
Bi-Criteria Test Suite Reduction by Cluster Analysis of
Execution Profiles

Alireza Khalilian and Saeed Parsa

Iran University of Science and Technology, Tehran, Iran
khalilian@comp.iust.ac.ir, parsa@iust.ac.ir

Abstract. The aim has been to minimize regression test suites while retaining
fault detection capability of the test suite admissible. An appropriate minimized
test suite should exercise different execution paths within a program. However,
minimization of test suites may result in significant fault detection loss. To al-
leviate the loss, a new bi-criteria heuristic algorithm, using cluster analysis of
test cases execution profiles is proposed in this paper. Cluster analysis of execu-
tion profiles categorizes test cases according to their similarity in terms of exer-
cising a certain coverage criterion. Considering additional coverage criteria the
proposed algorithm samples some test cases from each cluster. These additional
criteria exercise execution paths, different from those covered by the main testing
criteria. Experiments on the Siemens suite manifest the applicability of the pro-
posed approach and present interesting insights into the use of cluster analysis to
the bi-criteria test suite reduction.
Keywords: Software regression testing, testing criteria, test suite minimization,
test suite reduction, fault detection effectiveness

1 Introduction

Software regression testing is a critical activity in the development and maintenance of
evolving software. A major difficulty with the regression testing is the excessive number
of test cases accumulated while generating new test cases to test any new or modified
functionality within the program [1]. To resolve the difficulty and to reduce the ex-
cessive cost of regression testing, various coverage-based and distribution-based tech-
niques have been proposed [2,3,4,5,6,7,8]. These techniques attempt to permanently
discard redundant test cases and retain the most effective ones to reduce the excessive
cost of regression testing [6]. An effective technique for regression testing is to find
a minimal subset of test cases which satisfy all the test requirements as the original set
does [9]. A suitable subset could be found during the test case generation or after cre-
ating the test suite. Apparently the less the number of test cases the less time it takes to
test the program. This consequently improves the effectiveness of the test process. The
technique is commonly known as test suite reduction or test suite minimization in the
literature and the resulting suite is called representative set [3].

Almost all the previous test suite reduction techniques could significantly reduce
the size of the test suites. But an important issue deals with how well these reduced
suites can be compared with their corresponding un-reduced suites using criteria rather
than the suite size criterion. Since the purpose of test case execution is to detect faults

242

in the software, one measure of the suite quality is its fault detection capability. In fact,
a potential drawback observed in test suite reduction studies is that permanent removal
of test cases from a test suite may highly decrease the fault detection effectiveness of
the remaining suite. Thus, the tradeoff between the time required to execute and manage
test suites and their fault detection effectiveness should be considered when applying
test suite reduction techniques [2].

Coverage-based minimization techniques attempt to eliminate redundant test cases
while maximizing the code coverage of a program in order to ensure that all different
execution paths are exercised and the majority of the faults are revealed. However, test
cases considered as redundant in respect with the main testing criterion may be con-
sidered as essential test cases with respect to the additional criteria. This is evidenced
by the results of the empirical studies presented in [10]. These results suggest that us-
ing several coverage criteria, rather than a single criterion, during test suite reduction is
indeed useful in determining test cases which are likely to expose different faults. How-
ever, code coverage solely is not a sufficient criterion for selecting representative test
cases from the original test suite. This is because high code coverage may be achieved
by selecting simple test cases that do not reflect the program execution in real situations
[11] and the resultant reduced suite may not be efficient in detecting faults.

A number of recent papers have investigated techniques for test suite reduction us-
ing execution profiles, applied in distribution-based techniques [8]. An execution profile
generated by a test case identifies the program elements covered by the test case. For
example, a profile may indicate which branches or data flow relationships are exer-
cised by a test case. Distribution-based techniques reflect additional information about
test cases that can be helpful in determining effective test cases when reducing the
original test suite. Distribution-based test suite reduction techniques are examples of
observation-based testing [12]. Observation-based testing is potentially applicable in
situations where it is desirable to filter a large amount of test cases identifying a promis-
ing subset of test cases for conformance to the requirements [13]. Despite the effective-
ness in detecting failures, observation based methods do not necessarily provide full
coverage [8]. Moreover, empirical studies [8] show that the functionality of these meth-
ods varies with the size of the test suite. These studies also indicate that coverage-based
and distribution-based techniques often do not select similar test cases and are comple-
mentary because they find different faults.

