Evolving Forms of Visualisation for Presenting and Viewing Data

Don Passey

Department of Educational Research, Lancaster University, UK

- Abstract: Teachers have been 'visualising' ideas or information that emerge from data for a long time. Mark books have provided teachers with 'visual', albeit normally numerical, records of pupil attainment and achievement, which they have used to generate views about progress, trends, or the identification of appropriate learning support, for example. The advent of information and communication technologies (ICT) has brought potential to provide perspectives from data in more visual forms; these visual forms would previously have taken a long time to generate, and would have been unlikely to have been dynamic (that is, updated with regularly changing background data, to offer up-to-date pictures). What differences have been made as a result of this potential? Has it meant that 'visualisation' of forms of presentation have changed, that forms of analyses have been introduced, that reliability and robustness have been more focused on, or that different types of needs have arisen? This paper will explore evolving visualisations of curriculum data, and will conclude that different forms of visualisation are being introduced, but do not necessarily make it easier for the teacher to identify necessary or precise detail (or to consider fundamental statistical questions or specific professional needs).
- Keywords: Visualisation of data; data management and visual forms; school management systems and presentation of data; viewing data

1. BACKGROUND

Visualisation of data is clearly an important aspect for those presented with the need to understand and use data (and this includes teachers). It is also clear that the transfer of presented data to information is likely to be supported through forms of visualisation. Indeed, Tufte (1990) in his classic book entitled 'Envisioning information' explores the many ways in which visualisation can support access to and enhance the meaning of data. Teachers are being encouraged to use visualisation of data, both for subject teaching, and for curriculum management purposes. From a research perspective, the literature concerned with visualising data to support subject teaching is more developed than is the literature concerned with visualising data for curriculum management purposes. The Smart Centre in Durham University (2007) is, for example, focusing on projects for "envisioning data and reasoning from evidence"; these to date have focused on subject teaching. The Australian Bureau of Statistics (2007) offers a useful review of the literature concerned with data visualisation to support management practices. However, teacher uses for curriculum and classroom management purposes are not a focus of this review. This paper offers an introductory foray into the field, by exploring forms of visualisation for management purposes that have been, and are becoming, available to teachers.

2. INTRODUCTION

For the classroom teacher, data are used fundamentally to consider pupil progress and identification of learning support or teaching approach needs. Although teachers have used mark books to record numerical features for a long time, often to give them ideas of how to judge or assess pupil progress and performance, it does not necessarily follow that numerical forms of data about other aspects of curriculum need (such as the estimation of likely future outcomes, or the assessment of appropriate targets and challenge) are as easy for teachers to view or that they are used in particularly useful or analytical ways. As the government department in England said in a document offering advice about data management to secondary schools in 2002:

"... teachers can often be daunted when presented with vast spreadsheets containing columns of data. A data-rich school only becomes information-rich when that data is systematically collected and passed to staff in easily digestible forms. A school that manages data well has systems that allow key aspects of student performance to be easily identified - and staff with the training and time to draw appropriate conclusions from the data available to them. Prior attainment data and effective monitoring are used to identify strengths and weaknesses, and set challenging, but attainable, targets." (DfES, 2002, p.3)

This document suggested that presentation is important, in that information arising from data needs to be easily identifiable, so that strengths and weaknesses, challenges and targets, can be considered and set. It is clear that teachers, when using mark books, have often been able to identify trends with regard to performance and attainment. However, data relating to estimated likely outcomes (future possible attainments) based on prior attainment, or data relating to added value (gains arising from educational experiences and calculated over particular periods of time) have not been accessible to teachers for the same long periods of time. The identification of trends or even the identification of comparative evidence from these forms of data has not been established in long-term practice. of data in schools, they concluded that:

Indeed, there is little evidence to indicate that teachers currently being qualified are being given deep or insightful experiences in using data for predictive or indicative purposes, to support or inform their trial or future practice. Teachers do not necessarily have training experiences that offer them attributes to easily 'visualise' key features of data. Indeed, some teachers admit that they do not understand the basis on which data is often presented. In the Kirkup, Sizmar, Sturman and Lewis (2005) report on uses

