
Towards Decision Centric Repository of Architectural
Knowledge

Bartosz Michalik and Jerzy Nawrocki

Poznan University of Technology, Institute of Computing Science,
ul. Piotrowo 2, 60-965 Poznań, Poland

{Bartosz.Michalik, Jerzy.Nawrocki}@cs.put.poznan.pl

Abstract. Architectural design and design decisions are the key components of
architectural knowledge. However, concerns, rationales, and risks should be also
captured to prevent knowledge vaporization. So, how to deal with architectural
knowledge in incremental knowledge refinement? We believe that usage of the
knowledge repository system can support architecture evolution. In this paper, a
model of knowledge repository is presented. In this model, the decision-centric
approach is complemented with the architectural views to support indirect inter-
relations between design decisions. Support for agile development was one of the
key aspects of the model design, therefore knowledge vaporisation might be re-
duced.
Keywords: Architectural knowledge management, Architectural design deci-
sions, Architectural description

1 Introduction

Software architecture has become an important concept in research and industry. Gener-
ally speaking software architectural description is a response to the customer concerns
(requirements). Thus, this description serves as a primary vehicle for communication
among stakeholders [1]. Architectural knowledge is a more general concept. The de-
sign decisions, reasoning behind them, and dependencies as well as architectural risks
or trade-offs compose it. All this information help us to better understand the nature
of the system being built. In addition, management of the knowledge helps to mitigate
the risk of project failure, as various problems can be discovered in the early phase of
software development.

However, design of software architecture is an iterative and a collaborative task.
Often work on architecture begins when only a part of the requirements set is specified.
Moreover, requirements can be modified at every stage of the development process.
This is especially visible in the agile approaches to the software development.

Although multiple models, method and tools were proposed by researchers they
failed confrontation with practice [2]. We believe that the benefits of the architectural
knowledge acquisition can be observed when the functional knowledge management
tool is available.

In this paper the model of architectural knowledge management repository is pre-
sented. In the model the design decisions are complemented with the architectural per-
spectives. It captures the architectural knowledge artifacts stated above. In addition we
try to address the following problems:

4

– How to maintain the consistency of architectural descriptions in iterative architec-
ture refinement?

– How to manage changes in requirements or architectural decisions?
– How to assess impact of change?

This paper is organized as follows. First, the current research in the field of archi-
tectural knowledge is discussed. Then, in Section 3 the existing models are compared.
Next, in Section 4, architecture knowledge repository model is presented. In Section 5
the Ksantypa system is taken to illustrate some features of the model. Finally, the paper
is concluded with the discussion of future works.

2 Related Work

One of the most popular architecture description (AD) models is probably the 4+1
views model proposed by Kruchten [3]. In that approach architecture is described using
5 views: logical (functional requirements), development (software module organisa-
tion), process (system performance, distribution, integrity), physical (system topology)
and scenarios (cooperation of components presented in previous views). Recently, bas-
ing on the 4+1 views, the “3+1 views in 3D” was proposed [4], which brings the idea
of presenting the software architecture in 3-dimensional space.

Multiple perspectives are also used by Clements [1] in the ”Views and Beyond”
approach. The work suggests components and connector (C&C) perspective for docu-
menting the runtime entities and their interactions.

Finally, views are very important part of architecture model proposed in IEEE
1471 [5]. In the model architectural description consist of multiple views from which,
each conform to given viewpoint. Architectural description identifies customers con-
cerns and provides rationales.

Although perspective base approach became a reference point for model presented
in IEEE 1471, the drift toward design decisions can be observed in its successor ISO
42010 [6]. In this proposal design description is defined as “a choice made that ad-
dresses one or more architecture related concerns and affects (directly or indirectly) the
architecture.”

More precise definition was suggested by Bosch [7]. In addition to foregoing defini-
tion, design decision is a set containing “rationales, the design rules, design constrains
and additional requirements”. Bosch defines software architecture as a set of the archi-
tectural design decisions. Every decision can bring a modification to the architectural
model presented in C&C view. In his proposal the new view for presenting design de-
cisions was provided. The need for capturing design decisions was also presented in
earlier works [8,1,9]. Multiple works discuss design decision dependencies [10,2] and
traceability [11].

Architecture knowledge management requires a tool support. The evaluation shows
that there is a gap between tools for capturing rationale, software architecture and re-
quirements [12]. The author claims that the gap can be closed with the tools that support
design decisions concept. Several design decision oriented tools [13,14,15] are avail-
able. However, those are only research tools and to our best knowledge no industrially
used tool exists.

