
A Mapping from Normative Requirements to Event-B to
Facilitate Verified Data-Centric Business Process

Management

Iman Poernomo1 and Timur Umarov2

1 Department of Computer Science, King’s College London
Strand, London, UK, WC2R2LS

(iman.poernomo@kcl.ac.uk)
2 Department of Computer Engineering, Kazakh-British Technical University

59 Tole bi str., Almaty 050000 Kazakhstan
(t.umarov@kbtu.kz)

Abstract. This paper addresses the problem of describing and analyzing data
manipulation within business process workflow specifications. We apply a model-
driven approach. We begin with business requirement specifications, consisting
of an ontology and an associated set of normative rules, that define the ways in
which business processes can interact. We then transform this specification into
an Event-B specification. The resulting specification, by virtue of the Event-B
formalism, is very close to a typical loosely coupled component-based imple-
mentation of a business system workflow, but has the additional value of being
amenable to theorem proving techniques to check and refine data representation
with respect to process evolution.

1 Introduction

Business process management (BPM) is an increasingly challenging aspect of the en-
terprise. Middleware support for BPM, as provided by, for example, Oracle, Biztalk
and the recent Windows Workflow Foundation (WWF), has met some challenges with
respect to performance and maintenance of workflow.

The central challenge to BPM is complexity: business processes are becoming
widely distributed, interoperating across a range of inter- and intra-organizational vo-
cabularies and semantics. It is important that complex business workflows are checked
and analyzed for optimality and trustworthiness prior to deployment. The problem be-
comes worse when we consider the enterprise’s demand to regularly adapt and change
processes. For example, the growth of a company, changes to the market, revaluation
of tasks to minimize cost. All these factors often require reengineering or adaptation
of business processes along with continuous improvement of individual activities for
achieving dramatic improvements of performance critical parameters such as quality
(of a product or service), cost, and speed [1]. Reengineering of a complex workflow
implementation is dangerous, due to existing dependencies between tasks.

Formal methods can assist in meeting the challenge of complexity, as their mathe-
matical basis facilitates analysis and refining of a system specification. However, com-

137

plex systems often involve a number of different aspects that entail separate kinds of
analysis and, consequently, the use of a number of different formal methods.

A business process implementation within a BPM middleware requires detailed
treatment of both information flow and information content. The abstraction gap is
identified by Hepp and Roman in [2]: an abstract workflow that ignores information
content provides an abstract view of business processes that does not fully define the
key aspects necessary for BPM implementation.

We argue that this abstraction gap can be addressed by developing event-driven data
models in the Event-B language from an initial business process requirements specifi-
cation. We employ a Model Driven Architecture approach.

The initial CIM might be written as models within a number of requirements spe-
cification frameworks. We use the ontologies and normative language of the MEASUR
method [3]. The method has a 20 year history and is widely used within the organiza-
tional semiotics community, but less well-known in Computer Science. Its roots lie in
the philosophical pragmatism of Peirce, the semiotics of Saussure and Austin’s speech
act theory. It is model-based, with ontologies and normative constraints forming the
central deliverables of a requirements document. We employ MEASUR notation be-
cause our starting point is information systems analysis, where MEASUR has found
the most application. Its normative constraints lend themselves to transformation into
our PIM languages. However, our approach should be readily adaptable to a number of
similar notations in use in the multi-agents and normative specification research com-
munities.

The Event-B language is used in specifying, designing, and implementing software
systems. The language is used to develop software by a process of gradual refinement,
from an abstract, possibly nonexecutable system model, to intermediate system mod-
els that contain more detail on how to treat data and algorithms, to a final, optimized,
executable system. In this process, (i) the first abstract model in this refinement chain is
verified for consistency and (ii) each step in the refinement chain is formally checked for
semantic preservation. Consistency will then be preserved throughout the chain. There-
fore, the final executable refinement can be trusted to implement the abstract specifica-
tion.

Our approach addresses the semantic gap by defining a transformation of MEASUR
models to Event-B machines, permitting: (i) a full B-based formal semantics for voca-
bularies and data manipulation that is carried out within the modeled workflow, which
can be validated for consistency; and (ii) an initial, abstract B model that can be refined
using the B-method to a final optimal executable system in an object-oriented workflow
middleware, such as WWF.