To address the limitations of the coverage-based and distribution-based approaches,
in this paper a bi-criteria heuristic algorithm is proposed. The algorithm is applied to
each cluster of execution profiles of the test cases, iteratively. In each of its iteration,
a representative test case enhancing the cumulative coverage of the reduced test suite
is selected from each cluster. The selection is based on the two criteria to improve the
fault detection effectiveness. In fact, by selecting a test case from each cluster, all test
cases that are now redundant with respect to the first criterion, are re-verified. Among
such test cases, those that cover the maximum number of unmarked requirements with
respect to the second criterion are inserted into the reduced suite. At the end of this
process, the reduced suite is verified to be coverage adequate with respect to the sec-
ond criterion. If not, the described process is repeated considering the second criterion,
yielding bi-criteria coverage adequacy of the reduced suite. In order to evaluate the ap-

243

plicability of the proposed approach, we conducted experiments on the Siemens suite.
We also implemented the well-known H algorithm [3], to compare the results of redu-
cing suites using our distribution-based heuristic algorithm with those of minimizing
test suites using the H algorithm.

The rest of the paper is organized as follows: Section 2 discusses the background
of the test suite reduction techniques. Section 3 contains the outline of the proposed
approach. Section 4 describes the empirical studies and the obtained results. Finally,
conclusions are mentioned in section 5.

2 Background and Related Work

In this section, first the formal definition of the Test Suite Reduction problem will be
introduced. Then, some related studies in this context are described. Afterwards, two
general approaches to this problem are presented.

2.1 Test Suite Reduction

The first formal definition of test suite reduction problem introduced in 1993 by Harrold
et al. [3] as follows:

Given. {t1, t2, . . . , tm} is test suite T from m test cases and {r1, r2, . . . , rn} is set of
test requirements that must be satisfied in order to provide desirable coverage of the
program entities and each subsets {T1, T2, . . . , Tn} from T are related to one of ris such
that each test case tj belonging to Ti satisfies ri.

Problem. Find minimal test suite T 0 from T which satisfies all ris covered by original
suite T .

Generally the problem of finding the minimal subset T 0, T 0 ✓ T which satisfies all
requirements of T , is NP-complete [15], because we can reduce the minimum setcover
problem to the problem of test suite minimization in polynomial time. Thus, researches
use heuristic approaches to solve this problem. One heuristic method proposed by Har-
rold et al. [3], tries to find the smallest representative set that provides the same coverage
as the entire test suite does.

Related work in the context of test suite reduction can be classified into two main
categories: The works in which a new technique is presented [3,4,5,16,9,6,7], and em-
pirical studies on the previous techniques [1,2,15,17]. The works which propose a new
approach commonly include heuristic algorithms [14], genetic algorithm-based tech-
niques [18] and approaches based on integer linear programming [19].

Testing criteria are defined in order to help the selection of subsets of the input
domain to be covered during testing. For example, a code coverage criterion provides
test suite adequacy with respect to coverage of the program entities and also provides
a check on its quality. Assuming testing criterion C which satisfies by the test suite T ,
a test case, t, is redundant if the suite T � {t} also satisfies C [5]. Therefore, removing
those test cases which are redundant with respect to some specific criteria preserves test
suite’s adequacy with respect to it. In previous empirical studies [15] researchers com-
monly apply various code coverage criteria in their reduction techniques. The results of
empirical studies [2,17] show that the more percentage of the test suite size is reduced
the more percentage of faults will be lost.

244

2.2 Coverage-based Techniques

The main purpose of traditional software testing is to achieve the maximum code cove-
rage [8] and the main idea is that the test suite is capable of exercising the whole pro-
gram under test. In other words, there must be some test cases per program element
(including statement, branch, def-use pair and so on) which can cover it. This is due
to unreliability of the uncovered parts of the program during testing. But as mentioned
above, code coverage alone is not sufficient for selecting test cases. If the code coverage
is the main factor in determining the quality of a test suite, then it is desirable to have
the minimal subset of the test suite that covers the program elements the same as the
original suite [8]. Even if the code coverage is not the main factor in test suite quality,
it is possible to use it as the first step of other reduction approaches. The main purpose
of executing test cases is to expose faults as far as possible. Thus fault detection effec-
tiveness of a test suite is of great importance. On the other hand, due to large amount
of test cases and time constraints for retesting the software every time it modifies, it
is necessary to keep the size of the test suite manageable [2]. Therefore, there must be
some tradeoff between the suite size and its fault detection effectiveness.

