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Abstract. Components with undesired behavior could not be used properly
by users. Therefore, the scenario-based behavior filtration of components is
a significant problem to be solved, where the scenarios specify what behav-
ior is undesired and what is desired. We propose an approach for filtering out
the undesired behavior specified by a scenario specification from components.
The main idea of our approach is that by constructing a special environment,
i.e., conditional exclusive environment, for a component, all undesired behav-
ior specified by one scenario specification can be filtered out and all desired
behavior specified by another scenario specification can be preserved when the
component works in the environment. We use interface automata to model the
behavior of components and a set of action sequences to abstract the scenario
specification in message sequence charts. The composition of components is
modelled by the product of interface automata. We give the relevant algorithm
in our approach and illustrate it by an example.

1 Introduction

Component-based software development (CBSD) is a good approach to attain reli-
able, flexible, extensible and evolvable systems. By the reuse of existing software
components and the plug-and-play mechanisms, complex systems can be developed
more rapidly and economically. In CBSD, users retrieve desired components from
repositories and composite them to build a new system.

When an existing component could not meet the requirement of users exactly,
we can compose several available components to perform the given task [1, 2] . Al-
though components composition can repair inadequate behavior of sole component, it
is insu�cient to tackle the undesired behavior in available components. The behavior
of a component that could obstruct the use of the component in some scenario may
be undesired for specific users. Retrieved components with undesired behavior are
frequently encountered by users, because users’ requirements are various and it is
di�cult to find an exact match in repositories.

Usually, users give their requirements by a description of scenarios, which is
called the scenario specification. The scenario specification can describe either the
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user’s desired or undesired behavior of a component when it interacts with other. The
scenario-based behavior filtration of a component is to discard the undesired behavior
and preserve desired behavior of the component in terms of the scenario specifications
given by a user.

In this paper, we propose an approach to filtering the behavior for a component
based on scenarios. By constructing an environment (i.e., another component) for
a component, filter out all undesired behavior and preserve all desired behavior of
the component when the component works in the environment. The undesired and
desired behavior of the component are specified by scenario specifications. Interface
automata [3] are used to model the behavior of components. Scenarios are specified
by message sequence charts (MSCs) [4] and a MSC is abstracted as a set of action
sequences further. The composition of components is modelled by the product of
interface automata. We extend the concept of environment in the interface automata
theory and introduce conditional exclusive environment (CXE). By constructing a
CXE E for a given interface automaton R under two known sets L+,L� of action
sequences, make all behavior represented by some element in L� to be discarded in
R�E . At the same time, all behavior represented by any element in L+ , if it is also
the behavior of R , is preserved in R� E .

The remainder of this paper is organized as follows. Section 2 gives a brief intro-
duction on interface automata and message sequence charts. Section 3 introduces some
relevant concepts about our proposal. Section 4 describes the approach to scenario-
based behavior filtration of components in detail and shows the constructive algo-
rithm of CXE. Finally, in section 5 we discuss the related works and conclude this
paper. Additionally, an example is used to illustrate our approach throughout the
paper.

2 Background

In the section, interface automata and MSCs are introduced briefly. The most of
concepts about interface automata and MSCs refer to [3] and [4] respectively.

2.1 Interface Automata

Definition 1 (interface automaton, IA). An interface automaton P =
�VP , V initP ,AIP ,AOP ,AHP , TP � is a 6-tuple, where

– VP is a finite set of states.
– V initP � VP is a set of initial states. If V initP = � then P is called empty .
– AIP , AOP and AHP are mutually disjoint sets of input, output and internal actions.
AP denotes the set of all actions, i.e., AP = AIP �AOP �AHP .

– TP � VP � AP � VP is a set of steps. If � = (v, a, u) � TP , then write
label(�) = a , head(�) = v , tail(�) = u .