A notion of semantic compatibility holds over the transformed models, so that any
property derived over the normative-ontological view of the system will hold over po-
tential processes that arise from the Event-B machine.

The paper proceeds as follows:

– In Section 2, we sketch the nature of our CIM, the normative ontology language of
MEASUR.

– Section 3 provides a brief introduction to Event-B specifications, focusing on the
main points relevant to our formal semantics.

138

– Section 4 then outlines the transformation approach to generating Event-B speci-
fication. We discuss how the resulting specification provides a formal semantics
of our data-centric business process, and how this enables consistency validation
checks.

– Section 5 discusses related work and conclusions.

2 MEASUR Models

The MEASUR can be used to analyze and specify an organization’s business processes
via three stages [3]: (i) articulation of the problem, where a business requirements prob-
lem statement is developed in partnership with the client; (ii) semantic analysis, where
the requirements problem statement is encoded as an ontology, identifying the main
roles, relationships and actions; and (iii) norm analysis, where the dynamics of the
statement are identified as social norms, deontic statements of rights, responsibilities
and obligations.

Space does not permit us to detail the first stage. Its processes are comparable to
other well known approaches to requirements specification. The last two stages require
some elaboration. For our purposes, they provide a Computation Independent Model,
consisting of an ontology and collection of norms, that formally define the structure
and potential behaviour of an organization and its processes from a non-technical per-
spective. We hereafter refer to the combination of a MEASUR ontology and associated
norms as a normative ontology.

2.1 Ontologies

The ontologies of semantic analysis are similar to those of, for example, OWL, decom-
posing a problem domain into roles and relationships. As such, our ontologies enable
us to identify the kinds of data that are of importance to business processes. A key
difference with OWL is the ability to directly represent agents and actions as entities
within an ontology. This is useful from the perspective of business process analysis, as
it enables us to identify tasks of a workflow and relate them to data and identify what
agent within the organization has responsibility for the task.

Semantic Analysis has its roots in semiotics, the philosophical investigation of
signs. MEASUR applies to information system analysis a number of ideas and ap-
proaches from philosophy of language, drawing on the pragmatism of Peirce, semiotics
of Saussure and the epistemology of Wittgenstein and Austin. The method’s core as-
sumption is knowledge and information exists only in relation to a knowing agent (a sin-
gle human or a social organization). There is no Platonic reality which defines Truth.
Instead, Truth is a derived concept that might be defined as agreement between a group
of agents. An agent is responsible for its knowledge. When a group of agents agree on
what is true and what is false, they accept responsibility for that judgement. Following
Wittgenstein, MEASUR considers an information system as a “language game”: a form
of activity involving a party of agents that generates meaning. In an information-system-
as-language-game, the meaning of data derives from usage by agents, rather than from
a universal semantics.

139

Semantic Analysis represents the information system as language game in the form
of an ontology diagram, identifying agents, the kinds of actions agents can perform and
the relationships and forms of knowledge that can result from actions. These concepts
are identified as types of affordance. An affordance is a collection of patterns of be-
haviour that define an object or a potential action available to an agent. Every concept
in a MEASUR ontology is an affordance.

MEASUR subclasses the notion of affordance as follows. A business entity – such
as a user account or a bank loan – is an affordance in the sense that it is associated
with a set of permissible behaviours and possibilities of use. For the purpose of busi-
ness process analysis, business entities are used to identify the main kinds of data that
are of importance in an organization’s processes. A relationship – such as a contract –
between business entities or agents is an affordance in the sense that it is defined by the
behaviour it generates for the parties involved in the contract. Agents are affordances in
terms of the actions they can perform and the things that may be done to them. Agents
then occupy a special status in that they take responsibility for their own actions and the
actions of others and can authorize patterns of behaviour. The structure of a business en-
tity, relationship or agent is given via a list of associated properties, called determiners.
Determiners are properties and attributes of affordances, such an address or telephone
number associated with a user account. Units of measurement are typical data types that
type determiners and other values associated with affordances. The latter two concepts
are considered as affordances as their values constrain the possible behaviour of their
owners.

