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Abstract. A new software tool for web–server clusters development is
presented. The tool consist of a set of predefined Hierarchical Timed
Coloured Petri Net (HTCPN) structures – patterns. The patterns make
it possible to naturally construct typical and experimental server–cluster
structures. The preliminary patterns are executable queueing systems. A
simulation based methodology of web–server model analysis and valida-
tion has been proposed. The paper focuses on presenting the construction
of the software tool and the guidelines for applying it in cluster–based
web–server development.
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1 Introduction

Gradually, the Internet becomes the most important medium for conducting
business, selling services and remote control of industrial processes. Typical mod-
ern software applications have a client–server logical structure where predomi-
nant role plays an Internet server offering data access or computation abilities
for remote clients. The hardware of an Internet or web–server is now usually
designed as a set of (locally) deployed computers–a server cluster [3, 8, 13, 19].
This design approach makes it possible to distribute services among the nodes of
a cluster and to improve the scalability of the system. Redundancy which intrin-
sically exists in such hardware structure provides higher system dependability.

To improve the quality of service of web–server clusters two main research
paths are followed. First, the software of individual web–server nodes is modi-
fied to offer average response time to dedicated classes of consumers [7, 11, 12].
Second, some distribution strategies of cluster nodes are investigated [3] in con-
junction with searching for load balancing policies for the nodes [5, 18, 21]. In
several research projects reported in [8, 17, 19] load balancing algorithms and
modified cluster node structures are analyzed together.

It is worth noticing that in some of abovementioned manuscripts searching
for a solution of the problem goes together with searching for the adequate
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formal language to express the system developed [2, 8, 17–19, 21]. In [2, 18, 19,
21] Queueing Nets whereas in [17] Stochastic Petri Nets are applied for system
model construction and examination. However, the most mature and expres-
sive language proposed for the web–cluster modelling seems to be Queueing
Petri Nets (QPNs)[8]. The nets combine coloured and stochastic Petri nets with
queueing systems [1] and consequently make it possible to model relatively com-
plex web–server systems in a concise way. Moreover, there exists a software tool
for the nets simulation [9]. The research results reported in [8] include a sys-
tematic approach to applying QPNs in distributed applications modelling and
evaluation. The modelling process has been divided into following stages: sys-
tem components and resources modelling, workload modelling, intercomponent
interactions and processing steps modelling, and finally – model parameteriza-
tion. The final QPNs based model can be executed and used for modelled system
performance prediction.

The successful application of QPNs in web–cluster modelling become motiva-
tion to research reported in this paper. The aim of the research is to provide an
alternative methodology and software tool for cluster–based hardware/software
systems development. The main features of the methodology are as follows:

– The modelling language will be Hierarchical Timed Coloured Petri Nets
(HTCPNs) [6],

– A set of so called HTCPNs design patterns (predefined net structures) will
be prepared and validated to model typical web cluster components,

– The basic patterns will be executable models of queueing systems,
– A set of design rules will be provided to cope with the patterns during the

system model creation,
– The final model will be an executable and analyzable Hierarchical Timed

Coloured Petri Net,
– A well established Design/CPN and CPN Tools software toolkits will be

used for the design patterns construction and validation,
– The toolkits will also be used as a platform for the web–server modelling

and development,
– Performance analysis modules of the toolkits will be used for capturing and

monitoring the state of the net during execution.

The choice of HTCPNs formalism as a modelling language comes from the
following prerequisites. First, HTCPNs has an expression power comparable to
QPNs. Second, the available software toolkits for HTCPNs composition and val-
idation seem to be more popular than“SimQPN” [9]. Third, there exist a reach
knowledge base of successful HTCPNs applications to modelling and validation
of wide range software/hardware systems [6] including web–servers [13, 14, 20].
The rest named features of design methodology introduced in this paper re-
sults from both generally known capabilities of software toolkits for HTCPNs
modelling and some previous experience gained by the authors in application
HTCPNs to real–time systems development [15, 16].

This paper is organized as follows. Section 2 describes some selected design
patterns and rules of applying them to web–server cluster model construction. An
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example queueing system, web–server subsystem and top–level system models
are presented. Section 3 touches the simulation based HTCPNs models validation
methods. Conclusions and future research program complete the paper.

It has been assumed that the reader is familiar with the basic principles of
Hierarchical Timed Coloured Petri Nets theory [6]. All the Coloured Petri Nets
in the paper have been edited and analysed using Design/CPN tool.