If a � AIP (resp. a � AOP , a � AHP ), then (v, a, v�) is called an input (resp. output,
internal) step. If there is a step (v, a, v�) � TP for some v, v� � VP , a � AP , then we
say that action a is enabled at state v . For v � VP , let AIP (v) = {a � AIP |� v� �
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VP . (v, a, v�) � TP }, AOP (v) = {a � AOP |� v� � VP . (v, a, v�) � TP } and AHP (v) =
{a � AHP |� v� � VP . (v, a, v�) � TP } be respectively the subset of input, output and
internal actions that are enabled at the state v . Let AP (v) = AIP (v)�AOP (v)�AHP (v) .

If IA P satisfies
��V initP

�� = 1 and � (v, a, u), (v, a, u�) � TP . u = u�, then P is
deterministic, otherwise P is non-deterministic. For simplicity, we make a convention
that all interface automata referred in this paper are deterministic.
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Fig. 1. Interface automaton Seller . The symbol “ ? ” (resp. “ ! ”, “ ; ”) appended to the name
of actions denotes that the action is an input (resp. output, internal) action. An arrow without
source denotes the initial state of the interface automaton

Example 1. The IA Seller (see Fig. 1) specifies the behavior of a component when
it interacts with other. The component stands for a seller in a business to business
system. The seller receives an order (ord_rec) from a customer and handles data in
the order (data_hdl ), e.g., transform of data format. If there is some error in the order,
it will report the error (data_err ) to the customer, otherwise it continues to check
the inventory (inv_chk ) from the supplier and the customer credit (cred_chk ) from
the bank. Contingent on availability of inventory (inv_ok ) and valid credit (cred_ok ),
the seller will inform the shipper to ship product (shipping) and the bank to bill
the customer for the order (billing). Either unavailability of inventory (inv_fail ) or
invalid credit (cred_fail ) will lead to reject the order (rejection). The seller can
receive some information (cancel ) from the customer to terminate (exit) the order. If
shipping and billing finish successfully (ship_ok and bill_ok ), the seller will make
archive (archiving) and give the notification (success) to the customer. Otherwise the
negative notification (fail ) will be given after processing the exception (err_hdl ).

An execution fragment of IA P is a finite alternating sequence of states and actions
v0a0v1a1 · · · an�1vn , where (vi, ai, vi+1) � TP , for all 0 � i < n. Given two states
v, u � VP , we say that u is reachable from v if there is an execution fragment with
v as the first state and u as the last state. The state u is reachable in P if there is an
initial state v � V initP such that u is reachable from v .
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Let �P denote the set of all execution fragments in IA P . For every � � �P , write
the first state of � as first(�) , the last state of � as last(�) and the set of all states of
� as V (�) .

Definition 2 (interface automata product). Two IAs P and Q are composable if
AHP �AQ = � , AHQ �AP = � , AIP �AIQ = � and AOP �AOQ = � . Let shared(P,Q) =
AP �AQ = (AIP �AOQ)� (AOP �AIQ) be the set of shared actions of P and Q . The
product of P and Q , denoted by P �Q , is the IA defined by

VP�Q = VP � VQ
V initP�Q = V initP � V initQ

AIP�Q = (AIP �AIQ) \ shared(P,Q)
AOP�Q = (AOP �AOQ) \ shared(P,Q)
AHP�Q = AHP �AHQ � shared(P,Q)
TP�Q = {((v, u), a, (v�, u)) | (v, a, v�) � TP � a /� shared(P,Q) � u � VQ}

� {((v, u), a, (v, u�)) | (u, a, u�) � TQ � a /� shared(P,Q) � v � VP }
� {((v, u), a, (v�, u�)) | (v, a, v�)�TP � (u, a, u�)�TQ � a�shared(P,Q)} .

At some state of P � Q , one IA, say P (or Q), may produces an output action
that is an input action of Q (or P ), but isn’t enabled at the current state in Q (or P ).
Such state is an illegal states of P �Q . For two composable IAs P and Q , the set
of illegal states of P �Q is denoted by Illegal(P,Q) � VP � VQ ,

Illegal(P,Q) = {(v, u) � VP � VQ |� a � shared(P,Q) .
((a � AOP (v) � a /� AIQ(u)) � (a � AOQ(u) � a /� AIP (v))} .