In our treatment, affordances can be treated as types of things within a business
system, with an ontology defining a type structure for the system. An actual executing
system consists of a collection of affordance instances that possess the structure pre-
scribed by the ontology and obey any further constraints imposed an associated set of
norms.

Example 1. An ontology for the purchasing system is given in Fig. 1. Agents are repre-
sented as ovals and business entities as rectangles with curved edges. Communication
acts and relations are shown as rectangles, with the former differentiated by the use of
an exclamation mark ! before the act’s name.

All affordances (including agents and business entities) have a number of typed
attributes, defining the kinds of states it may be in. We permit navigation through an
affordance’s attributes and related affordances in the object-oriented style of the OCL.
The system also involves processes that cross the boundaries of two subsystems: an
order processing system, and a product warehouse system. These two subsystems are
represented as agents in the ontology, eOrder and Warehouse, respectively. By default
all agents contain start and end attributes.

Orders are requests for products, both represented as entities in the ontology with
a requests relationship holding between them (multiplicities could be associated with
the relationship to define the possibility of a number of products contained in an order).
An order is associated with its customer, defined by the ordered by relationship holding
between the customer agent and order entity. An order can stand in an ordered relation-
ship with the eOrder agent, after it has been successfully processed. Communication act
!receive order corresponds to the initial reception of data. The Processing communica-

140

WAREHOUSE
start, end : Bool
stock_increase_request :
Bool

EORDER
start : Bool, end : Bool,
in_stock : Bool, invoiced :
Bool, processing : Bool

CUSTOMER

name : String
limit : Float

ORDERED_BY

! RECEIVE_ORDER

! PROCESSING_SUCCESSFUL

receiving order

processing order

ORDERED

! INVOICE_IF_AVAILABLE

invoicing order
rejecting order

! REJECT_ORDER

increase request

! INCREASE_REQUEST

dispatching order

! DISPATCH_ORDER

ORDER
status: {received,
pending, invoiced,
dispatched, rejected}
total : Float ! PROCESSING_UNSUCCESSFUL

PRODUCT REQUESTS

Fig. 1. Example normative ontology .

tion act further deals with the newly arrived order and checks whether the clients credit
limit allows for the purchase. Namely, it checks whether the total cost of the purchase
is less than a customer’s credit limit. This condition results in the following outcomes:
if the credit limit is lower than the total cost then the system rejects the order, otherwise
it initiates the invoicing process (denoted by the invoice if available communication
act). It does so if the stock contains enough amount of the product for the order. If not,
then the system requests to increase the stock by initiating request increase. This is fol-
lowed by the actual process of increasing the stock increase stock. Finally, the system
dispatches the order by dispatch order.

2.2 Norms

Norms are constraints and rules that determine how agents interact and control affor-
dances. They also control the initialization and termination of particulars (affordance
instances). We have adopted a typed language of deontic logic, logic of action, and the
theory of normative positions to express logical constraints over business processes,
using ontologies as atomic classes, relations, objects and actions for the logic. Our con-
straints take the form

A,B := R(¯a) | ¬A | A _ B | A ^ B | A ! B |
8 x : C • A | 9 x : C • B | Ob A | Pe A | Im A | Ex A ,

(1)

where C is an affordance (that acts as a type of a particular instance); R(¯a) is an affor-
dance with one or two antecedents ¯A and ¯a is one or two particular instances of ¯A; the

141

meaning of ObA is that A is obliged to happen; the meaning of PeA is that A is permitted
to happen; the meaning of ImA is that A is prohibited (impermissible) to happen; the
meaning of ExA is that A results from, and is the responsibility of, agent particular x;
the meaning of the other connectives follows standard first order logic. A conditional
description of behaviour or conditional act description, which we otherwise regard as
a behavioral norm, represents the general form for a constraint over our ontologies [3]:

(Trigger ^ pre-condition) ! EagentOb/Pe/Im post-condition. (2)

The informal meaning of the norm is the following: if Trigger occurs and the
pre-condition is satisfied, then agent performs an action so that post-condition is
Obliged/Permitted/Impermissible from resulting.

The idea of a behavioral norm is to associate knowledge and information with
agents, who produce and are responsible for it. From a philosophical perspective, truth
is then defined as something that an agent brings about and is responsible for. As shall
be seen, from the perspective of determining how to implement a normative ontology
as a workflow-based system, we view agents as corresponding to subsystems, business
entities to specify data and behavioral norms to expected dynamic interaction protocols
between subsystems.

