
A Brief History of Choosing First Programming
Languages

Leila Goosen

University of Pretoria, South Africa; lgoosen@gk.up.ac.za

Abstract: Choosing the best computer language for introducing students to
programming is often an emotional issue, leading to protracted debates for many
years. This paper aims to document how the development of programming
languages has influenced the educational processes of choosing an introductory
language since the early days of computing, by exploring some of the
“programming languages that have been selected over the last couple of decades
and the rational for those selections”. [1]

Keywords: History, Selection criteria, First programming language

1 Introduction

Choosing the best computer language for introducing students to programming is
often an emotional issue, leading to protracted debates over the years [2-6], e.g.

1976: “The selection of languages for use as pedagogical aids in the teaching of
computer science is still a big issue at most universities.” [7]

1979: “What is a good programming language for beginners?” [8]
1982: “With the diversity of high-level programming languages available, selecting the

“right” one for a computer science curriculum or course can be a befuddling
process.” [6]

1986: “Which computer languages should we be teaching our students - and why?” [9]
1989: “There is increasing discussion about the primary programming language used

for undergraduate courses in Computer Science.” [10]

So, why is it necessary to pay so much attention to which programming
language you start with? [11] The choice of an introductory programming
language “is probably the most significant of” the “factors that will shape the
competency of the next generation of computer users” [8]. Luker regards “the
language used for CS1 and CS2 … as a crucial factor in students’ subsequent
progress in the discipline” [10].

mailto:lgoosen@gk.up.ac.za

168 Leila Goosen

2 First Choices

As high-level programming languages became established, faculties, for the first
time, needed to start making decisions on which language(s) to implement for
teaching [6]: According to [1], they needed to decide whether to move to one of
the higher level programming languages, or to continue teaching assembly
language programming in introductory courses. Around the mid 1970s, [12] was
convinced that the most currently accepted solution” in “to use an existing high-
level language”.

Another part of the “quarrel” focused around whether a “pedagogical” or a
“real” language should be used [12], i.e. languages specifically written for
teaching programming, as opposed to languages used in industry. “Is it necessary
to teach the languages which are most widely used outside the classroom in order
to keep the curriculum relevant to the real world?” [7] According to [13],
choosing languages “based on their current popularity or the likelihood of their
future popularity … has a number of practical benefits.” If students, for example,
“are constantly reading advertisements for COBOL programmers” [7], they could
be more “motivated to study a language that they have heard of” [13]. Similarly,
students’ interest stems from the fact that they know that a certain language is in
demand from “employers, who request that people master the language they will
use” [12] in their workplace.

Last, but not the least, [13] also mentions that “a good selection of books and
language implementations will be available for a popular language.” This brings
up text availability as one of the pedagogical factors in support of the process of
teaching programming [7]: Especially in introductory courses, students as novice
programmers can greatly benefit from the security provided by a readable text.
However, if only a small number of texts are available to support a specific
language, this may result in the inability to find a suitable text to support a course
in that language.

In an effort to facilitate the decision making process [7], in 1976, produced
one of the first examples where they applied a set of criteria “to a list of potential
languages”. In that paper, they also discuss issues with regard to resource
constraints, and the influence that cost efficiency could have.

As the “(o)ldest general language in use and the first to become widely used”
[14], FORTRAN was most often selected to open “the doors of computing to large
numbers of scientists”, “mathematicians and engineers who made up computer
science faculties at the time” [1]. Compared to other languages of that era,
COBOL has a “unique English-like style” [14]. As it was widely used in business
data processing, especially departments offering computing courses as part of
Business Information Systems programs selected this option. BASIC is “(t)he
simplest and one of the most widely used languages” [14]. Because it usually was
the only programming language available on personal computers [8], it often
became the first language of students at various educational levels.

Giangrande points out that at that stage “there was no named methodology
associated with assembly languages, FORTRAN, or COBOL” [1]. Smith

A Brief History of Choosing First Programming Languages 169

criticizes the use of specifically FORTRAN in an introductory course for the
effect it had on future programming [7]. As weaknesses in programming
languages yet again became a problem, a new methodology, called structured
programming, emerged. The support of control structures, like while loops, if-
then-else statements, etc. for good programming techniques, is something that was
lacking in the older languages, e.g. FORTRAN and COBOL [7]. This ensured that
these were superseded by a variety of newer programming languages that
“incorporated constructs that supported structured programming.” [1]

3 The Rise and Fall of Pascal

Until recently (mid 1990s), Pascal used to be the most widely adopted
programming language [11] “for introductory computer science courses” [1].
According to [12], one of the principal advantages of Pascal is that it is a simple,
small and concise language” specifically designed for teaching structured
programming. These “qualities make it usable in a great variety of problems (and
not only in numerical calculations), with fair efficiency, and without frustrating
restrictions.” In 1975, the creator of Pascal himself [15] described the some of the
merits of the language “with respect to ease of programming, … efficient
implementability” by means of the compiler and interpreter used for the so-called
p-code, and easy, practical portability “to a large number of computer systems”
[1]. The fact that Pascal and most of the development environments “came with a
lot of support and documentation” [11] also made it popular among students.