Definition 3 (environment). An IA E is an environment for an IA R if : (1) E and R
are composable, (2) E is not empty, (3) AIE = AOR , and (4) if
Illegal(R,E) �= � , then no state in Illegal(R,E) is reachable in R� E .

2.2 Message Sequence Charts

MSC [4] is a trace description language for visualization of selected system runs.
It concentrates on message interchange by communicating entities and their environ-
ment. Every MSC specification has an equivalent graphical and textual representation.
Especially the graphical representation of MSCs gives an intuitive understanding of
the described system behavior. Therefore, MSC is a widely used language for scenario
specifications.

The fundamental language constructs of MSCs are component and message flow.
Vertical time lines with a named heading represent components. Along these time
lines, MSC events (i.e., message send or receive events) are arranged that gives an
order to the events connected to this component. A message is depicted by an arrow
from the send to the receive event. The fact that a message must be sent before it can
be received imposes a total order on the send and receive event of a message and,
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furthermore, a partial order on all events in a MSC. An example of MSCs is shown
in Fig. 2 .

Definition 4 (message sequence chart, MSC). A message sequence chart Ch =
�C, E ,M,F ,O� is a 5-tuple, where

– C is a finite set of components.
– E is a finite set of events corresponding to sending or receiving a message.
– M is a finite set of messages. For any m �M, let s(m) and r(m) to denote the

events that correspond to sending and receiving message m respectively.
– F : E � C is a labelling function which maps each event to a component.
– O � E�E is a partial order relation over the set of events. For every (e, e�) � O ,

there is e �= e� . (e, e�) represents a visual order displayed in Ch .

Each MSC describes a set of message sequences. A message sequence of one
MSC must be composed of all messages of the MSC and any message occurs only
once in the sequence. For any two messages in the sequence, if one precedes the other
then their send events and receive events should not violate the partial order relation
over the set of events. Observe that messages in MSCs correspond to actions in IA.
Hence, we call a message sequence of MSC as an action sequence derived from the
MSC and write it as � = �(0)�(1) · · · �(n) , where �(i) is a message in the message
sequence for all 0 � i � n .
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✛
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Fig. 2. MSCs specifying scenarios about the interaction among the seller component, consumers
and other components

Example 2. The MSCs ‘EXIT’ and ‘SALE’ (see Fig. 2(a) and 2(b) respectively)
show two scenario specifications about the seller component (in Example 1) inter-
acting with consumers and other components. The MSC ‘EXIT’ describes a sce-
nario: the seller interrupts the process of ordering and exits after it receives an
order from a customer. From the MSC ‘EXIT’ we can derive a set of action se-
quences, LE = {ord_rec êxit} . For legibility, we use the symbol “ˆ” to separate
two adjacent actions in an action sequence. The MSC ‘SALE’ describes a scenario:
if the seller receives inv_ok and cred_ok it should produce shipping to the ship-
per and billing to the bank. From the MSC ‘SALE’ we can derive a set of ac-
tion sequences, LS = {inv_ok ĉred_ok ŝhipping b̂illing , cred_ok înv_ok ŝhippingˆ
billing , inv_ok ĉred_ok b̂illing ŝhipping , cred_ok înv_ok b̂illing ŝhipping} .
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3 Conditional Exclusive Environment

For any execution fragment � = viaivi+1ai+1 · · · aj�1vj (i < j) of IA P , where
vi � V initP , if vi = vj or AP (vj) = � , then � is called a run in P . Let �P denote the
set of all runs in IA P . For any execution fragment � = viaivi+1ai+1 · · · aj�1vj � �P
(i < j), we say that execution fragment �� = vsasvs+1as+1 · · · at�1vt (i � s < t � j)
is in � , denoted by �� � � . Specifically, if �� = vsasvs+1 (i � s < j) , then we
say that the step � = (vs, as, vs+1) � TP is in the execution fragment � , denoted by
� � � .