5

3 Differences Between Description Models

The usage of architectural knowledge (AK) can follow several scenarios: incremental
architectural review, review for specific concern, evaluation of impact, getting a ratio-
nale, study the chronology, adding or changing a decision etc. [16]. Therefore, archi-
tectural knowledge should be captured, described and stored in a form easy to interpret
and extract. Architectural knowledge management system should support stakeholders
in designing architecture that meets their business needs. However, architecture know-
ledge refinement is iterative task. During this process stakeholders face imprecise and
unstable requirements. They may make wrong choices. Therefore traceability and con-
sistency management should be supported in AK models.

The view (perspective) base approach presents architecture as a whole. With the
use of views, different aspects of design are documented. However, researchers expose
some drawbacks of this approach. Problems with conveying changes, traceability, do-
cumenting implications are identified [17]. Moreover design rules and constrains can
be easily violated in view based models [7]. Another drawback is that the stakeholders’
concerns are not easy to identify in this approach, as design decisions are not explicitly
stated.

For documenting architecture in Model Driven Architecture(MDA) view based ap-
proach can be used. In MDA [18] architecture is presented at two levels of details.
Platform Independent Model (PIM) describes a system without implementation details
and Platform Specific Model (PSM) with full knowledge of the final implementation
platform. From architectural knowledge management point of view this model helps to
separate technical details from construction ones.

Design decision based approach directly addresses the architectural concerns. In
other words requirements (architectural What?) immediately meet solutions (architec-
tural How?). In this model all decisions are interrelated, so design space can be ex-
plicitly explored [7]. This also provides space for precise rationale capturing. Agile
documenting is supported because an architect can focus on currently defined require-
ments and build appropriate solutions. Some papers present the architecture as a set
of related design decisions. However this approach does not facilitate overall look on
architecture. Moreover in incremental architecture refinement maintainability problems
can occur.

Design decisions model provides coarse-grained view on the architecture whereas
view model provides fine-grained overview. We believe that advantages of both the view
and decision based approaches can be combined. In our model design decisions are first
class entities, yet views are also used.

4 Architectural Knowledge Description Model

To our best knowledge, first attempt to combine architectural perspective and design
decisions was published by Bosch [7]. Archium meta-model consists of architecture
model (based on C&C view) and design decisions model. Each design decision contains
design fragment, which describes an architecture modification (architectural fragment
and delta) provided with the decision. However this model supports only two types of
decisions proposed by Kruchten [19] .

6

In our model structural, behavioral and technical design decisions are supported.
Model of architectural knowledge repository architectural description can be seen as
two related layers(see Fig. 1). They present the design decision space and architectural
frame (C&C view is used). Architectural frame provides additional axis on which re-
lation between decisions can be observed and provides view on logical structure of the
system.

Fig. 1. Decisions mapped on architectural frame. In the top layer boxes represent requirements
and ellipses design decisions. In the bottom architectural components are presented using UML
components notation.

4.1 Design Decisions

To capture requirements we have adopted Bosch model, although design decision (DD)
are treated as a part of architectural description in our proposal. We define design deci-
sions using following elements:

Problem defines stakeholders’ concern. Problems are referred by design decisions
however this reference can be optional as DD may be consequence of others. Decision
can solve multiple problems or be partial solution to one of them. It can address var-
ious problems but from our point of view non-functional and functional requirements
are the most important. To handle non-functional requirements ISO25000 model [20]
is recommended.

Rationale is the reasoning behind the decision being taken. It describes why specific
solution was provided.

7

Decision type. Three types of design decisions were considered. Apart from suggested
documentation manners textural representation of design decisions can be used in each
type.

– Structural decisions are mostly used to describe components and connections cap-
tured in architectural frame (AF)(see Subsect. 4.2). Furthermore, they are used to
document other structural aspect of the system as the deployment or project organ-
isation.

– Behavioral decisions convey information about the dynamic aspects of the system.
To document decisions of this type, process perspective can be used.

– Technical decision presents the software components used to solve the problem or
integration guidance. This type of decisions together with architectural frame can
be interpreted as PSM.

Description provides information about the solution for the given concern. Both, tex-
tual and view based descriptions are in use. This description can contain design guid-
ance, rules and constrains.

Alternatives describes alternative solutions that were considered during the system de-
sign. Again, alternatives can be described with the use of views or textural information.