Example 2. Consider the communication act !receive order from our example, corre-
sponding to the initial reception of data by the order processing system. The idea that
this reception can only occur over orders that are not yet processed is captured by the
behavioral norm shown in Table 1. Both relationships and communication acts are rep-
resented as logical relations in our language, but communication acts are not used in
pre-conditions, and may only be placed after a Deontic operator.

Communication acts often define resulting changes of state on related agents and
entities. As shown in our ontology in Fig. 1, receive order relates three affordances:
agents Customer and eOrder and business entity Order, instances of which are used as
arguments for this communication act. As such, this communication act should affect
the following relationships ORDERED and ORDERED BY that are involved in relating
the pertinent affordances. Therefore, the reception of an order entails a change of state
of affairs to include a newly arrived order, the status becomes set to “received”, and the
system initiates the processing stage by setting its attribute to true. This is formalized
in Table 1.

Table 1. Communication act !receive order: norm and definition.

!RECEIVE ORDER
NORM 8 cc : Customer • 8 oo : Order • 8 e : eOrder•

¬ordered by(oo, cc) ^ ¬ordered(oo, e) ! Ee Ob receive order(oo, cc, e)
DEFINITION 8 cc : Customer • 8 oo : Order • 8 e : eOrder • receive order(oo, cc, e) !

ordered by(oo, cc) ^ ordered(oo, e) ^ oo.status = received ^ e.processing = >

There have been a number of attempts to use semantic analysis normative ontologies
as the language for a business process management engine. The mostly widely used is

142

Liu’s NORMBASE system [3]. In such systems, the ontology serves as a type system
for data, while norms define the conditions under which tasks may be invoked to create
and manipulate data.

Our approach is different: we treat normative ontologies as a useful and semanti-
cally rich requirements analysis document. However, we implement these requirements
using a standard business process management infrastructure. We believe that further
refinement and analysis is a necessary step to this goal. In particular, it is important to
ensure that (i) the possible communication act traces permitted by a set of norms do
not deadlock unexpectedly (in our example, this happens if the order processing system
waits indefinitely for a response from the warehouse that stock is available); and (ii) the
ontology and its associated norms do not allow for an inconsistent state of the system
(this happens if an action entails that an order is processed and rejected at the same
time).

3 Event-B

This section provides an overview of the Event-B notation which is inspired by the
action systems approach [4] and represents an evolution of the B-method. The Event-
B language specifies a software system in terms of encapsulated modules, called ma-
chines, that consist of a mutable state and a number of related operations, called events,
whose execution changes the values of the state. Each event consists of a logical guard
and an action. The guard is a first order logical statement about the state of the machine
and defines the conditions under which an action may occur. The action defines the way
the machine’s state may be modified as a first-order logical statement relating the initial
values of the state prior to the action occurring and the final values of state.

Machines therefore have a formal operational semantics, that models system execu-
tion as a sequence of events. If an event’s guard holds over the machine’s state, its action
may be executed. This will change machine’s state, which may cause another event’s
guard to hold, and an action to be executed. The sequence continues until the system
has halted (it is deadlocked). Note that execution is potentially nondeterministic: when
a number of event guards are true, then one of the corresponding event actions is chosen
at random.

A common requirement over business process descriptions is the preservation of
certain properties throughout the whole course of execution of events. These properties
are called invariants: they represent predicates built on the state variables that must hold
permanently. This is achieved by proving that under this invariant and guards of events,
the invariant still holds after modifications made to the state variables associated with
event executions.

Every model written in Event-B is represented as a machine/context pair. The rela-
tionship between these two constructs is that the machine “sees” the context (read-only
access, with no modification possible). The context contains the main sets, constants,
axioms, and theorems. Carrier sets and enumerated sets are declared in the Sets sec-
tion. Since, an enumerated set is a collection of elements, additionally, its members are
defined as constants in the Constants section. An axioms section contains assignments
according to which constants are defined as unique values.