The trace of an execution fragment � = v0a0v1a1 · · · an�1vn is a subsequence of
� , which consists of all actions in � . We write trace(�) = a0a1 · · · an�1 . Given an
execution fragment � � �P�Q and trace(�) = a0a1 · · · an�1 , the projection of � on
IA P , denoted by �P (trace(�)) , is a subsequence of trace(�) , which is obtained by
deleting all actions ai � AQ \ shared(P,Q) , 0 � i � n� 1 from trace(�) .

Given two composable IAs P and Q , there are � = v0a0v1a1 · · · an�1vn � �P
and � � �P�Q . If there exists an execution fragment � � � satisfying �P (trace(�)) =
trace(�) and for any viaivi+1 � � there is (vi, ui)ai(vi+1, ui+1) � � , where
ui, ui+1 � VQ and 0 � i < n , then we say that � is covered by � . At the same time,
(ui, ai, ui+1) is called the corresponding step of (vi, ai, vi+1) if ai � shared(P,Q) ,
and ui, ui+1 is called the corresponding state of vi, vi+1 respectively. If an execution
fragment of IA P can be covered by a run of IA P � Q , then it means that the
behavior represented by the execution fragment of P can be preserved in P �Q .

Given a run � of IA P and an action sequence � , if � is a subsequence of
trace(�) , then we say action sequence � occurs in run � , denoted by � � � . The
occurrence of an action sequence in a run of one IA means that some behavior of the
IA contains the behavior represented by the action sequence.

Suppose that action sequence � = �(0)�(1) · · · �(m) occurs in run � � �P .
If there exists an execution fragment � � � satisfying that � is a subsequence of
trace(�) = a0a1 · · · an (n � m) and �(0) = a0 , �(m) = an , then � is a proper
occurrence of � in � . Suppose that �0, �1, . . . , �n � � are the proper occurrences
of action sequences �0, �1, . . . , �n in � respectively. For any � � � , if (V (�) \
{first(�), last(�)}) � V (�i) = � , i = 0, 1, . . . , n , then � is a proper inoccurrence of
�0, �1, . . . , �n in � .

Given a set L of action sequences, for any IA P , �P can be partitioned as two
subsets: �L(�P ) = {� � �P |� � � L . � � �} and �L(�P ) = �P \ �L(�P ) . For
every run in �L(�P ) , there exists at least one action sequence in L that occurs in it.
For any run in �L(�P ) , no action sequence in L occurs in it.

Definition 5 (conditional exclusive environment, CXE). Given an IA R and a set
L� of action sequences, the exclusive environment of R under L� is an environment
E of R such that for any � � L�, if � occurs in a run � of R , then the proper
occurrence of � in � must be not covered by any run of R � E . If an exclusive
environment E of R under L� satisfies that for any � � L+, if � occurs in a run �
of R then � must be covered by some run of R � E , where L+ is a set of action
sequences and L+ � L� = � , then E is a conditional exclusive environment of R
under exclusion condition L� and inclusion condition L+.
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Let CXE (R : L�,L+) denote the set of conditional exclusive environments of R
under exclusion condition L� and inclusion condition L+. If we consider L+ and L�
as the representation of two sets of behavior, then all behavior of R which contain any
behavior in L� isn’t preserved in R� E , at the same time, all behavior of R which
contain any behavior in L+ is preserved in R� E , where E � CXE (R : L�,L+) .
For arbitrary IA R and two sets L�,L+ of action sequences, it is possible that
CXE (R : L�,L+) = � . It means that a CXE of R under exclusion condition L�
and inclusion condition L+ may not always exist.

4 Construction of Conditional Exclusive Environment

We can use an IA, say R , to specify the behavior of a component, say COMP . An
user can give his or her undesired and desired behavior about COMP by two scenario
specifications in MSC, say ‘SCENE�’ and ‘SCENE+’ respectively. Filtering out the
user’s undesired behavior from COMP and preserving the desired behavior amounts
to constructing a CXE for R under exclusion condition L� and inclusion condition
L+, where L�,L+ are the sets of action sequences derived from MSCs ‘SCENE�’,
‘SCENE+’ respectively. If there exists E � CXE (R : L�,L+) and we can construct
it, then all of the user’s undesired behavior in R do not exist in R � E , at the same
time, all of the user’s desired behavior in R are preserved in R� E .