2 Cluster Server Modelling Methodology

The main concept of the methodology lies in the definition of reusable timed
coloured Petri nets structures (patterns) making it possible to compose web–
server models in a systematic manner. The basic set of the patterns includes typ-
ical queueing systems TCPNs implementations, eg. –/M/PS/∞ , –/M/FIFO/∞
[13, 14]. Packet distribution TCPNs patterns constitute the next group of reusable
blocks. They preliminary role is to provide some predefined web–server cluster
substructures composed from the queueing systems. At this stage of subsys-
tem modelling the queueing systems are represented as substitution transitions
(compare [13, 14]). The separate models of system arrival processes are also the
members of the group mentioned. The packet distribution patterns represented
as substitution transitions are in turn used for the general top–level system model

composition. As a result, the 3–level web–server model composition has been pro-
posed. The top–level TCPN represents the general view of system components.
The middle–level TCPNs structures represent the queueing systems intercon-
nections. And the lowest level includes executable queueing systems implemen-
tations.

The modelling methodology assumes, that the actual state of the Internet
requests servicing in the system can be monitored. Moreover, from the logical
point of view the model of the server cluster is an open queueing network, so the
requests are generated, serviced and finally removed from the system. As a result
an important component of the software tool for server cluster development is
the logical representation of the requests.

In the next subsections the following features of the modelling methodology
will be explained in detail. First, the logical representation of Internet requests
will be shown. Second, queueing system modelling rules will be explained. Third,
an example cluster subsystem with an individual load–balancing strategy will be
proposed. Fourth, Internet request generator structure will be examined. Finally,
top–level HTCPNs structure of an example cluster–server model will be shown.

2.1 Logical request representation

In the server–cluster modelling methodology that is introducing in the paper the
structure of the HTCPN represents a hardvare/software architecture of web–
server. Yet, the dynamics of the modelled system behavior is determined by
state and allocation of tokens in the net structure. Two groups of tokens has been
proposed for model construction. The fist group consist of so–called local tokens,
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that“live” in individual design patters.They provide local functions and data
structures for the patterns. The second group tokens represent Internet requests
that are serviced in the system. They are transported throughout several cluster
components. Their internal state carries the data that may be used for timing and
performance evaluation of the system modelled. As the tokens representing the
requests have the predominant role in the modelling methodology, they structure
will be explained in detail.

Each token representing an Internet request is a tuple

PACKAGE = (ID, PRT, START TIME, PROB, AUTIL, RUTIL)

, where ID is a request identifier, PRT is a request priority, START TIME is
a value of simulation time when the request is generated, PROB is a random

value, AUTIL is an absolute request utilization value, and RUTIL is a relative

request utilization value. Request identifier makes it possible to give the request
an unique number. Request priority is an integer value that may be taken into
consideration when the requests are scheduled according priority driven strategy
[7]. START TIME parameter can store a simulation time value and can be
used for the timing validation of the requests. Absolute request utilization value,
and relative request utilization value are exploited in some queueing systems
execution models (eg. with processor sharing service).

2.2 Queueing system models

The basic components of the software tool for web–server clusters development
that is being introduced in this paper are the executable queueing systems mod-
els. At the current state of the software tool construction the queueing systems
models can have FIFO, LIFO, processor sharing or priority based service dis-
cipline. For each queue an arbitrary number of service units may be defined.
Additionally, the basic queueing systems has been equipped with auxiliary com-
ponents that make it possible to monitor the internal state of the queue during
it’s execution.

The example HTCPNs based queueing system model is shown in fig. 1.
The model is a HTCPNs subpage that can communicate with the parent page
via INPUT PACKS, OUTPUT PACKS and QL port places. The request
packets (that arrive through INPUT PACK place) are placed into a queue
structure within PACK QUEUE place after ADD FIFO transition execu-
tion. TIMERS place and REMOV E FIFO transition constitute a clock–like
structure and make it possible to model the duration of packet execution. When
REMOV E FIFO transition fires, the first packet from the queue is withdrawn
and directed to the service procedure.

The packets under service acquire the adequate time stamps generated ac-
cording the assumed service time random distribution function. The time stamps
associated with the tokens prevent from using the packet tuples (the tokens) for
any transition firing until the stated simulation time elapses (according to firing
rules defined for HTCPNs [6]). The packets are treated as serviced when they
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Fig. 1: HTCPNs based –/1/FIFO/∞ queueing system model.

can leave OUTPUT PACKS place as their time stamps expired. The number
of tokens in TIMERS place defines the quantity of queue servicing units in the
system.

The main parameters that define the queueing system model dynamics are
the queue mean service time, the service time probability distribution function
and the number of servicing units. The capacity of the queue is not now taken
into consideration and theoretically may be unlimited.