Usually a test suite reduction technique attempts to remove redundancy among test
cases and retain the most effective ones into the test suite [6]. Effective test cases are
those that are capable of satisfying the most requirements as well as exposing the most
of the existing faults. Note that the more requirements are satisfied, the more execution
paths within the program would be exercised which yields the all kinds of the faults to
be exposed. When a reduction algorithm determines some test cases to be redundant,
it uses a certain criterion to do this. But redundant test cases which are thrown away
during test suite reduction may exercise unique situations in the software with respect
to another criterion [10]. For example, a reduction algorithm may select test cases which
cover the most number of branches of a program. During the reduction, some test cases
may cover the same branches as covered by test cases in the reduced suite. Hence,
such test cases are redundant and will be discarded. However, such test cases may not
be redundant with respect to a second criterion such as def-use pair. So they will be
preserved from discarding because they cover execution paths which may contain some
kind of faults. These results are evidenced by empirical studies in [10]. Therefore, using
multiple criteria during reduction is useful to select test cases that are more likely to
expose faults.

2.3 Distribution-based Techniques

Distribution-based techniques select test cases according to how their profiles are dis-
tributed by dissimilarity metric in the multi-dimension profile space [8]. Dissimilarity
metric is a function that produces a real number for each pair of profiles which shows
the degree of their dissimilarity. Distribution-based methods can be described using two
closely related techniques: cluster filtering and failure-pursuit. Cluster filtering calls for
using automatic cluster analysis to partition the test pool [8]. The purpose of cluster
analysis is to partition the population such that objects with similar attributes are in the
same cluster. After clustering, test cases are sampled from each cluster.

245

Distribution-based test suite reduction techniques are examples of observation-
based testing [8]. It calls for first taking an existing set of test cases (possibly a large
amount), and then executing them on an instrumented version of the program under
test in order to obtain execution profiles that characterize the executions [13]. Next, it
analyzes the profiles and selects a subset of test cases for conformance to requirements.
The analysis of profiles can be achieved using multivariate data analysis like clustering
[12]. Such kind of analysis can extract additional information from the profile data. In
general, observation-based testing is applicable when it is desirable to identify a promi-
sing subset of test cases for conformance to requirements as well as filtering legacy test
suites. An observation-based testing is defined by determining the following: (1) the
type of the execution profile (2) a filtering or reduction technique to select a subset of
executions and (3) an optional augmentation procedure. The type of the applied profi-
ling should reflect the runtime events. Software testing research and practice suggest
a variety of alternatives such as statement, basic block, branch, all-uses and so on [20].

The distribution-based techniques used for reducing test suites, determine some
characteristics of the distribution profile that are likely to detect faults, and apply them
during the selection of test cases. For example, clusters that have similar profiles contain
redundant test cases and selecting one or a few representatives are sufficient. Also iso-
lated profiles contain test cases that indicate unusual conditions and are likely to detect
faults. Test case cluster filtering is defined by selecting clustering algorithm, dissimi-
larity metric, number of clusters and sampling method [8].

3 The Proposed Approach

Our approach to test suite reduction has been motivated by combining the two general
techniques called distribution-based and coverage-based techniques. These techniques
are fully described in the previous section. Distribution-based techniques are capable
of determining similar test cases by means of clustering. These techniques cluster test
cases within a test suite to determine test cases which exercise similar execution paths
within the program. Since all the test cases within a same cluster have almost a same
execution profile, most of them are likely to be redundant. Hence, sampling some rep-
resentatives from each cluster may lead to a selection of distinguished test cases which
test different execution paths within the program under test. Therefore, the major bene-
fit of these techniques is to compose a reduced suite of distinct test cases with minimum
redundancy. However, despite of covering rather non-overlapping execution paths, dis-
tribution based techniques do not necessarily provide full coverage of the execution
paths. On the other hand, the coverage-based techniques insist on test suits with full
coverage rather than non-overlapping test cases. Therefore, we combined these two
techniques to provide a new bi-criteria technique to form full coverage reduced test
suites with minimum overlap in the execution profiles of the including test cases.