"The main challenges to the effective use of data for primary schools were reported to be: lack of time, particularly time to update and analyse the data; difficulties in applying data to classroom situations; limitations of data, i.e. that the data collected/recorded was too narrow/academic or did not accommodate individual needs; ICT-related issues, e.g. insufficient resources or restricted access. Challenges to the effective use of data for secondary schools were similar to those experienced by primary schools. However, having sufficient trust in the data was also of concern to secondary schools (some respondents believed either that it was unreliable or arrived too late to be of use). Special schools reported two key challenges to the effective use of data: data systems that do not accommodate the complex needs of individual pupils; insufficient comparable data (year-on-year or with similar schools)." (Kirkup et al., 2005, p.4-5)

This report did not highlight issues of 'visualisation' or the potential of forms of visualisation in addressing some of the issues raised within the study (as had the study for the DfES by Passey, 2002), but it did raise issues concerned with knowing about underlying fundamental statistical practices and processes: reliability; validity; robustness; and sampling dynamics. When concerns about visualisation by teachers are considered, there has been a distinct lack of studies into this aspect of the field. Neither the importance of visualisation, nor the potential of visualisation have been studied in any great depth (although it is true to say that the importance of background statistical processing has been considered and has been reported much more widely). At the same time, however, it is clear that ICT-based school management information systems (MISs) have increasingly been adopted and used by schools, and that a part of that adoption has been the increasing power brought to users by ranges of forms of visualisation.

Visscher (2002), in discussing a framework for studying school performance feedback systems, stated that there were likely to be differences in features across different school performance feedback systems. The features that he identified that could be different in different cases were concerned with extents of: information validity; information reliability; how up-to-date the information is; data relevance; indicators of relative and absolute school performance; trends, relationships and differences over time; standard and tailored information; presentation in accessible and appealing forms; support in using data correctly; time and effort requirements; complexity and clarity; and user support in solving problems. It is clear that these features relate not only to the concerns raised within the DfES report (2002) and issues raised in the Kirkup et al. report (2005), but that they also refer to aspects concerned with visualisation and the implications of making data accessible through visual formats. The features identified by Visscher (2002) will be used as a categorisation for discussion of the development of forms of visualisation within school MISs in England.

3. AN EVOLUTIONARY OVERVIEW

As the Visscher list of features indicate, there is a need to consider both the importance of visualisation in terms of presentational ease and access, and the importance of being able to 'see' that validity, reliability, and relevance are accounted for and considered. However, ease of presentation might mean that some important points remain hidden and are lost to view. It is clear that ease of presentation in itself is not a simple substitute for knowing about the validity of analytical technique when it comes to the need to identify key points for potential action. As Gray (2002) says:

"Judging schools' performance in 'raw' terms may be seen as inappropriate by researchers. Nonetheless, few schools which find themselves in the top half of any resulting 'league tables' will feel threatened by their use, even whilst acknowledging that they do not in reality give an accurate picture of their performance. They may well have learnt to interpret the evidence to their advantage, whatever the actual position. A well-conducted value-added analysis will challenge at least some of these schools, offering little or no comfort." (Gray, 2002, p.149)

This view indicates some concerns about the different ways of indicating and reporting school performance. However, it is just as clear that important points concerned at the pupil level, with pupil performance and challenge, can be also be missed if presentational features are viewed without sufficient consideration being given to analytical background. As Fitz-Gibbon (2002) says:

"Indicator systems may be used in very damaging fashions. By publishing a small number of indicators, attention is focused just on those indicators, and efforts are often directed not at real change but at getting the indicator in the right direction. Thus, the malign effect of the indicator used in England which schools' examination performances were reported in terms of the percentage of pupils achieving Grade C and above. This led to widespread concentration on students likely get a D to push them over the borderline." (Fitz-Gibbon, 2002, p.36)

Visualisation of numerical data can clearly lead to interpretation at a superficial (or selective) level. As Kirkup et al. (2005) suggested, limitations arise not only at the level of ease of presentation, but also at the level of implementation. If visualisation is leading to superficial or selective analysis, and subsequently superficial implementation, then data are clearly not being supportive at an informative level. In the same report, the authors

indicate a real potential tension with developments of systems that offer increasing detail, but where the level of reliability, validity and relevance at an individual, group, class, or school level is not made clear to them by the system and visualisation itself:

"Some of the needs of special schools are identical to those of mainstream schools; they need systems that are simple to use and allow the easy input and interpretation of data. However, above all they need systems that allow a much finer level of detailed information to be added and that allow progress to be measured in extremely small steps and that accept and recognise that such progress may not be smooth nor linear." (Kirkup et al, 2005, p.81)

Studies to date, therefore, suggest that there are fundamental questions to ask from a visualisation viewpoint (following the features offered by Visscher). Does visualisation indicate anything about information validity or reliability? Does visualisation indicate anything about how up-to-date the information is? Is anything shown regarding data relevance? Are there indicators of relative and absolute school performance? Does visualisation show trends, relationships and differences over time? Does it present standard and tailored information? Is presentation offered in accessible and appealing forms? Is support offered in using data correctly? Are time and effort requirements considered? How are issues of complexity and clarity addressed? How is user support in solving problems addressed?

4. CONSIDERING SOME INDICATORS OF EVOLUTION OF DATA VISUALISATION

Different visual forms were used in the DfES report (2002), which offered advice to schools on uses of curriculum data. In Table 1 the visual items used have been grouped according to form and type (as shown in the second column).

Purpose of visual items	Graphical or tabular form of visual item	Page reference in
	visual tem	document
Pupil estimated likely outcomes based on end of Key Stage prior attainment shown as a calculated value added line	Graphical form, showing a single line	14
Pupil estimated likely outcomes based on end of Key Stage prior attainment shown as a calculated value added line, with an additional challenge line to consider target setting	Graphical form, showing an estimation line and an additional challenge line in another colour	14
Comparison of school and national baseline data by attainment level for English and mathematics	Graphical form, showing colour and height comparisons	9
Comparison of school and national baseline data by year for English	Graphical form, showing colour and height comparisons	9
Comparison of school with local authority	Graphical form, with columns	24

and national residuals by gender	for girls and boys shown in different colours	
Comparison of national probability of pupils attaining particular average scores at the end of a Key Stage, being able to attain at the end of the next Key Stage, with actual school results in mathematics	Graphical form, with columns for school actuals and national probabilities being in different colours	22
Comparison of national probability of pupils attaining different particular average scores at the end of a Key Stage, being able to attain at the end of the next Key Stage, with actual school results in mathematics	Graphical form, with columns for school actuals and national probabilities being in different colours	23
Comparison of achievement results by levels and grouped by ethnicity	Graphical form, with columns shown in a colour	29
National probability of pupils attaining particular average scores at the end of a Key Stage, being able to attain at the end of the next Key Stage	Graphical form, with columns shown in colour	22
Comparison of school with local authority and national residuals	Graphical form, with columns shown in colour	24
Comparison of pupil added value (prior and current plots) with national median and quartile lines	Graphical form, with median and quartile lines in different colours	20
Comparison of pupil added value (prior and current plots) with national median and quartile lines	Graphical form, with median and quartile lines in different colours, and pupils with different extents of added value highlighted in different colours	21
Comparison of pupil added value (prior and current plots) by gender with national median and quartile lines	Graphical form, with median and quartile lines in different colours	21
Plotting teacher predictions based on prior attainment against a previous year trend line	Graphical form, with pupils with low estimated added value being highlighted in a different colour	27
Transition matrix to indicate the expected percentages of pupils attaining levels at the end of one Key Stage compared to the previous Key Stage	Tabular form, highlighted to show typical expected positive progress	18
Table showing percentages of pupils needing to attain levels of examination results to meet inspection standards, according to school grouping and levels of free school meals	Tabular form, with a column highlighted in another colour	16
Comparison of predicted outcomes against prior results, with actual outcomes against prior results	Tabular form, with actual and predicted numbers shown in different colours	25
Pupil performance recorded by registration group, gender, ethnicity, end of Key Stage 2 results in science, end of year results in science, and calculated added value	Tabular form, with colour highlighting showing below and above expected achievement, and below and above added value measures	11
Pupil performance recorded by registration group, date of birth, gender, ethnicity, teacher assessments in geography, CAT results, and reading ages	Tabular form, with colour highlighting showing below and above expected achievement	11
Numbers of pupils estimated to attain at each level in English based on comparisons	Tabular form, with colour highlighting showing numbers	12