State contains information about the status of decision. It can be employed for main-
tainability purposes and change impact or repository consistency analysis. We suggest
usage of four states proposed, pending, approved and obsolete although other sets of
states can be used [14,19]. During knowledge repository refinement obsolete decision
can be transformed to other decision alternative or detached from decisions graph. Deci-
sion can be marked pending after architecture evaluation (when conflict was discovered)
or when related decision was changed. For architecture analysis one of the architecture
analysis method can be taken [21].

Maintainability information. This information can be used for documentation main-
tenance purpose. In description multiple attributes can be used but date of change and
decision owner should be specified.

Version. Each decision is versioned. With the use of version evolution of given decision
is recorded. Version is described with following attributes: change author, change date
and version number.

Each decision in knowledge repository can be interrelated with others. Decisions
can be related directly (with the use of dependence and refinement connectors) or in-
directly (with the use of architectural frame). Indirect relations are explained in fol-
lowing section of the article. Two types of direct relation are specified. Decision can
be a consequence (is consequence of relation) of other decisions or refine one of them
(is refinement of) (see Fig. 2). In addition, each decision can be bound with a risk in
architecture. There are also sensitivity and trade-off points [22] which can be related to

8

Fig. 2. Architectural knowledge repository model. Relation between requirements, design deci-
sions and architectural frame.

one or many decisions. Therefore, results of architecture analysis can be embedded into
architectural knowledge model and used for further analysis.

The importance of decision can be assessed with use of decision attributes and rela-
tions. It can be seen as a combination of importance of requirements which it satisfies.
When decision space is explored, one should understand why the given decision was
taken. The motivation for formation of the decision consist of: decision’s rationale, al-
ternatives and problem which is solved.

Model describes problem and architectural spaces (see Fig. 2). Binding between
architectural components and requirements is embedded in design decisions space.

In conclusions, design decision is a central point of our model. The decision space
provides solutions to business needs reported by stakeholders. This layer address all
problems directly and binds the requirements with the component model of the archi-
tecture. Additional artifact as risks, sensitivity and trade-off points are embedded in the
layer. Decisions are interrelated on two axis: direct (with the use of decisions connec-
tors) and indirect (with the use of architectural frame).

4.2 Architectural Frame

The architectural frame (AF) presents overall view on the designed system. The second
usage of this perspective in our architectural knowledge management system model is
to show another axis of decisions relations. To model AF Component and Connector

9

view was implemented. In this view, components are used to model processing units
and datastores. Connectors for interactions mechanisms [1]. The C&C view provides
mechanisms to capture complex architectures. The components and connectors are
bound with the use of ports (components interfaces) and roles (connectors interfaces).
The components have a composite structure. In other words each component can con-
tain other components. Additionally, each component and connection is versioned in
our model. Moreover components are contained in main module called System.

To document C&C view three notations were considered:

– ACME [23] is an architecture description language (ADL). ACME is built on a core
ontology of seven types of entities for architectural representation. It treats archi-
tecture as an annotated graph of components and connectors. Both language object
types can be attached with a set of properties. Apart from textural representation,
graphical modeling is possible with a use of Acme Studio.

– UML Real-Time profile [24] (UML-RT) was originally developed for telecom-
munication industry. The profile provides a natural home for expressing runtime
structures, and supplies a semantic mapping to UML. Modeling with use of this
profile is supported by commercial tools.

– UML Components diagram [25] was designed to support components modeling
in UML. Each component can provide or require specific interface. These interfaces
are used for modeling of communication between components. Multiple commer-
cial and non-commercial modeling tools are available.

All presented languages can be used to describe architectural frame in our model,
however to model Ksantypa 3 (see Section 5) UML Components diagram was used.

In proposed model to each component or connection multiple design decisions (DD)
might be attached. This feature provides a way of mapping decision directly on logic
structure of the system. Consequently system requirements also are mapped. There are
two types of links between DD and AF. The direct link connects design decision with
a specific component or connector. The inheritable link indicates that component and
its internal elements can be influenced by given design decision. If more precise linkage
should be provided, direct links must be used to point all affected parts of the model.

4.3 Architectural Knowledge Repository

When this model of repository is used several scenarios mentioned in previous section
can be applied. In following paragraphs some of them are presented in details:

Incremental architectural refinement. In this scenario architectural knowledge is
continuously updated. Multiple artifacts can be delivered by architect or after architec-
ture or requirements analysis meetings. Support for agile development methods is also
provided. Modules for existing requirements can be designed in details whereas deci-
sions and components refinement for unstable or general requirements may be post-
poned to the time when requirements are enhanced. Thanks to versioning chronological
aspect of changes can be captured. Additionally, new artifact are easy to assemble with
existing knowledge. Design decision space can be supplemented with new decisions.