The more the number of testing criteria the bigger the size of the test suite will be.
However, experimental results show that two testing criteria can establish an appropriate
tradeoff between the suite size and the fault detection capability of the reduced test suite.
The general procedure of our approach is as follows: At the first step, the program is
instrumented according to two different coverage criteria. Then, test cases in the test

246

suite are executed over the instrumented version of the program to collect execution
profiles. Next, the collected profiles are clustered by means of a clustering algorithm.
The clustered test cases and the testing requirements are applied as inputs to run our
test suite reduction algorithm. After the reduction, the reduced suite will be coverage
adequate with respect to the first criterion. The adequacy of the reduced suite is verified
with respect to the second criterion. In the case of inadequacy, a similar algorithm using
the second criterion can be applied to augment test cases providing coverage adequacy
of the reduced suite with respect to the second criterion.

A detailed pseudocode description of the proposed algorithm is given in Fig. 1
and 2. Initially, all the testing requirements are unmarked and the number of unmarked
requirements considering each of the two testing criteria is counted for each test case.
Then, all the clusters of the test cases are sorted in ascending order of their number of
test cases. In the next step, the algorithm keeps looking for representative test cases in
each cluster of the sorted list of clusters until the selected representative test cases form
a coverage adequate test suite with respect to the first criterion. In each of its iteration
of the while-loop in Fig. 1, all the test cases within the next cluster of the test suite
are added to a set called list. A function, SelectTest, selects a representative test case
from the cluster and augments it to the reduced suite, RS. Each testing requirement sat-
isfied by the selected representative test case is marked as satisfied in two arrays called
marked1 and marked2. Each of these marked requirements may be satisfied by a num-
ber of test cases. If all the requirements satisfied by each of these test cases are marked
with respect to one of the two test criteria, the test case number is augmented to the
list of the redundant test cases, redundanti, for the ith criterion. Finally, all those cases
which are in the current cluster, list, and their numbers appear in the set {redundant1
– redundant2}, are augmented to a set, redundant. The function SelectSomeMoreTest-
Cases is then invoked to select some test cases from the set, redundant, and add the
selected test cases to the final reduced suite, RS.

The function SelectTest selects a test case from a certain cluster. This function at-
tempts to find a test case with maximum number of unmarked requirements with respect
to the first criterion. In case of a tie, the number of unmarked requirements for the se-
cond criterion is considered. If tie occurs again, sum of the satisfied requirements with
respect to the both criteria is considered, and finally a test case is selected randomly.
The function SelectSomeMoreTestCases attempts to find some test cases from redun-
dant that satisfy the maximum number of unmarked requirements with respect to the
second criterion. Each time a test case is selected those test cases that become redundant
are removed from the redundant set.

4 Empirical Studies

To evaluate and compare the proposed approach with prior approaches in test suite re-
duction area, an experiment similar to previous studies has been conducted. This section
describes the experiment.

247

Fig. 1. Pseudocode description of our proposed heuristic algorithm for test suite reduction.

4.1 Subject Programs and Measures

We used the Siemens suite as subjects in our experiments. Siemens suite includes seven
programs in C language developed by the researchers at Siemens Corporation for exper-

248

Fig. 2. Function SelectTest to select a test case from current cluster and function SelectSomeMo-
reTestCases to select some test cases from the redundant set into the RS.

iments with control-flow and data-flow test adequacy criteria [21]. These programs are
associated with several faulty versions. Each faulty version of each program contains a
single fault seeded in it. For each program there is a test pool which contains test cases
developed for different black-box and white-box testing objectives.

249

To investigate the effectiveness of our approach, we measured the following from
our experiments:

1. The percentage suite size reduction =

|T|�|TRed|
|T| ⇥ 100, where | T | is the number

of test cases in the original test suite and | TRed | is the number of test cases in the
reduced test suite.