For future applications the primary queueing system design pattern explained
above has been equipped with an auxiliary “plug–in”. COUNT QL transition
and TIMER QL, QL and COUNTER places make it possible to measure the
queue length and export the measured value to the parent CPNs page during the
net execution. TIMER QL place includes a timer token that can periodically
enable the COUNT QL transition. QL port place includes a token storing the
last measured queue length and an individual number of a queueing system
in the system. The COUNTER place includes a counter token used for the
synchronization purpose.

2.3 Cluster load–balancing model

Having a set of queueing systems design patterns some packet distribution HTCPNs

structures may be proposed. In [13] a typical homogenous multi–tier web–server
structure pattern was examined, whereas in [14] a preliminary version of server
structure with feedback like admission control of Internet requests was intro-
duced. The packet distribution pattern presented in this paper touches the load
balancing in web–server cluster problem.
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Fig. 2 includes an example cluster load–balancing HTCPNs model.The clus-
ter consist of 3 computers represented as FIFO1...F IFO3 substitution tran-
sitions, where each transition is attached to a FIFO queueing pattern. The
Internet requests serviced by the cluster arrive through PACKS2 port place.
A load balancer decides where the currently acquired request should be send to
achieve an uniform load for all, even heterogenic nodes of the cluster.

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10 PACKS13

PACKAGE

P G

PACKS2

PACKAGE

P G

QL1_

QL_A_ID
1‘(0,1)

QL2_

QL_A_ID

1‘(0,2)

QL3_

QL_A_ID

1‘(0,3)

FIFO1

H

FIFO2

H

FIFO3

H

B_TABLE

BAND_TABLE3

1‘((1,33),(34,66),(67,100))

T3

[b_guard31( b_tab3,pack)]

T4

[b_guard32
( b_tab3,pack)]

T5

[b_guard33( b_tab3,pack)]

H

BALANCE

Load Balancer Server Cluster

pack

pack

pack

pack
pack

pack

pack

pack

pack

pack

pack

pack

qlen_a_id1

qlen_a_id2

qlen_a_id3

b_tab3

count_bands_of3(qlen_a_id1,
qlen_a_id2, qlen_a_id3)

b_tab3

b_tab3

b_tab3

Fig. 2: Server cluster with load balancing model.

Generally, the load balancing procedure can follow the Fewest Server Pro-
cesses First [17] or the Adaptive Load Sharing [5] algorithms. In both algo-
rithms some feedback information about the state of cluster nodes under bal-
ance is needed. QL1 , QL2 and QL3 places (connected to corresponding QL

port places of FIFO queueing system models–compare section 2.2) provide the
queue’s lengths of each cluster node to the load balance procedure. The less
loaded server nodes have the highest probability to get a new request to serve.

The HTCPNs implementation of the algorithms involves periodical firing
BALANCE transition. During the firing, a set of threshold values is generated
and stored in B TABLE place. Finally, the thresholds values are mapped to
guard functions associated to T 3, T 4 and T 5 transitions and can be understand
as some kind of bandwidths for the requests streams. At current state of the
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design pattern composition, the only load balancer parameter that influences its
dynamics is the frequency at witch the load of cluster nodes is measured.

2.4 Request generator model

According to one of main assumptions of the web–server cluster modelling method-
ology presented in this paper, the system model can be treated as an open
queueing network. Consequently, the crucial model component must be a net-
work arrival process simulating the Internet service requests that are sent to the
server.

Fig. 3 shows an example HTCPNs subpage that models a typical Internet
request generator. The core of the packet generator is a clock composed from
TIMER0 place and T 0 transition. The code segment attached to the T 0 tran-
sition produces values of timestamps for tokens stored in TIMER0 place. The
values have the probability distribution function defined. As a result the Internet
requests appear into PACKS1 place at random moments in simulation time.
The frequency at which tokens appear in PACKS1 place follows the distribu-
tion function mentioned. PACKS1 place has a port place status and thereafter
tokens appearing in it can be consumed by other model components (e.g. server
cluster model).

T0
C

output (tim_val);
action
discExp(1.0/
pack_gen_mean_time);

COUNT0

INT 1‘1

TIMER0

TIMER 1‘1

PACKS1

PACKAGE

P Ge
n

tim1

tim1
@+tim_val

(n,1,intTime(),
ran’random_val(),0,0)n

n+1

Fig. 3: Web–server arrival process model.

The Internet request frequency can have any standard probability distribu-
tion function or can be individually constructed as it was proposed in [20].