143

A machine consists of state variables, invariants, and events. State variables repre-
sent states which the machine can be in. The Invariants box is comprised of the condi-
tions that should hold throughout the whole execution of the machine. The events box
contains the initialization construct and all events of the machine. Each event contains
one or several guards and one or several actions.

Definition 1 (Consistent Event-B Machine). An Event-B machine is consistent if the
following conditions hold:

– Invariant preservation : for any event, assuming the invariant and guard are true,
then the invariant and action are consistent (do not result in a contradiction).

– Feasibility: given any event, if the guard holds, then it is possible for the action to
be performed.

It is possible to define an operational semantics for Event-B machines, over which
the runtime execution of the modeled system can be understood. Essentially, this is
done by assuming the the initialization constraints to hold over the state of the machine
(actual values assigned to its set of variables), and then successively selecting events
based on guard checks over the variables. Each event selection will result in the action
condition changing the state of the system. The resulting sequence of events is a trace
of the machine. A machine will usually have a potentially infinite number of traces, due
to the nondeterminism of guard selection and the nondeterminism within actual actions.

4 Semantic Embedding of Normative Ontologies in Event-B

In MDA terms, ontologies and norms represent a computation independent model
(CIM) and Event-B machines represent platform indepedent model (PIM). CIM does
not contain information of computational nature and usually describes the state of af-
fairs verbally or using high-level logical expressions. Whereas in PIM, one can find
model descriptions defined in a more mathematical manner.

In this section, we are providing a stepwise detailed mapping of our normative rule
to the Event-B machine. It is important to note that we are applying our formal definition
of the mapping described in Appendix.

4.1 General Mapping Strategy

The mapping of affordances is straightforward. The general framework is shown in
Fig. 2.

All the elements of the source and target models are marked with different patterns
to be able to segregate separate mappings of the subclasses of affordances to Event-B
constructs: agents are mapped to machines, business entities and relations are mapped
to Event-B sets, relations and state variables, and communication acts are mapped to
events. Generating events is a rather detailed transformation and we describe it more
extensively below.

The transformation of normative constraints is more difficult. Conceptually, norms
of the form (2) appear similar in form to a machine event:

144

agents

business entities

comm. acts

relations

 Transformation

events machines
sets

set(state) variables
axioms

machine context ontologies and norms

relations

Fig. 2. The general framework of the transformation.

– A trigger and pre-condition correspond to a guard. The former defines the situation
that must hold before an agent can act. The latter defines the state that must hold
before a machine can perform an action.

– The responsibility modality Ea corresponds to the location of the event within the
machine corresponding to agent a.

– The deontic modality Ob/Pe post-condition identifies whether the action corre-
sponding to post-condition should be necessarily performed, or whether execution
of another (skip action) is possible instead. The Im deontic modality means the
negation of the post-condition holds.

Because the normative constraints are essentially abstract business rules, while the con-
ditions of the B machine define further implementation-specific detail, the mapping will
depend on how we interpret relations and functions of the ontology. For this purpose our
transformation must be based on a given semantic mapping of individual relations and
functions to B relations and functions. We assume this is defined by a domain expert
with the purpose of wide reusability for the ontology’s domain.

4.2 Example: A Stepwise Transformation of receive order

Space does not permit the full definition of the MDA transformation. Instead, we il-
lustrate the idea by showing how the transformation applies to a single norm – that of
receive order in the example.

Let us consider a norm for receiving an order described in Table 1. This norm ge-
nerates event receive order in machine e, because e is the responsible agent for the
effect construct. Besides agent e, the norm contains another agent cc. Consequently, its
corresponding mapping will also affect in certain ways the appropriate machine of cc
as we illustrate below.

Norm receive order(oo,cc,e) contains a composite guard, well-formedness con-
straint of which is defined as follows

WFC0
(GUARD(¬ordered by(oo, cc) ^ ¬ordered(oo, e))) ⌘

WFC0
(GUARD(¬ordered by(oo, cc))) [WFC0

(GUARD(¬ordered(oo, e))) ,
(3)

and is recursively formalized as

GUARD(¬ordered by(oo, cc) ^ ¬ordered(oo, e)) =
GUARD(¬ordered by(oo, cc)) ^ GUARD(¬ordered(oo, e)) .