of results of the CATs verbal and non-	estimated to attain by only one	
verbal reasoning tests	rather than both test results	
Comparison of schools' results by	Tabular form, with extremes	27
achievement levels by gender	highlighted in another colour	
Table of subject residuals comparing	Tabular form, with one subject	23
school with local authority and national	residual highlighted in another	
figures	colour	
Differences between levels of attainment	Tabular form, with significant	36
given as probabilities, based on prior	differences from expectations	
results, on school grouping, and compared	highlighted	
to actual results		
Pupil performance recorded by registration	Tabular form, without	10
group, gender, ethnicity, end of Key Stage	highlighting	
2 and 3 results, reading ages, and		
standardised yearly tests		
Estimated probabilities of pupils attaining	Tabular form, without	16
levels of examination outcomes based on	highlighting	
prior accrued results		
Spreadsheet to calculate numbers of pupils	Tabular form, without	16
in a school estimated to attain levels of	highlighting	
examination outcomes based on prior		
accrued results		
Table of point scores to indicate how	Tabular form, without	18
'solid' a level a pupil has attained	highlighting	
Table to allow schools to plot their pupil	Tabular form, without	18
results to compare with a national	highlighting	
transition matrix to indicate the expected		
percentages of pupils attaining levels at the		
end of one Key Stage compared to the		
previous Key Stage		
Table showing measures of typical yearly	Tabular form, without	19
progress for different groups of pupils	highlighting	
Plotting pupils estimated to achieve subject	Tabular form, without	26
results at the end of a Key Stage by class	highlighting	
group		
Comparison of national achievement levels	Tabular form, without	27
by gender	highlighting	
Comparison of school results by	Tabular form, without	28
achievement levels by term of birth	highlighting	
Estimates of attainment given as	Tabular form, without	35
probabilities, based on prior results, and on	highlighting	
school grouping		

Table 1: Visual forms contained in an advisory document on data management (DfES, 2002)

It is clear from this list that different forms and types of visualisation were used (line graphs, column graphs, and tables). Different features were applied to these different forms of visualisation. The range of different features are identified, grouped and shown in Table 2.

Graphical or tabular form of visual item		
Line graphs		
Graphical form, showing a single line	1	
Graphical form, showing a single line with pupils with low estimated added value		
being highlighted in a different colour		
Graphical form, showing lines in different colours		
Graphical form, with median and quartile lines in different colours, and pupils with		
different extents of added value highlighted in different colours		
Column graphs		
Graphical form, with columns shown in a colour		
Graphical form, showing colour and column height comparisons		
Tables		
Tabular form, without highlighting		
Tabular form, with some figures, cells or columns highlighted		
Tabular form, with significant differences from expectations highlighted	1	

 Table 2: Visual forms and highlighting techniques shown within an advisory document (DfES, 2002)

Within the entire document, there were 33 items that were shown in visual form. Of these, 6 were in line graph form, 8 in column graph form, and 19 were in tabular form. Of the 7 line graphs, 6 used forms of colour highlighting to indicate particular features. Of the 8 column graphs, all used colour to highlight columns and, where appropriate, comparisons between columns. Of the 19 tables, 9 used some forms of highlighting (usually colouring of numbers or different forms of background colouring). However, only one of these items (from a research charity source) used colour to indicate statistically significant differences.

Some indication of the shift over time, in terms of visual forms used, can be gained by looking at the types of visual presentations highlighted by a school MIS provider, when showing features of its curriculum facilities to a teacher group. The visual forms shown in the presentation (Sherwood, 2008) are grouped using the same categories as those in Table 2 above, and the results are shown in Table 3.