2. The percentage fault detection loss = |F|�|FRed|
|F| ⇥ 100, where | F | is the number

of distinct faults exposed by original test suite and | FRed | is the number of distinct
faults detected by the reduced suite.

4.2 Clustering and Analysis Tools

In order to cluster execution profiles of test cases, Weka 3.5.8 [22] has been used. Weka
is a java-based tool that provides a uniform interface to many different learning algo-
rithms along with methods for pre and post processing and for evaluating the results of
learning schemas on any given dataset. It also provides implementations of the state-
of-the-art learning algorithms and has been tested under Linux, Windows and Macin-
tosh operating systems. Besides, we used SAS 9.1.3 [23] to create boxplots. Boxplot
diagrams are commonly used to visualize the empirical results in test suite reduction
studies.

Our experiments include a large number of test cases each of which covers a lot
of requirements. Thus, a large number of high dimensional data should be clustered.
However, fast and effective clustering of such data is extremely difficult because of their
large volume and high dimensionality [24]. On the other hand, clustering algorithms
need to set the number of clusters. Selecting the number of clusters affect the separation
of test cases. The CLOPE algorithm [24] is a fast and efficient method for clustering
large and high dimensional data. In this algorithm, a value called Repulsion is set which
controls level of intra-cluster similarity. The number of clusters changes by varying this
value. We felt that as a first step for exploration, using the CLOPE algorithm would lead
to a good compromise between fast and effective clustering and a reasonable number
of clusters.

4.3 Experiment Setup and Results

Our experiments follow a setup similar to that used by Rothermel et al [2]. For each
program, we created branch coverage adequate test suites for six different suite ranges
named as B, B1, B2, B3, B4 and B5. For each suite range, we first selected X⇤ LOC
test cases randomly from the test pool and added to the test suite, where X is 0, 0.1, 0.2,
0.3, 0.4 and 0.5 respectively and LOC is the number of lines of code for each program.
Then, randomly-selected test cases are added into the test suite as necessary so long
as each test case increased the cumulative branch coverage of the suite, until the test
suite becomes adequate with respect to branch coverage. In this way, the developed
test suites have various types and varying levels of redundancy exist between them. We
created 1000 such branch coverage adequate test suites for each program. In order to
gather branch coverage information of test cases, all programs were hand-instrumented.

250

In our experiments, we used all-uses coverage as the second criterion. We measured all-
uses coverage using the ATAC tool [25].

In order to evaluate the effectiveness of our approach, we implemented our algo-
rithm and applied it to the generated suites with branch coverage as first criterion and
all-uses as the second criterion. We also implemented the H algorithm [3] and con-
ducted similar experiments on the generated suites with respect to branch coverage.
The results of this experiment are shown in the columns labeled H and P in Table 1
for the H algorithm and the proposed algorithm respectively. The values in each row of
the table are average values for 1000 suites in each range. In this table, | T | indicates
for the original suite size, | F | for the number of faults exposed by the original suite,
| TRed | for the reduced suite size, | FRed | for the number of faults exposed by the
reduced suite size, %Size Reduction for the percentage suite size reduction and %Fault
Loss for the percentage fault detection loss.

The boxplot in the Fig. 3 shows the distribution of the percentage of size reduction
(SR) and percentage fault detection loss (FL) in the largest suite size range (B5) for each
program. In this figure, boxes are paired such that, white pair of boxes shows percentage
of size reduction and gray pair of boxes shows the percentage of fault detection loss. In
each pair, left side box indicates for our algorithm and the right side one indicates for
the H algorithm. For all programs, it is observed that the percentage suite size reduction
by the proposed algorithm is less than the respective suite size reduction using the H
algorithm. This result is expected since our approach selects some additional test cases
that are not redundant with respect to the second criterion though they are redundant
with respect the first criterion. For all programs, the percentage fault detection loss of
the suites reduced by the proposed algorithm is less than the respective suites reduced
by the H algorithm. We reason that the reduced suites generated using the proposed
algorithm, are more efficient due to two main causes. First, clustering results in parti-
tioning the test cases such that those with different execution profiles are gathered into
different clusters. This gives us the opportunity to select as much unique test cases as
possible.