10

As component is composite it can be easily refined. In addition links between model
elements in both layers can be used for consistency management. Each decision can be
reattached to more specific component when it appears. Therefore, the decision scope
can be stated accordingly to current needs and requirements knowledge.

Evaluation of change impact. When change is introduced its impact should be eva-
luated. There are changes in component model, problem and decision space possible.
Changes in architectural frame are in most cases a result of decision space modifica-
tion, although changes in decision space or requirements should be carefully reviewed.
As binding between decision and problem spaces is handled in the decisions layer,
impact of requirements change can be determined using decision-requirements graph.
The impact change can be observed in two dimensions: direct decisions interrelation
and architectural frame dependencies.

Exploration of decision space. We can explore decision space using various criteria.
Firstly, we can track relation between decisions. Secondly, we can use states or types to
extract decisions subsets. Moreover we can browse decisions which provides solutions
to specified groups of requirements. For example all decision concerning security is-
sues may be easily identified. Finally, architectural components can be used to identify
related decisions.

Combining this criteria we can build complex queries to repository which is hard to
achieve with the flat knowledge repository models. “Find approved decisions concern-
ing performance issues which influence data abstraction component.” can be given as
example.

Getting a rationale. As model support rationale capturing this scenario is easy to con-
duct. Rationales and motivations for given decisions are maintained and can be easily
found.

In brief, presented knowledge repository model supports incremental architecture
refinement. Additionally, consistency of architectural knowledge can be maintained
from very beginning. Model is equipped with mechanisms that simplify traceability
and analysis of data. The exploration of space can be performed with use of dependen-
cies or queries. In addition data mining of historical data (on other project in repository)
is possible. Views are used to capture solution to customer concerns but the scope of
information presented in the view depend on the decision attachment place. For exam-
ple deployment issues may be presented on the level of whole system or for specific
submodule.

5 Ksantypa Case

In the previous section model of the architectural knowledge management system was
presented. In this section application of this model to the real system architecture de-
scription is described. For this purpose the Ksantypa system administration module was
used. First, system concept is presented, after which part of the architectural model of
the system is discussed.

11

5.1 Introduction
Each year Poznan University of Technology serves thousands of applications. There
recruitment process is two phased. In first, the required documents are provided by can-
didates. Then recruitment committees creates rank lists of candidates for each speciali-
sation applicants can choose. In the last step accepted candidates confirm their choices
and become students. Unfortunately this process is time consuming for both sites. Ap-
plicants must visit university at least twice and spend their time in long queues. This
can be big obstacle for candidates living far from Poznan. On the other hand process oc-
cupy university human resources. Moreover it is error prone, as dean offices employees
transcribe application forms manually to existing system.

To solve this problems Ksantypa system was introduced. Ksantypa is an e-re-
cruitment system developed by Poznan University of Technology. It is designed to sim-
plify recruitment process at the university. In this year third version of the system is
developed. The Ksantypa3 is designed to serve all departments at the university and
provides tools for automatic rank list generation with the regards to applicants marks
and preferences in global manner. The only step which is performed in traditional way is
a provision of required documents by accepted applicants. Therefore, candidates handle
the data by themselves and must appear at the university only once, to finalize recruit-
ment process. System can be seen as two cooperating parts: candidates web portal and
recruitment administration module. In the following section administration module is
considered and will be referred as K3 system.

Administration module supports dean office employees, recruitment committees
members and system administrator. It provides functions for: defining a recruitment
for given semester for all departments and types of studies, examination handling, vali-
dating application documents, ranking applicants and qualifying students. To finalize
students qualification cooperation with other university system is required. In addi-
tion cooperation with banking systems is required to handle students fees. Apart from
above, multiple non-functional requirements were specified. The most important con-
cern changeability, security, performance and usability issues.