Graphical or tabular form of visual item		
Line graphs		
Graphical form, showing a single line		
Graphical form, showing a single line with pupils with low estimated added value		
being highlighted in a different colour		
Graphical form, showing lines in different colours		
Graphical form, with median and quartile lines in different colours, and pupils with		
different extents of added value highlighted in different colours		
Graphical form, with median and quartile lines in different colours, and densities of		
pupils with different extents of added value highlighted by size		
Graphical form, in star form showing a coloured line		
Column graphs		
Graphical form, with columns shown in a colour		
Graphical form, showing colour and column height comparisons		
Tables		
Tabular form, without highlighting		
Tabular form, with some figures, cells or columns highlighted		
Tabular form, with significant differences from expectations highlighted		

Table 3: Visual forms and highlighting techniques shown within a presentation of a school MIS (Sherwood, 2008)

Within the entire presentation, there were 34 items that were shown in

visual form (about the same number as those within the advisory document). Of these, 7 were in line graph form, 6 in column graph form, and 21 were in tabular form (again, roughly the same balance within the advisory document). Of the 7 line graphs, all used forms of colour highlighting to indicate particular features. However, 6 of these line graphs used new forms of presentation (one was in the form of a star graph, and five were in the form of trend graphs that showed densities of pupil responses by the differential size of coloured dots). Of the 6 column graphs, all used colour to highlight columns and comparisons between columns. Of the 21 tables, 6 used some forms of highlighting, but none of these items used colour to indicate statistically significant differences (although it is true to say that the MIS did provide access to tools that offered these forms of visualisation). The visual forms in this presentation indicated that colour highlighting was used prominently in line and column graph forms, that new forms of line graphs had been deployed, but that statistically significant differences were not shown within these presentations.

Other sources (such as the Data Enabler Toolkit from the Specialist Schools and Academies Trust, 2008) also provide access to new forms of presentation. In this resource, Venn diagrams are now used to show numbers of pupils attaining numbers of pass grades in Key Stage 4 tests (GCSE grade levels A* to C), and elements of the diagram give an overview of numbers of students gaining one, two, three or more, four or more, or five or more passes. The Venn diagram enables teachers to easily see not only the numbers from across an entire year group who are attaining certain grades, but those subjects limiting the overall number of five or more passes, as well as a facility to show the name of each student when the cursor is placed over an individual 'dot'. Considerations of statistical validity and relevance are also included within resources in the Data Enabler Toolkit: value added measures are shown in terms of current attainment levels compared to previous school attainment levels (allowing comparisons across schools to be identified); and different forms of estimated likely outcomes allow a triangulation of comparison to be made.

Using evidence about visual forms from across these sources, what can be concluded about the development of features of visual forms? A review, focused through questions raised by Visscher features, is shown in Table 4.

Feature concerned	
with visualisation	Comments about features observed in sources
Does visualisation	Resources do tend to use a range of different techniques, and
indicate anything	many resources do indicate ways that different techniques might
about information	be used to display data for specific purposes (such as
	comparisons with previous pupil performance, or performance of
validity or	other schools). However, aspects concerned with validity and
reliability?	reliability relating to individual visual forms tend not to be
	and not appropriate to use a particular form and indeed evidence
	suggests that some schools select visual forms that represent
	positive pictures rather than pictures to determine action. The
	validity of using visualisations to compare school data with
	national data, for example, is not generally discussed or
	considered on the visualisation itself. However, there is a greater
	tendency now to group schools so that comparing like-for-like
	(contextual value added, for example) becomes more possible.
	Reliability is also being considered to greater extents infougn the
	the use of comparisons across different statistical techniques. For
	example, the Specialist Schools and Academies Trust (SSAT.
	2008) now provide the comparison of estimated likely outcomes
	using three different statistical techniques. Reliability is also
	considered more inherently in those visualisations where
	probabilities are indicated (in Fischer Family Trust visualisations,
	exemplified within the DfES report, 2002, for example), or where
	quartile lines are shown as well as median lines.
Does visualisation	becoming easier. It is possible through the school MIS that has
indicate anything	been reviewed for example to link to different data sources
about how up-to-date	(Sherwood, 2008), and to have access to visual presentations on
the information is?	up-to-date data (as MISs often update on at least a daily basis).
	Visual forms are usually date stamped, and this shows clearly the
	day that the data were presented.
Is anything shown	Relevance is an aspect that tends to be determined to an extent by
regarding data	government department requirements. Although schools do have
relevance?	some scope for selecting forms of presentation, there are some
	school inspectorate. The clear labelling of visual forms does tend
	to show how presentational forms relate to particular curriculum
	needs (for example, an estimated likely outcome, or a potential
	future target).
Are there indicators	These indicators have been built into a range of systems since at
of relative and	least 2002. It has been possible for schools to compare their
absolute school	performances relative to national attainment and to their previous
norformanaa?	attainment. More recently, the Fischer Family Trust (Treadaway, 2008) has made qualitable the facility for schools to work in
performance?	arouns or federations, to compare their data and performance, to
	share their strengths and support their weaknesses.
Does visualisation	These aspects have been accessible since at least 2002. Trends at
show trends,	pupil, class, subject, school, local authority and national level
relationships and	have been made available. Relationships and differences over
differences over	time have also been shown through a range of visual forms (see
time?	Table 1 above).
Does it present	Increasingly, school MISs allow tailored information to be
standard and tailored	presented as well as standard information (Sherwood, 2008). The
information?	Shiris who how allows schools to link to other sources of data