(4)

145

Each pre-condition, ¬ordered by(oo,cc) and ¬ordered(oo,e), contain instances of En-
tity and Agent. Furthermore, one of them contains an instance of an agent different than
e. In our approach, since these guards are of the form R(a,c) we formally define them
as follows:

¬ordered by(oo, cc) '7! p¬oo 2 ordered byq , (5)

where each variable is rigorously defined as
8
>>>>>>>>>><

>>>>>>>>>>:

pooq 2 ExtVAR(cc),
pordered byq 2 ExtVAR(cc),

poo 2 Orderq 2 INV(cc),
pordered by ✓ Orderq 2 INV(cc),

pooq 2 ExtVAR(e),
pordered byq 2 ExtVAR(e),

poo 2 Orderq 2 INV(e),
pordered by ✓ Orderq 2 INV(e)

9
>>>>>>>>>>=

>>>>>>>>>>;

2 WFC0
(GUARD(¬ordered by(oo, cc))) ;

(6)
and

¬ordered(oo, e) '7! p¬oo 2 orderedq , (7)

where for each variable we have
8
>><

>>:

pooq 2 IntVAR(e),
porderedq 2 IntVAR(e),
poo 2 Orderq 2 INV(e),

pordered ✓ Orderq 2 INV(e)

9
>>=

>>;
2 WFC0

(GUARD(¬ordered(oo, e))) . (8)

Note that our transformation produces a well-formed condition that oo is both an
external and an internal variable of machine e. This is not a problem, as we can as-
sume that property of being external (ExtVAR) overrides being internal (IntVAR). This
is because in Event-B a variable is rendered external simply by having its name shared
between two machines.

Variable oo is defined as shared variable (ExtVAR), being an instance of Entity Or-
der. Additionally, it can be seen that in (6) and (8) a definition of oo as an instance
of Order is represented as an invariant construct (denoted as INV). Guard definitions
(5) and (7) with an invariant specification are used in generating Event-B invariants and
sets, where only instances of entities are involved (note: instances of Agent are irrelevant
in generating sets). Applying this to our norm yields an invariant of the form oo 2 Order
for both machines, because variable oo is shared. Shared variable ordered by and inter-
nal (to machine e) variable ordered are defined as subsets of Order and these constraints
are specified as invariants ordered by ✓ Order and ordered ✓ Order, respectively.

Furthermore, each machine has an event with its guard defined:

p¬oo 2 ordered byq 2 cc (9)

and
p¬oo 2 orderedq 2 e . (10)

146

Communication act receive order(oo,cc,e) relates the instance of Entity oo to in-
stances of Agent cc and e. For this reason we are first generating an action for invoking
this event. The machine that is calling event receive order is cc and the machine which
contains this event is e, because the responsible agent in our norm is e. Therefore, for
machine cc we have

ACTION(receive order(oo, cc, e)) ⌘ preceive ordercall := >q , (11)

where we type a shared variable as:

preceive ordercall 2 BOOLq 2 INV(cc) ^ INV(e) , (12)

which represents an invariant for machines cc and e. Shared variable receive ordercall
is constrained strictly to machines cc and e:

receive ordercall 2 ExtVAR(cc) ^ ExtVAR(e) . (13)

The definition of the calling event in machine cc will take the following form:

pEvent receive order trigger b=q
WHEN ¬oo 2 ordered by 2 cc .
THEN receive ordercall := >

(14)

The guard for p'(receive order)q should include additionally to (10) the following
constraint to enable the communication between machines cc and e:

preceive ordercall = >q 2 GUARDFOR('(receive order), e) (15)

under the side-condition that

preceive ordercall = ?q 2 GUARDFOR(x, e) (16)

for every event x 2 e such that x 6= '(receive order) in order to prevent unwanted
invocations of '(receive order) by other events in e. p'(receive order)q’s final action
should include

preceive ordercall := ?q . (17)

The mapping of meaning of the norm

8 cc : Customer • 8 oo : Order • 8 e : eOrder • receive order(oo, cc, e) !
ordered by(oo, cc) ^ ordered(oo, e) ^ oo.status = received ^ e.processing = >

(18)

yields the following rules

ordered by(oo, cc) '7! pordered by := ordered by [{oo}q
2 ACTIONFOR('(receive order), e)