“During the 1980s, several important languages were created and several
languages of the 1970s became popular.” [13]. Early in the 1980s [6] mentions
some of the comparison criteria for languages such as FORTRAN, COBOL and
Pascal. Languages should support “good software engineering practices”, as well
as showing the existence of control structures to support a preferred programming
methodology, adequate diagnostic aids and other programming tools and literature
and program libraries for the language.

“(T)he availability of adequate local and vendor support for the
implementation of the language” [6] and direct costs with regard to items such as
“license fees, and software maintenance contracts” should also be included in
calculations.

Although Pascal, BASIC, FORTRAN and COBOL were all abstractions of
assembly language [4], that provided big improvements over assembly language,
their primary abstraction still required one to think in terms of the structure of the
computer, rather than the structure of the problem one was trying to solve. The
effort required to perform this mapping, and the fact that it was extrinsic to the
programming language, produced programs that were difficult to write and
expensive to maintain.

According to [13] “(t)he most striking trend in the field of programming
languages” in the 1980s had “been the rise of paradigms, of which the object-
oriented paradigm is the best-known.” As “support for the creation of objects as

170 Leila Goosen

instances of a class,” [1] function overloading, inheritance and polymorphism
became more common, Pascal’s popularity gradually began declining - an
increasing number of institutions were choosing to introduce undergraduates to
programming by teaching object oriented languages, such as C/C++ and Java.

References

1. Giangrande, E.: CS1 programming language options. Journal of Computing Sciences in
Colleges. Vol. 22, pp. 153-160 (2007).

2. Ali, A.I., Kohun, F.: Suggested Topics for an IS Introductory Course in Java. In: Proceedings
of the Informing Science and Information Technology Education Joint Conference (2005),
pp. 33-49, Available via http://pro-ceedings.informingscience.org/InSITE2005/I19f28Ali.pdf.
Accessed 25 Apr 2007.

3. Duke, R., Salzman, E., Burmeister, J., Poon, J., Murray, L.: Teaching programming to
beginners - choosing the language is just the first step. In: Proceedings of the Australasian
Conference on Computing Education. pp.79-86. ACM Press, New York (2000).

4. Goosen, L.: Criteria and guidelines for the selection and implementation of a first
programming language in high schools PhD thesis, North-West University (Potchefstroom
Campus) (2004); http:// www.puk.ac.za/biblioteek/proefskrifte/2004/goosen_l.pdf

5. Mannila, L., de Raadt, M.: An objective comparison of languages for teaching introductory
programming. In: Proceedings of the 6th Baltic Sea conference on Computing education
research. pp.32-37. ACM Press, New York (2006).

6. Tharp, A.L.: Selecting the “right” programming language. In: Proceedings of the thirteenth
SIGCSE Technical Symposium on Computer Science Education SIGCSE ‘82. pp. 151-155.
ACM Press, New York (1982).

7. Smith, C., Rickman, J.: Selecting languages for pedagogical tools in the computer science
curriculum. In: Proceedings of the sixth SIGCSE Technical Symposium on Computer
Science Education SIGCSE ‘76. pp.38-47. ACM Press, New York (1976).

8. Wexelblat, R.L.: First programming language: Consequences (Panel Discussion). In:
Proceedings of the 1979 annual conference ACM ‘79. p.259. ACM Press, New York (1979).

9. Baron, N.S.: The future of computer languages: implications for education. In: Proceedings
of the seventeenth SIGCSE Technical Symposium on Computer Science Education SIGCSE
‘86. pp. 44-49. ACM Press, New York (1986).

10. Luker, P.A.: Never mind the language, what about the paradigm? In: Proceedings of the
twentieth SIGCSE Technical Symposium on Computer Science Education SIGCSE ‘89.
pp.252-256. ACM Press, New York (1989).

11. Gupta, D.: What is a good first programming language? Crossroads. Vol. 10, p. 7 (2004).
12. Lecarme, O.: Structured programming, programming teaching and the language Pascal. ACM

SIGCSE Bulletin. Vol. 6, pp. 9-15 (1974).
13. King, K.N.: The evolution of the programming languages course. In: Proceedings of the

twenty-third SIGCSE technical symposium on Computer science education SIGCSE ‘92. pp.
213-219. ACM Press, New York (1992).

14. Bergin, T.J.: A history of the history of programming languages. Communications of the
ACM. Vol. 50, pp. 69-74 (2007).

15. Wirth, N.: An assessment of the programming language PASCAL. In: Proceedings of the
international conference on Reliable software. pp. 23-30. ACM Press, New York (1975).

http://pro-ceedings.informingscience.org/InSITE2005/I19f28Ali.pdf.
http://www.puk.ac.za/biblioteek/proefskrifte/2004/goosen_l.pdf