	(such as that from the government department, the Fischer Family
	Trust, and research test sources), and allows schools to enter their
	own data in fields that can then be analysed through a wide range
	of selected techniques.
Is presentation	Increasingly, visual forms are using features to highlight
offered in accessible	exceptions or differences, and are using techniques that indicate
offered in accessible	features such as density, strengths and weaknesses. Teachers are
and appealing forms?	voicing fewer concerns about accessibility and appeal of visual
	presentations, and are now voicing more concerns about aspects
	such as relevance and validity.
Is support offered in	Data support is available to schools. Local authorities continue to
using data correctly?	support through courses and help desks, as do national support
using data confectly?	agencies such as SSAT (2008). There is now a desire to engage
	with researchers more on aspects of data use. For example, this
	year a research practitioner course on data handling has been run
	for the first time (SSAT, 2008), although this course has not
	focused specifically on visual forms of presentation.
Are time and effort	Schools generally provide access to development time for staff,
requirements	and some schools are now focusing much more on support for
it	teachers in data handling. Visual forms of presentation have not
considered?	been a specific focus, but some schools recognise that online
	forms of visual presentation of data are positively affecting effort
	and time.
How are issues of	Clarity is being addressed increasingly through the auspicious use
complexity and	of visual forms of presentation. Increased clarity is also allowing
	levels of complexity to be addressed to increasing extents. For
clarity addressed?	example, in trend graphs, densities of pupil performance are now
	being shown by sizes of dots (Sherwood, 2008), allowing a
	different level of complexity to be highlighted in a recognisable
	form.
How is user support	User support is being enhanced increasingly over time with
in solving problems	regard to data handling. Increasing numbers of practitioners with
addroggad?	wider understanding and knowledge are being trained, and are
audressed?	supporting others. However, with regard to support at the point of
	use of visual forms, this is not necessarily built into data handling
	systems, although systems allow visual forms to be regenerated
	or saved easily, so that users feel more able to engage with others
	about any issues they identify.

Table 4: The status of visual forms with regard to Visscher features

5. DIRECTIONS AND POLICIES

It is clear from the responses in Table 4 that some features of visual forms of data presentation have been addressed to greater extents than have others in terms of an evolution over time. The features that have been addressed more successfully at this point in time are:

- Visualisation often indicates how up-to-date the information is.
- Relevance is often indicated on the labels on presentations of data presented visually.
- Indicators of relative and absolute school performance are accessible and different forms of comparison are widening.

- Visualisation is used to show trends, relationships and differences in a range of ways.
- Standard and tailored information is increasingly accessible.
- Presentation is increasingly offered in accessible and appealing forms.
- Issues of complexity and clarity are being increasingly addressed.