Second, using second criterion during reduction may cause to selecting redundant
test cases with different coverage of execution path within the program. These are also
evidenced by the results of empirical studies.

To determine whether the degradation in fault detection loss observed for the pro-
posed algorithm over the H algorithm is statistically significant, we conducted a hypoth-
esis test for the difference of the two means [26]. The samples are the number of distinct
faults exposed by each of the 1000 reduced test suites for suite size range B5 using the
H algorithm and the proposed algorithm. We considered the null hypothesis that there
is no difference in the mean number of the exposed faults by the two algorithms. We
used a reference table of critical values presented in [26]. Table 2 shows the resulting
z values computed for the hypothesis test along with the percentage confidence with
which we may reject the null hypothesis. Note that for z values greater than 4.0, we can
reject the null hypothesis with the confidence over than 99.99 percent.

4.4 Threats to Validity

In this section, we describe the potential threats to validity of our study.

251

Table 1. The results of the experiments comparing the H algorithm and the proposed algorithm.

Suite % Size % Fault
Program size | T | | F | | TRed | | FRed | Reduction Loss

range H P H P H P H P
printtokens B 17.79 3.85 8.19 8.48 3.26 3.56 52.86 51.13 9.21 6.39

B1 29.4 4.01 8.22 8.64 3.23 3.51 69.13 67.66 14.66 10.80
B2 46.45 4.29 8.15 8.73 3.16 3.56 77.48 76.17 19.31 15.04
B3 65.48 4.53 8.05 8.72 3.25 3.57 82.58 81.41 23.42 19.08
B4 84.96 4.68 7.97 8.80 3.03 3.53 85.63 84.51 28.99 22.00
B5 107.63 4.92 7.98 8.95 3.07 3.61 87.90 86.89 33.97 24.06

printtokens2 B 13.41 8.47 8.01 8.99 8.17 8.27 39.08 31.62 4.46 2.28
B1 28.79 8.66 7.63 9.19 8.04 8.37 67.11 61.16 9.96 5.44
B2 51.68 9.24 7.13 9.40 8.10 8.57 79.47 74.57 12.88 6.99
B3 75.1 9.39 6.90 9.82 8.12 8.64 84.06 79.65 15.23 7.87
B4 99.73 9.53 6.64 10.07 8.19 8.75 87.74 83.69 16.78 8.04
B5 128.01 9.68 6.41 10.32 7.90 8.76 90.76 87.10 18.09 9.36

replace B 22.97 13.53 13.65 15.71 10.85 11.83 40.02 31.13 19.17 11.95
B1 38.36 15.49 13.52 16.11 11.01 12.23 61.15 53.99 29.92 20.22
B2 59.55 17.11 13.40 16.54 10.90 12.44 71.33 65.39 44.79 25.89
B3 84.94 18.64 13.18 16.84 9.97 12.83 78.28 73.24 49.69 29.94
B4 108.98 19.45 12.99 17.02 09.75 12.83 81.67 77.13 52.96 32.51
B5 131.09 20.34 12.82 17.04 08.65 13.11 84.22 80.18 55.99 34.00

schedule B 8.73 3.54 6.30 6.8 2.97 3.20 26.65 21.09 14.22 8.39
B1 18.82 4.57 6.19 7.16 2.89 3.30 60.46 55.05 34.36 25.82
B2 33.19 5.33 6.01 7.23 2.96 3.39 74.66 70.46 43.03 35.04
B3 46.76 5.74 5.96 7.32 3.02 3.49 79.81 76.22 46.02 37.87
B4 61.67 5.97 5.86 7.33 2.92 3.43 83.30 80.12 50.04 41.25
B5 76.22 6.10 5.84 7.28 2.85 3.38 85.56 82.49 51.91 43.30

schedule2 B 7.96 2.39 5.35 5.66 2.09 2.15 31.18 27.37 12.65 9.53
B1 18.06 2.77 5.24 5.77 2.08 2.17 64.17 60.86 21.99 17.97
B2 32.08 3.44 5.09 5.73 2.10 2.27 77.03 74.46 35.49 29.68
B3 44.69 3.88 5.00 5.77 2.03 2.39 80.81 78.63 39.96 33.03
B4 59.86 4.36 4.88 5.68 2.12 2.40 85.24 83.46 45.78 39.71
B5 74.77 4.86 4.72 5.61 2.06 2.51 87.77 86.04 51.94 43.38

