
the solution process over and over until it is understood. Plan observation enforces
the retention of the plan and enables the learner to relate it to other similar situations.
The WVLS plan observation phase is an automatic process that illustrates the steps
involved in a task, starting with the initial specifications of the problem to its final
solution. In the plan observation phase, the learner goes through the entire process
of problem solving such as plan decomposition and plan integration and can repeat
the process as many times as needed.

2.2 Phase 2 of learning: Plan integration

A problem’s solution consists of several sub-plans that must be integrated correctly
to form the final solution. After breaking down the plans, it is important for the
learner to understand the relationship between the plans such as how these plans are
put together and their spatial relationships. WVLS has four ways to integrate plans:
an appended plan, an interleaved plan, a branched plan, or an embedded plan. Plan
integration is a good test to ensure and examine the understanding of the solution of
the problem at an abstract level, rather than its detailed steps.

2.3 Phase 3 of learning: Plan creation

In order to solve a problem entirely, a learner must start from problem specification
and requirements to plan decomposition, plan integration, and finally testing the
correctness of the plan and its explanation. The learner is responsible for creating a
plan and demonstrating problem-solving skills. The problem could be one that
already exists in the WVLS library, or it could be a new problem. If the problem
exists in the system, there are three incremental learning scenarios: 1) full access 2)
limited access 3) denied access.

When a learner requests to create a new plan that is not part of the system library,
the entire WVLS will be at the service of the learner, including all phases. However,
the new plan may consist of several sub-plans that already exist in the system and are
shared by other plans. Shared sub-plans can be reused as they are or modified to suit
the purpose. In order to assist the learner, WVLS will monitor and profile the learner
as problem-solving steps are taking place. The system is intention based and will
collect clues and make suggestions along the way.

3 VPCL: A WVLS for novice programmers

VPCL (Visual Plan Construct Language) is a tool for teaching beginner and novice
programmers. Textual representation of programs and sub-programs (functions)
contributes to misconceptions of how sub-programs interact with each other. Visual
plan representation has resolved some of these problems. Plans are independent of

312 Alireza Ebrahimi

programming functions. It is emphasized that a function is a plan, but a plan is not
necessarily a function. Functions (sub-programs) have restraints on how they are
used and how they interact with each other. A plan does not have these restrictions.
Plans can either be dependent or independent of the programming language used.
One task of VPCL is focused in terms of plans and sub-plans structurally, to build
abstraction on each level and not overwhelm the learner. The idea of plan
programming has been used in different ways as early as the mid eighties [5]. A
novice programmer’s support environment using plans can be created using
hypertext to show the relationship between plans as well as breaking down the
program to the smallest piece possible [3].

The plan creation phase of VPCL deals with writing actual programming code.
In this phase, the user is given problem specifications and is required to develop all
the steps to arrive at a solution. To translate a problem into a written program,
several plans will be needed. These plans may exist and need to be modified or may
be created from scratch. After all necessary plans are created, the plans must be
integrated, and then the program is executed.

Several learning strategies and systematic ways of evaluating the learner's
problem solving skills are incorporated in VPCL. The effectiveness of VPCL as a
learning and instructional tool has been shown by the result of empirical studies on
novice programmers [2].

4 Conclusion and future work

WVLS ensures the understanding of the subject matter by taking advantage of the
web and visualization and using three incremental phases of learning. Different
levels of abstraction are applied at each phase in order not to distract the learner from
reaching the main goal. WVLS promotes a standard way to communicate by
decomposing a plan, integrating plans, and investigating the cause of errors and
building a new plan. The WVLS visualization and standardization bridges the gap of
misconceptions. While WVLS has been tested on novice programmers, it is a
generic environment that can be applied to other problem-solving disciplines. Future
work on WVLS can be done to build an expert system in reporting errors, assisting
the learner, and profiling the learner more accurately.

References

1. A. Ebrahimi (2002) C++ Programming Easy Ways, American Press, Boston.

2. A. Ebrahimi (1992) VPCL: A Visual Language for Teaching and Learning Programming
(A Picture is Worth a Thousand Words). In Journal of Visual Languages and Computing
3, 299-317.

Web teaching and learning programming environment based on plan method 313

3. B. Liffick, R. Aiken (1996) A novice programmer's support environment. Proceedings of
the 1st conference on Integrating technology into computer science education, Volume
28, 24 Issue SI , 1-3.

4. J. Niederst (2001). Web Design in a Nutshell (2/E). Sebastopol, CA: O'Reilly &
Associates.

5. Soloway, E. (1984). A Cognitively-Based Methodology for Designing Languages /
Environments / Methodologies. Proceedings of the ACM Symposium on Practical
Software Development Environments.

6. N. Truong, P. Bancroft, P. Roe (2005). Learning to Program through the Web.
Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education ITiCSE '05.