In this section, we will discuss how to construct a CXE E � CXE (R : L�,L+)
for known IA R and two sets L�,L+ of action sequences in detail, and give the
algorithm for constructing CXE.

4.1 Basic Approach to Constructing CXE

An environment of one IA, say R, can a↵ect the runs of R only by the input actions of
R . For arbitrary input step � on arbitrary run of R , if the label of � is a shared action
of R and its environment and the environment does not provide the input action for R
when R needs it, then R cannot go on along the run. For example, if the environment
does not provide input action cancel for IA Seller (see Fig. 1) when Seller stays at
state 3 , then Seller cannot run along execution fragment “ 3 cancel 4 exit 0 ” back to
initial state. That the environment does not provide input action label(�) for R , when
R needs it, amounts to no corresponding step of � in the environment.

Suppose that � is a proper occurrence of some action sequence in L�. Only by
not constructing the corresponding step in E for any input step � of R , where first(�)
is reachable from tail(�) , the CXE E can make � not to be covered by any run of
R�E . For ensuring all runs in �L+(�R) to be covered by runs of R�E , the input
step � should not be in any run in �L+(�R) . We can find all such input steps in R by
traversing all runs in �L�(�R) . But, if there exists a loop (i.e., execution fragment
� with first(�) = last(�)) in some run, then �R is an infinite set and the lengths of
some runs in �R , i.e., the number of steps in a run, may be also infinite. Accordingly,
�L�(�R) , �L+(�R) and the lengths of some runs in them may be infinite. Thus, it
is unfeasible to traverse all runs in �L�(�R) directly. For getting a feasible approach,
we introduce the concepts of the simple run and simple loop.
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Given an IA R and a set L of action sequences, a run � = v0a0v1a1 · · · an�1vn
of R is a simple run when it satisfies the following conditions:

1. if � � �L(�R) , then there is vi �= vj (0 < i < n, 0 < j < n, i �= j) ;
2. if � � �L(�R) , then (a) for any proper inoccurrence � = viaivi+1 · · · aj�1vj
(0 � i < j � n) in � , there is vs �= vt (i � s � j , i � t � j , s �= t) ;
and (b) for any proper occurrence � of � = �(0)�(1) · · · �(m) � L in � , if
there is � � = viaivi+1ai+1 · · · aj�1vj � � (0 � i < j � n) , and ai = �(k) ,
aj�1 = �(k+1) , 0 � k < m , then there is vs �= vt (i < s < j , i < t < j , s �= t) .
We put some constrains on runs to get the definition of the simple run. The

meaning of the condition 1. is that there is not any loop in a simple run without
occurrence of action sequences in L . The meaning of the condition 2a is that there
is not any loop in a proper inoccurrence of action sequences in a simple run. The
meaning of the condition 2b is that in a proper occurrence of an action sequence in a
simple run, there is not any loop between the occurrence of two neighbor actions in
the action sequence. The set of all simple runs of IA R under L is denoted by �LR .
Similarly, �LR can be partitioned as �L

�
�LR

�
and �L

�
�LR

�
.

Given an IA R and a set L of action sequences, an execution fragment � =
viaivi+1ai+1 · · · aj�1vj � �R (i < j) is a simple loop if : (1) vi = vj , vi, vj /� V initR ,
(2) vs �= vt (i � s < j , i � t < j , s �= t) and (3) �� � �L

�
�LR

�
. � �� � .

The first and second conditions ensure that except the first and the last states,
there aren’t duplicate states in a simple loop. The third condition ensures that a sim-
ple loop isn’t the loop in a proper occurrence of some action sequence in L . For
given IA R and set L of action sequences, �LR denotes the set of all simple loops
of R . We say that simple loop � � �LR associates with simple run � � �LR if
V (�) � V (�) �= � or V (�) � V (��) �= � , where �� � �LR associates with � . Let
�L

�
�LR

�
=

�
� � �LR |�� � �L

�
�LR

�
. � associates with �

�
be the set of all simple

loops associated with simple runs in �L
�
�LR

�
.