(19)

and

ordered(oo, e) '7! pordered := ordered [{oo}q
2 ACTIONFOR('(receive order), e) ,

(20)

147

and for function status with argument oo we effectively have

oo.status = received '7! pstatus(oo) := receivedq
2 ACTIONFOR('(receive order), e)

(21)

and for function processing with argument e, we define

e.processing = > '7! pprocessing := >q 2 ACTIONFOR('(receive order), e) . (22)

We now have to include the definition of function status in our machine e

status 2 IntVAR(e), (23)

and since status is a function, the transformation creates an appropriate invariant for it:

pstatus 2 Order ! STATUSq 2 INV(e) , (24)

where STATUS is an enumeration set with the predefined values which are taken from
the ontology and received 2 STATUS.

The full definition of event receive order of machine e will take the following form:

pEvent receive order b= q
WHEN receive ordercall = >

¬oo 2 ordered
THEN ordered := ordered [{oo} 2 e .

ordered by := ordered by [{oo}
status(oo) := received
processing := >
receive ordercall := ?

(25)

The overall mapping of norm receive order(oo, cc, e) is shown in Table 2.

5 Conclusion and Related Work

In this paper, we have provided a detailed description of our MDA mapping approach
that we have applied for implementing the transformation from normative ontologies
and norms to Event-B machines in order to address the semantic gap. For our source
model we have combined MEASUR with the action logic and deontic logic in the
light of the theory of normative positions. We have shown how semantic embedding
of normative ontologies can be performed in Event-B for norm receive order. We have
also given a description of the implementation by presenting different components of
the transformation and their formal definitions, and provided a formal definition of the
transformation in the appendix.

There are a number of related approaches for enriching workflow models [5,6]. One
of them is showing transformation from BPEL4WS to full OWL-S ontology to provide
missing semantics in BPEL4WS. BPEL4WS does not present meaning of a business
process so that business process can be automated in a computer understandable way

148

Table 2. Norm mapping for receive order

Norm Generated Constructs
MACHINE cc MACHINE e

VARIABLES VARIABLES
receive ordercall receive ordercall, ordered
oo, ordered by oo, ordered by, status, processing

INVARIANTS INVARIANTS
receive ordercall 2 BOOL receive ordercall 2 BOOL
oo 2 Order oo 2 Order
ordered by ✓ Order ordered by ✓ Order

ordered ✓ Order
status 2 Order ! STATUS
processing 2 BOOL

Event receive order trigger b= Event receive order b=
8 cc : Customer • 8 oo : Order • 8 e : eOrder• WHEN WHEN

¬ordered by(oo, cc) ^ ¬ordered(oo, e) ! ¬oo 2 ordered by receive ordercall = >
Ee Ob receive order(oo, cc, e) ¬oo 2 ordered

'7! THEN THEN
8 cc : Customer • 8 oo : Order • 8 e : eOrder• receive ordercall := > ordered := ordered [{oo}

receive order(oo, cc, e) ! ordered by(oo, cc)^ ordered by := ordered by [{oo}
ordered(oo, e) ^ oo.status = received^ status(oo) := received

e.processing = > processing := >
receive ordercall := ?

END END
END END

[7]. They are using overlap which exists in the conceptual models of BPEL4WS and
OWL-S and perform mapping from BPEL4WS to OWL-S to avoid this lack of seman-
tics.

Norms are used in different areas for regulating and constraining behavioral patterns
in certain organized environments. For example, in the area of artificial intelligence
and multi-agent systems [8], agents need to organize their action patterns in a way to
avoid conflicts, address complexity, reach agreements, and achieve a social order. These
patterns are specified by norms which constrain what may, must and must not be done
by an agent or a set of agents. The fulfillment of certain tasks by agents can be seen as
a public good if the benefits that they bring can be enjoyed by the society, organization
or group [8,9].