tcas B 5.70 7.13 5.00 5.04 6.44 6.59 11.12 10.45 8.32 6.57
B1 9.22 8.70 5.00 5.10 6.09 6.52 39.53 38.56 26.04 21.48
B2 15.16 11.21 5.00 5.09 6.37 6.53 57.70 56.97 42.41 35.96
B3 21.27 13.61 5.00 5.08 6.58 6.68 66.06 65.50 52.95 43.98
B4 28.29 15.54 5.00 5.06 6.57 6.77 71.99 71.60 61.19 50.08
B5 35.70 17.28 5.00 5.05 4.74 6.64 76.35 76.05 64.06 55.13

totinfo B 9.02 13.85 5.54 6.34 12.89 13.17 36.97 27.28 6.69 3.84
B1 20.62 14.78 5.46 6.49 11.83 13.62 68.07 60.52 17.71 10.59
B2 36.74 16.11 5.33 6.51 11.91 13.86 78.66 73.68 25.99 17.06
B3 52.50 17.04 5.25 6.37 11.17 13.97 83.43 80.64 31.38 21.40
B4 70.25 17.77 5.20 6.33 10.86 14.10 87.10 83.66 32.09 22.87
B5 86.23 19.37 5.18 6.28 13.00 14.01 88.23 86.22 31.79 22.45

252

Table 2. Computed z value and the corresponding percentage of confidence for rejecting the null
hypothesis for each program.

Program Name Computed z value Percentage of confidence for
rejecting the null hypothesis

printtokens 15.46 >99.99%
printtokens2 15.36 >99.99%
replace 39.45 >99.99%
schedule 8.82 >99.99%
schedule2 8.20 >99.99%
tcas 16.01 >99.99%
totinfo 7.66 >99.99%

Fig. 3. The boxplot for the percentage suite size reduction and percentage fault detection loss.

Threats to construct validity. In our study, the measurement for the percent of fault
loss assumes simple model for cost which treats all faults as equally severe. But in
practice, faults have wide range of severity from less critical to more critical.

Threats to internal validity. The most important issue deals with hand-
instrumentation of code which we have done for obtaining branch coverage of test cases.
To validate the correctness of this process, the instrumentation was re-verified. Another
issue is composition of the test suites. However, we utilized the process of creating
suites which was employed in previous studies [2].

Threats to external validity. Siemens programs are widely used in software testing
studies. However, these programs are limited and their faults are known. Moreover, they
are not real programs and the faults are hand-seeded. Space program is a big and real
one, used to our case study. But it is one of such a program we used.

253

5 Conclusions

We have presented a new approach for test suite reduction that attempts to identify ef-
fective test cases in terms of their fault detection effectiveness. This approach is based
on the intuition that clustering of the test cases execution profiles, can partition the test
suite such that similar test cases in terms of exercising a certain coverage criterion,
would be in the same clusters. Hence, determining redundant test cases from essen-
tial ones could be done effectively and simply. In order to improve the fault detection
effectiveness of the reduced suite, we used two coverage criteria during the reduction
process. The results of empirical studies demonstrate the effectiveness of the proposed
approach by generating reduced test suites with less fault detection loss.

References

1. Rothermel, G., Harrold, M.J., von Ronne, J., Hong, C.: Empirical Studies of Test-Suite Re-
duction. Journal of Software Testing, Verification, and Reliability 12(4), 219–249 (2002)

2. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An Empirical Study of the Effects of
Minimization on the Fault Detection Capabilities of Test Suites. In: Proceedings of the Inter-
national Conference on Software Maintenance. IEEE Computer Society (1998)

3. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for Controlling the Size of a Test
Suite. ACM Transactions on Software Engineering and Methodology 2, 270–285 (1993)

4. Chen, T.Y., Lau, M.F.: Heuristics Toward the Optimization of the Size of a Test Suite. In:
Proc. of the 3rd International Conference on Software Quality Management, vol. 2, pp. 415–
424. Seville, Spain (1995)

5. Jones, J.A., Harrold, M.J.: Test-Suite Reduction and Prioritization for Modified Condi-
tion/Decision Coverage. IEEE Transactions on Software Engineering 29, 195–209 (2003)