Notice that every step in any run in �R corresponds to a step in some simple
run in �LR or in some simple loop in �LR . However, �LR and �LR are finite sets and
the lengths of all simple runs and simple loops are finite. Furthermore, �L

�
�LR

�
and

�L
�
�LR

�
are finite sets.

Additionally, we also notice that it is impossible to eliminate the undesired behavior
represented by � � L� from R � E by not constructing the corresponding step in
E for any step in R “after” the proper occurrence of � . A step � “after” a proper
occurrence � means that head(�) = last(�) or head(�) is reachable from last(�).

Suppose that � is a proper occurrence of � � L� in a simple run � of IA R . We
call a prefix � of � as the minimal simple prefix about � if � is a su�x of � , where
a prefix of � is an execution fragment � in � and first(�) = first(�); a su�x of � is
an execution fragment � in � and last(�) = last(�). Let �L�

�
�L

�

R

�
denote the set

of all minimal simple prefixes about all proper occurrences of any action sequence in
L� in any simple run of R , i.e.,

�L�
�
�L

�

R

�
=

�
�

�� � ��L�.����L
�

R . (� is a proper occurrence of � in �) �

(� is the minimal simple prefixabout � in �)
�
.
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For any � � �L�
�
�L

�

R

�
, there must be a proper occurrence of some � � L� in

� , and there is not any step “after” the proper occurrence in � .

Theorem 1. For arbitrary IA R and sets L�,L+ of action sequences, if there exist
���L�

�
�L

�

R

�
such that � ��� . label(�) /�AIR , then CXE (R :L�,L+)= �.

In [5], we prove that there maybe exist some kind of execution fragments in one
IA, say P , which cannot be covered by any run of P �E , for any environment E of
P . Accordingly, we have the theorem as follows.

Theorem 2. For arbitrary IA R and sets L�,L+ of action sequences, there does not
exist any E � CXE (R : L�,L+) if there are �1, �2 � �R, �1 � � and �2 � � ,
for some � �

�
�L

+

R ��L
+

R

�
and � �

�
�L+

�
�L

+

R

�
� �L+

�
�L

+

R

��
, which satisfy

any of the following conditions: (1) �1 = viavj and �2 = vjbvk , where i �= j �= k ,
a /� shared(R,E) , b � AIR � shared(R,E) and b /� AR(vi) . (2) �1 = viavj
and �2 = vibvk , where i �= j �= k , a /� shared(R,E) , b � AIR � shared(R,E)
and b /� AR(vj) . (3) �1 = viaivi+1ai+1 · · · aj�1vj and �2 = vibv�i , where i < j ,
v�i /� V (�1) , ak /� shared(R,E) , k = i, i + 1, . . . , j � 1 , b � AIR � shared(R,E)
and � v � V (�1) . b /� AR(v) .

4.2 Algorithm of Constructing CXE

The skeleton of the constructive algorithm for CXE is described as follows. Step one,
for every minimal simple prefix about the proper occurrence of any action sequence
in L� in some simple run of R , traverse it from the first state and find the first input
step in it, which is not in any simple run with occurrence of action sequences in L+
or any simple loop associated with it. Step two, remove these input steps from R and
all unreachable states after the removal. Step three, construct corresponding steps in
one IA for all residual steps in R .

Make the convention of AHE = � and AOE = AIR [5] . Let R � T to denote the
IA obtained by removing all steps in T � TR from R and all unreachable states in
R after the removal. The algorithm of constructing CXE E � CXE (R : L�,L+) is
shown in Algorithm 1 .

We can prove that the return (in line 24) of Algorithm 1 is a CXE of R under ex-
clusion condition L� and inclusion condition L+ since it is consistent to Definition 5 .
Thus, Algorithm 1 is correct.

About line 1 in Algorithm 1, we had given an algorithm to find which simple run
in an IA has the occurrence of a given action sequence in [6] and we can obtain those
sets in line 1 based on the algorithm. About line 22 in Algorithm 1, we had given a
method of constructing corresponding steps in [5] .