There are features that have not been addressed so successfully, and that should clearly be a focus for future direction and policies (especially for those concerned with the increasing development and uses of visual forms). The features that are worthy of more focus at this time are:

- Visualisation needs to indicate much more information about specific validity and reliability.
- Support needs should focus more on how to use data 'correctly'.
- Time and effort requirements need to be considered when visualisation forms are developed.
- Offering user support in solving problems through appropriate visual forms needs more focus.

The need to focus on these features is becoming increasingly recognised. For example, Treadaway (2008), in a presentation to a conference focusing on school achievement, indicated that more attention should be given to discussion of findings from data (such as the selection of pupil targets from background and estimated future attainment) with pupils, rather than using data to merely take actions. He was pointing to the need for visualisations to be 'smarter', and to indicate points of concern and need, as well as to offer raw data views. Data (particularly statistical data) have perhaps (too) frequently been offered in forms that have assumed that the reader or user is a 'smart' interpreter. Evidence suggests that this can happen, but that it may not happen. Sutherland (1992) pointed out the many ways that data can be used irrationally, or how its uses can lead to irrational views or actions. Can it be assumed that educational users are any different from other users in this respect? The evidence suggests not. However, indicators suggest that the recognition by teachers and managers in schools of the need to be 'smarter' with regard to data handling is in itself a useful and positive trend. There is a clearly a great deal of potential application for a range of focused research in this field.

6. **REFERENCES**

- Australian Bureau of Statistics (2007). 1211.0.55.001 Research Paper: Data Visualisation. Retrieved August 15, 2008, from http://www.abs.gov.au/AUSSTATS/abs@.nsf/Latestproducts/1211.0.5 5.001Main%20Features1Jul%202007?opendocument&tabname=Sum mary&prodno=1211.0.55.001&issue=Jul%202007&num=&view=
- Department for Education and Skills. (2002) *Releasing Potential, Raising Attainment: Managing Data in Secondary Schools*. DfES: London

- Fischer Family Trust. (n.d.). *Data Analysis Project*. Retrieved July 13, 2007, from <u>http://www.fischertrust.org/</u>
- Fitz-Gibbon, C.T. (2002). A Typology of Indicators. In A.J. Visscher and R. Coe (Eds.) *School improvement through performance feedback.* Routledge: Oxford and New York.
- Gray, J. (2002). Jolts and Reactions: Two Decades of Feeding Back Information on Schools' Performance. In A.J. Visscher and R. Coe (Eds.) *School improvement through performance feedback*. Routledge: Oxford and New York.
- Kirkup, C., Sizmur, J., Sturman, L. and Lewis, K. (2005) Research Report No 671: Schools' Use of Data in Teaching and Learning. Department for Education and Skills: Nottingham
- Passey, D. (2002). Schools in Exceptionally Challenging Circumstances: ICT Audit. Lancaster University: Lancaster
- Sherwood, C. (2008). Assessment Manager 7, Performance Analysis 7. Presentation given at the Second Conference of the Research Practitioner Course in Data Management, Aston University Business School, 30 April 2008
- Specialist Schools and Academies Trust. (2007). *Toolkits*. Retrieved July 13, 2007, from <u>https://secure.ssatrust.org.uk/eshop/default.aspx?mcid=22&scid=34&productid=627</u>
- Smart Centre (2007). *Smart Centre Durham University*. Retrieved August 15, 2008, from <u>http://www.dur.ac.uk/smart.centre/</u>
- Specialist Schools and Academies Trust. (2008). *Data Enabler*. Retrieved July 12, 2008, from <u>www.ssatrust.org.uk/dataenabler</u>
- Sutherland, S. (1992). Irrationality: The Enemy Within. Constable: London.
- Treadaway, M. (2008). *Data visualisation*. Presentation given at the Specialist Schools and Academies Trust Achievement Show, Emirates Stadium London, 17 June 2008
- Tufte, E.R. (1990). Envisioning information. Graphics Press: Cheshire, CT.
- Visscher, A.J. (2002). A Framework for Studying School Performance Feedback Systems. In A.J. Visscher and R. Coe (Eds.) *School improvement through performance feedback*. Routledge: Oxford and New York.