6. McMaster, S., Memon, A.: Call-Stack Coverage for GUI Test Suite Reduction. IEEE Trans-
actions on Software Engineering 34, 99–115 (2008)

7. Tallam, S., Gupta, N.: A Concept Analysis Inspired Greedy Algorithm for Test Suite Min-
imization. In: Proc. of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering. ACM, Lisbon, Portugal (2005)

8. Leon, D., Podgurski, A.: A Comparison of Coverage-Based and Distribution-Based Tech-
niques for Filtering and Prioritizing Test Cases. In: Proc. of the 14th International Sympo-
sium on Software Reliability Engineering. IEEE Computer Society (2003)

9. Chen, Z., Xu, B., Zhang, X., Nie, C.: A Novel Approach for Test Suite Reduction Based
on Requirement Relation Contraction. In: Proc. of the 2008 ACM Symposium on Applied
computing. ACM, Fortaleza, Ceara, Brazil (2008)

10. Jeffrey, D., Gupta, N.: Improving Fault Detection Capability by Selectively Retaining Test
Cases during Test Suite Reduction. IEEE Transactions on Software Engineering 33, 108–123
(2007)

11. Marick, B.: The Craft of Software Testing: Subsystem Testing. Prentice Hall, Englewood
Cliffs, NJ (1995)

12. Leon, D., Podgurski, A., White, L.J.: Multivariate Visualization in Observation-based Test-
ing. In: Proc. of the 22nd International Conference on Software engineering. ACM, Limerick,
Ireland (2000)

13. Dickinson, W., Leon, D., Podgurski, A.: Finding Failures by Cluster Analysis of Execu-
tion Profiles. In: Proc. of the 23rd International Conference on Software Engineering. IEEE
Computer Society, Toronto, Ontario, Canada (2001)

254

14. Dickinson, W., Leon, D., Podgurski, A.: Pursuing Failure: the Distribution of Program Fail-
ures in a Profile Space. In: Proceedings of the 8th European Software Engineering Con-
ference Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, Vienna, Austria (2001)

15. Zhong, H., Zhang, L., Mei, H.: An Experimental Study of Four Typical Test Suite Reduction
Techniques. Information and Software Technology 50, 534–546 (2008)

16. Chen, T.Y., Lau, M.: A New Heuristic for Test Suite Reduction. Information and Software
Technology 40 (5-6) (1998)

17. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of Test Set Minimization on
Fault Detection Effectiveness. Software-Practice and Experience 28, 347-369 (1998)

18. Mansour, N., El-Fakih, K.: Simulated Annealing and Genetic Algorithms for Optimal Re-
gression Testing. Journal of Software Maintenance 11, 19-34 (1999)

19. Black, J., Melachrinoudis, E., Kaeli, D.: Bi-Criteria Models for All-Uses Test Suite Reduc-
tion.In: Proc. of the 26th International Conference on Software Engineering. IEEE Computer
Society (2004)

20. Harrold, M.J., Rothermel, G., Wu, R., Yi, L.: An Empirical Investigation of Program Spec-
tra. In: Proc. of the 1998 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering. ACM, Montreal, Quebec, Canada (1998)

21. Rothermel, G., Elbaum, S., Kinneer, A., Do, H.: Software-artifact Infrastructure Repository,
http://www.cse.unl.edu/ galileo/sir

22. Witten, H. Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. 2nd
ed., Morgan Kaufmann series in Data Management Systems (2005)

23. SAS 9.1.3 Documentation, SAS/GRAPH 9.1 Reference,
http://support.sas.com/documentation/onlinedoc/91pdf/index 913.html

24. Yang, Y., Guan, X., You, J.: CLOPE: a Fast and Effective Clustering Algorithm for Trans-
actional Data. In: Proc. of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, Edmonton, Alberta, Canada (2002)

25. Horgan, J R., London, S.A.: ATAC: A Data Flow Coverage Testing Tool for C. In: Proc.
Symp. Assessment of Quality Software Development Tools, pp. 2-10 (1992)

26. Freund, J.E.: Mathematical Statistics. 5th ed. Prentice-Hall (1992)