5.2 Architecture Discussion
To describe architecture of K3 architectural description model proposed in this paper
was used. Following considerations deal with the intermediate version of specification.
To simplify discussion, only part of design decision space is presented. K3 consist of
two main modules and was written in Java. XanUI is written with the use of GWT. This
module is responsible for handling user interaction. XanServ consist of several modules
which communication is based on OSGi specification [26]. The design decision space
is described in diagram 3. At this point we need to mention that this is not a proposal of
notation. Both part of diagram was generated with Graphviz tool to illustrate relations
existing in model. In the a) part interrelation between requirements (only non-functional
requirements are shown for diagram simplification) and design decisions are presented.
Requirements are represented with the green boxes. The full arrows represents is conse-
quence of relations. The is refinement of is introduced with empty arrow. This relation
is used between decisions D 03 and D 05.

The D 03 deals with the communication between XanServ modules.

12

D 03 – communication between modules is based on OSGi specification.

Problem. N 25 components must exchangeable without the need of restarting the pro-
duction server.

Rationale. OSGi was designed to handle dynamic exchange of modules. In addition
components can be loosely coupled and communicate with the use only specified inter-
faces (OSGi secure visibility of module content in the environment).

Decision type – behavioral.

Alternatives. As an alternative implementation of self hosted dynamic module load-
ing was considered. However this solution is not compatible with D 04 (use of
Springframework as a middleware layer).

Decision D 05 is a refinement of D 03 and describes the usage of Spring Dynamic
Modules as an OSGi implementation. It is also a consequence of usage Springframe-
work library in the system.

����

����	
����
��

��
		�
��

����
��

�����
���	

���	����

�������	��

����

����

�	
���	� ����	�

�����

����	
�

����

�� !

� "

�� #

��!�

���

���$

��

���"���%

���!

���#

���&

���'

�� %

�� '

��!

�� �

�� $

�� &

�� �

(� !

(��"

(��$

(� $

(�!"

(�!�

(� '

���!

���

(�!$

(�!'

(�!#

(�

(�!&

(�%�

(��'

(�!!

(�!%

(���

(��

(��&

(� �

(�%!

(� % ���

���!

���%

����

���"

���$

���#

���&

���'

�� ���

�� !

�� %

�� �

�� "

�� $

�� #

�� &

�� '

��!�

��!

��!!

��!%

�� ��

Fig. 3. Ksantypa design decision dependencies. Diagram a) decision space, b) decisions relations
with the use of architectural frame.

In the b) part of diagram relation between design decisions with the use of architec-
tural frame are presented. In the diagram architectural components are represented with
boxes and their containment relation with dotted arrows. Next, decisions are represented

13

with ellipses. The bindings between decisions and components are draw with the use
of dashed (for inheritable links) or regular (for direct links) arrows. Relations between
decisions and connectors are also possible but was not marked in the diagram. As was
mentioned before design decisions attached to the same component (or connector) are
related. Therefore D 19 and D 21 are related.

D 19 (usage of VPD mechanism) was taken to secure data access on the database
level. However D 21 concerns usage of shared database space for Ksantypa administra-
tion module and candidates web portal. As portal was not designed for the uses of VPD
mechanism integration risk was discovered which was recorded on discussed relation’s
axis.

In this section case study for model usage was described. Although description of
K3 architecture is not complete some characteristics of the knowledge repository model
can be observed. Model enable designer to use both view and decision descriptions.
This methods are complementary especially when architectural frame is taken into ac-
count. With the use of AF additional relations between requirements can be observed.
Therefore additional risks may be discovered.

6 Conclusions

Architecture is a result of multiple decision being taken. However, it is shaped by the
requirements stated for the system. With the use of our model the binding between
requirements and architecture is maintained. Requirements are addressed with the use
of design decisions which are first class entities in our approach.

The second important part of the model is architectural frame (AF). It provides
overall view on a component structure in built system. Additionally, AF provides
a space which interrelates design decisions. The analysis of those indirect dependen-
cies allow to find additional risks, trade-offs and conflicts in decisions space. AF has
the composite structure, which facilitates an incremental knowledge refinement. There-
fore, designers can focus on key problems specifying in detail some modules. It can be
done without description consistency loss.

Design decisions can be interdependent as well as bound with the requirements.
The analysis of these dependencies simplifies the change risk and impact evaluation. In
addition, decisions are documented with a number of attributes. With the use of depen-
dencies and attributes, decisions space can be explored in multiple dimensions. With
simple filtering technical decisions space is available. Adding another criteria techni-
cal decisions concerning performance issues are identified. Moreover, we belief that
historical knowledge mining can provide solutions to current problems.

To conclude, with the use of presented model the architectural knowledge artifacts
can be captured. Their interrelations empower multidimensional knowledge exploration
and traceability.