There are several works in the scope of MDA devoted to CIM-to-PIM transfor-
mation. For example, Rodriguez, et al. [10] define CIM-to-PIM transformation using
QVT mapping rules. The model of the information system that they obtain as a PIM
are represented as certain UML analysis-level classes and the whole idea is reflected in
a case study related to payment for electrical energy consumption. This work was con-
tinued [11] by extending CIM definitions of BPMN to define security requirements and
transforming them into UML use cases using QVT mapping rules. Another approach
described by Wil van der Aalst, et al. [12] meets the difficulty of BPEL. While being
a powerful language, BPEL is difficult for end-users to use. Its XML representation is
very verbose and only readable for the trained eye [12]. It describes implementation of
the transformation from Workflow-Nets to BPEL which is built on the rich theory of
Petri nets and can also be applied for other languages.

The Event-B language was successfully applied in several serious projects where
there was a need for rigorous and precise specification of the system. For example,
Rezazadeh, et al. [13] discuss redevelopment of the central control function display and
information system (CDIS). CDIS is a computer-based system for controlling important

149

airport and flight data for London terminal control center. The system was originally
developed by Praxis and was operational but yet had several problems related to the
questions of formalization. Namely, the problems included difficulty of comprehending
the specifications, lack of mechanical proof of the consistency and difficulties in dis-
tribution and refinement. These problems were addressed in redeveloping the system
using the advantages of the Event-B language and Rodin platform.

Future work will investigate how our B-based PIMs can be further transformed into
an actual platform specific solution utilizing industrial BPM solutions. We hope that
our specifications involving data and operations making them semantically richer will
map naturally onto the modular technologies employed in, for example, WWF.

References
1. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems.

The MIT Press (2002)
2. Hepp, M., Roman, D.: An Ontology Framework for Semantic Business Process Manage-

ment. In: Proceedings of the 8th International Conference Wirtschaftsinformatik 2007, Uni-
versitaetsverlag Karlsruhe (2007)

3. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press (2000)
4. Back, R.J.: Refinement Calculus, Part II: Parallel and Reactive Programs. In: de Bakker,

J.W., de Roever, W.P., Rozenberg, G. (eds.) Stepwise Refinement of Distributed Systems.
LNCS, vol. 430, pp. 67–93. Springer, Heidelberg (1990)

5. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity Between Semantic Busi-
ness Process Models. In: Roddick, J.F., Hinze, A. (eds.) Fourth Asia-Pacific Conference on
Conceptual Modelling (APCCM2007), Conferences in Research and Practice in Information
Technology, vol. 67, pp. 71–80. Australian Computer Society, Inc. (2007)

6. Halle, S., Villemaire, R., Cherkaoui, O., Ghandour, B.: Model Checking Data-aware Work-
flow Properties with CTL-FO+. In: Proc. of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 2007), pp. 267–278. IEEE Computer Society
(2007)

7. Aslam, M.A., Auer, S., Böttcher, M.: From BPEL4WS Process Model to Full OWL-S On-
tology. In: Proc. of the 3rd European Semantic Web Conference, Budva, Montenegro (2006)

8. d’Inverno, M., Luck, M.: Understanding Agent Systems. Springer Series on Agent Technol-
ogy. Springer, Heidelberg (2004)

9. Castelfranchi, C., Conte, R., Paolucci: Normative Reputation and the Costs of Compliance.
Journal of Artificial Societies and Social Simulation 1(3) (1998)

10. Rodríguez, A., Fernández-Medina, E., Piattini, M.: CIM to PIM transformation: A reality.
In: Xu, L.D., Tjoa, M., Chaudhry, S. (eds.) International Conference on Research and Prac-
tical Issues of Enterprise Information Systems (2). International Federation For Information
Processing, vol. 255, pp. 1239–1249. Springer, Heidelberg (2007)

11. Rodríguez, A., Fernández-Medina, E., Piattini, M.: Towards CIM to PIM Transformation:
From Secure Business Processes Defined in BPMN to Use-cases. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) Business Process Management, LNCS, vol. 4714, pp. 408–415.
Springer, Heidelberg (2007)

12. van der Aalst, W., Lassen, K.: Translating Workflow Nets to BPEL. In: BETA Working
Paper Series. 145. Eindhoven University of Technology, Eindhoven (2005)

13. Rezazadeh, A., Evans, N., Butler, M.: Redevelopment of an Industrial Case Study Using
Event-B and Rodin. In: The British Computer Society - Formal Aspects of Computing
Science Christmas 2007 Meeting Formal Methods In Industry, pp. 1–8 (2007)