Suppose that the maximal length of all elements in the set �L
�

R ��L
+

R ��L
+

R is
n = max

�
length(�) | � �

�
�L

�

R ��L
+

R ��L
+

R

��
, where length(�) is the number

of steps in � . Suppose thatm1 =
����L�

�
�L

�

R

���� ,m2 =
����L+

�
�L

+

R

���� are the number
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Algorithm 1 Constructing CXE E of IA R under exclusion condition L� and inclusion condition L+

Input: Interface automaton R and sets L�,L+ of action sequences, L� � L+ = �.
Output: CXE E � CXE R : L�,L+ .
Variables: T � TR , step � , IA R� and boolean found
1: Traverse R to get �L� �L

�
R , �L+ �L

+
R and �L+ �L

+
R .

2: if some execution fragment satisfies the conditions of Theorem 2 then

3: return E doesn’t exist // by Theorem 2
4: else

5: T �� �
6: for all � � �L� �L

�
R do

7: found�� true

8: � �� the first step in � // head(�) = first(�) � � � �
9: while label(�) /� AIR � � � � �L+ �L

+
R � �L+ �L

+
R . � � � � found do

10: if � is not the last step in � then // tail(�) �= last(�) � � � �
11: � �� the next step in �
12: else found�� false

13: end if

14: end while

15: if found then T �� T � {�}
16: else return E doesn’t exist // by Theorem 1
17: end if

18: end for

19: R� �� R � T
20: Initialize E : VE �� {u0} , V initE �� {u0}
21: for all � � TR� do

22: Construct the corresponding step of � in E
23: end for

24: return E
25: end if

of simple runs in �L�
�
�L

�

R

�
, �L+

�
�L

+

R

�
respectively, and k =

����L+
�
�L

+

R

����

are the number of simple loops in �L+
�
�L

+

R

�
. In the worst case, line 6 to 18 in

Algorithm 1 can be done in O
�
(m2 + k)m1n2

�
time. According to [6] and [5] , line 1

and line 22 in Algorithm 1 need O((m1 + m2)n) and O (|VR� |) time respectively,
where |VR� | is the number of states of IA R� . In general, there are length(�) �
length(�) for � � �L+R and � � �L+R and |VR� | � (m1 + m2)n . Hence, the
complexity of Algorithm 1 is O

�
m1m2n2

�
.

Example 3. Suppose that MSCs ‘EXIT’ (Fig. 2(a)) and ‘SALE’ (Fig. 2(b)) describe
a user’s undesired and desired behavior about IA Seller (Fig. 1) respectively. That
is, the user does not want the process of ordering to be terminated by cancellation.
By Algorithm 1 , we can obtain a CXE E ( Fig. 4) of the IA Seller under exclusion
condition LE and inclusion condition LS, which are two sets of action sequences de-
rived from MSCs ‘EXIT’ and ‘SALE’ respectively (see Example 2). The intermediate
result R� (see line 19 of Algorithm 1) is shown in Fig. 3 . It can be found that the
user’s undesired behavior of Seller is discarded in the composition of Seller and E ,
i.e., Seller � E (Fig. 5). At the same time, the user’s desired behavior of Seller is
preserved in Seller � E .

5 Related Works and Conclusion

In this paper, we give an approach for filtering the undesired behavior and preserving
the desired behavior of components based on scenario specifications.
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Fig. 3. IA R� . The intermediate result of Algorithm 1 with inputs Seller , LE and LS
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Fig. 4. The CXE E of Seller under exclusion condition LE and inclusion condition LS

In [1, 2, 7], the authors mainly solve the behavioral compatibility of components
composition, but do not concern whether all behavior of the composition are the needs
of users. By using environment, our approach can filter out undesired behavior from
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components or compositions in terms of the user’s requirements. The most pertinent
research is to automatically synthesize a connector for restricting the behavior of
the composed components to the desired behavior specified by temporal logic based
specifications [8, 9]. Contrary to [8, 9], the environment in our approach adjusts the
behavior of components only by the inputs, and our algorithm is better in complexity.
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