As the repository which uses this model is under development the future work in-
cludes finalization of the project and its industrial validation. In addition, the filed of
integration multimedia data from architectural meeting with existing knowledge will
be explored. Another challenge is extension of the model to support product lines. The

14

introduction of formal methods for consistency management in our model is also a prob-
lem awaiting answers.

References

1. Clements, D.: Documenting Software Architectures: Views and Beyond. Addison-Wesley
Professional (2002)

2. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning About Architectural Knowl-
edge. Quality of Software Architectures, pp. 43–58 (2006)

3. Kruchten, P.: The 4+ 1 View Model of architecture. Software, IEEE 12(6), 42–50 (1995)
4. Kennaley, M.: "The 3+1 Views of Architecture (in 3d)": An Amplification of the 4+1 View-

point Framework. In: Proc. of the 7th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA 2008), pp. 299–302. IEEE Computer Society (2008)

5. IEEE 1471:2000–Recommended Practice for Architectural Description of Software Inten-
sive Systems. (2000)

6. ISO/IEC: ISO/IEC 42010 (IEEE P42010), Systems and Software Engineering – Architecture
Description (WD3) (2008)

7. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
Proc. of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA 2005),
pp. 109–120. IEEE Computer Society (2005)

8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional (2003)

9. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley Profes-
sional (1999)

10. Tang, A., Jin, Y., Han, J.: A Rationale-based Architecture Model for Design Traceability and
Reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

11. Wang, Z., Sherdil, K., Madhavji, N.H.: Acca: An Architecture-centric Concern Analysis
Method. In: Proc. of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), pp. 99–108. IEEE Computer Society (2005)

12. Jansen, A., Bosch, J.: Evaluation of Tool Support for Architectural Evolution. In: Proc. of
the 19th IEEE International Conference on Automated Software Engineering (ASE 2004),
pp. 375–378 IEEE (2004)

13. Babar, M., Gorton, I.: A Tool for Managing Software Architecture Knowledge. In: Proc. of
the 2nd Workshop on Sharing and Reusing Architectural Knowledge, Rationale, and Design
Intent, p. 11-. IEEE (2007)

14. Capilla, R., Nava, F., Pérez, S., Dueñas, J.: A Web-based Tool for Managing Architectural
Design Decisions. ACM SIGSOFT Software Engineering Notes, 31(5) (2006)

15. Jansen, A., Van der Ven, J., Avgeriou, P., Hammer, D.: Tool Support for Architectural Deci-
sions. In: Proc. of the 6th Working IEEE/IFIP Conference on Software Architecture (WICSA
2007), pp. 4–. IEEE Computer Society (2007)

16. Kruchten, P., Lago, P., van Vliet, H., Wolf, T.: Building up and Exploiting Architectural
Knowledge. In: Proc. of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), pp. 291–292. IEEE Computer Society (2005)

17. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. Software, IEEE
22(2), 19–27 (2005)

18. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture–Practice
and Promise. Addison-Wesley Professional (2003)

19. Kruchten, P.: An Ontology of Architectural Design Decisions in Software Intensive Systems.
In: Proc. of the 2nd Groningen Workshop on Software Variability, pp. 54–61 (2004)

15

20. Software Engineering – Software Product Quality Requirements and Evaluation (SQuaRE)
– Guide to SQuaRE. ISO/IEC 25000:2005(E) (2005)

21. Michalik, B., Nawrocki, J., Ochodek, M.: 3-step Knowledge Transition: a Case Study on
Architecture Evaluation. In: Proc. of the 30th International Conference on Software Engi-
neering, pp. 741–748. ACM, New York, NY, USA (2008)

22. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures. Addison-Wesley
Boston, MA (2002)

23. Garlan, D., Monroe, R., Wile, D.: Acme: An Architecture Description Interchange Lan-
guage. In: Proc. of the 1997 Conference of the Centre for Advanced Studies on Collaborative
Research, pp. 169–183. IBM Press (1997)

24. Herzberg, D.: UML-RT as a Candidate for Modeling Embedded Real-time Systems in the
Telecommunication Domain. In: Proc. of the 2nd International Conference on The Unified
Modeling Language: Beyond the Standard, pp. 330–338. Springer, Heidelberg (1999)

25. Bjerkander, M., Kobryn, C.: Architecting Systems with UML 2.0. IEEE Software 20(4),
57–61 (2003)

26. Alliance, O.: Osgi Service Platform, Core Specification Release 4. Draft, (July 2005)