2.5 Example top–level cluster server model

Having the adequate set of design patterns, a wide area of server cluster architec-
tures can be modelled and tested at the early stage of development process. At
the top–level modelling process each of the main components of the system can
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be represented as a HTCPNs substitution transition. The modelling method-
ology presented in the paper suggest that at the top–level model construction
the arrival process and main server cluster layers should be highlighted. After
that each of the main components (main substitution transition) should be de-
composed into an adequate packed distribution subpage, were under some of
transitions queueing system models will be attached. It is easily to notice that
a typical top–down modelling approach of software/hardware system modelling
has been adapted in the web server modelling methodology proposed in the
paper.

Fig. 4 includes an example top–level HTCPN model of server cluster that
follows the abovementioned modelling development rules. The HTCPN in fig. 4
consist of 2 substitution transitions. INPUT PROCS transition represents the
arrival process for the server cluster whereas SERV ER CLUSTER transition
represents example one–layer web–server cluster. The modelling process can be
easily continued by attaching the request generator model as in section 2.4 under
the INPUT PROCS transition and by attaching the cluster model with load
balancing module as in section 2.3 under SERV ER CLUSTER transition. The
final executable model can be acquired by attaching FIFO design patterns under
FIFO1, FIFO2 and FIFO3 transitions in the load balancing module (compare
sections 2.2 and 2.3).

Top-level cluster model

INPUT_PROCS

HS

PACKS1

PACKAGE

1 1‘(1,1,0,
29,0,0)
@[0]

SERVER_CLUSTER

HS

PACKS2

PACKAGE

OUTPUT

pack

Fig. 4: Example top–level cluster server model.

3 Model validation capabilities

Typical elements of HTCPNs modelling software tools are performance evalua-
tion routines, e.g.: [10] . The routines make it possible to capture the state of
dedicated tokens or places during the HTCPN execution. A special kind of log
files showing the changes in the state of HTCPN can be received and analyzed
offline.

At the currently reported version of web–server cluster modelling and analy-
sis software tool, queue lengths and service time lengths can be stored during the
model execution. Detecting the queue lengths seem to be the most natural load
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measure available at typical software systems. The service time lengths are mea-
surable in the modelling method proposed because of a special kind PACKAGE

type tokens construction (compare section 2.1). The tokens “remember” the sim-
ulation time at witch their appear at the cluster and thereafter the time at each
state of their service may be captured. In real systems the service time is one of
predominant quality of service parameters for performance evaluation.
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Fig. 5: Queue lengths (a) and service times (b) under overload condition.

The performance analysis of models of web servers constructed according the
proposed in the paper methodology can be applied in the following domains.
First, the system instability may be easily detected. The stable or balanced
queueing system in a steady state has an approximately constans average queue
length and average service time. On the contrary, when the arrival process is to
intensive for the queueing systems to serve, both queue lengths and service times
increase. This kind of analysis is possible because there are not limitations for
queue lengths in the modelling method proposed. Fig. 5 shows the queue lengths
(fig. 5a) and service time lengths (fig. 5b) when the example web server cluster
model presented in the paper experiences the permanent overload.

Second, the average values of queueing system systems parameters such as
average queue lengths and average servicing time for the balanced model can be
estimated. Provided that the arrival process model and the server nodes models
parameters are acquired from the real devices as in [11, 17, 19, 20], the software
model can be used for derivation the system properties under different load con-
ditions. In the fig. 6 queue lengths (fig. 6a) and service times (fig. 6b) under
stable system execution are shown. The cluster had a heterogenic structure,
where server 2 (fifo 2 model) had 4 times lower performance. The load balance
procedure was trying to reduce amount of Internet requests for the second server
executing the Adaptive Load Sharing [5] algorithm. FIFO1 and FIFO3 average
queue length was 1.7, whereas FIFO3 queue length was 4.4. The average service
time for FIFO1 and FIFO3 cluster nodes was 811 time units whereas for FIFO2
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Fig. 6: Queue lengths (a) and service times (b) under stable system execution.

was 7471 time units. Third, some individual properties of cluster node structures
or load balancing strategies may be observed. For example, in some load bal-
ancing strategies mentioned in [5], the load of cluster node is estimated without
any feedback information from the node. Such load balancing strategy may eas-
ily fail when node performance becomes reduced due to some external reasons
(e.g. hardware fail or some extra node load). Fig. 7 shows a possible web–server
cluster reaction to the not reported performance reduction of one server node.
It can be easily noticed that under some disadvantageous conditions the loss or
unavailability of feedback information about the current state of cluster server
can lead to its unstable behavior. The Internet requests scheduled to server 2
node after the node performaance reduction (at approximately 1000000 time
units) may not be serviced due to the server overload.
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Fig. 7: Example queue lengths (a) and service times (b) of unbalanced web–server
cluster.
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4 Conclusions and future research

The paper introduces the HTCPNs–based software tool making it possible to
construct and validate some web–server clusters executable models. The main
concept of the tool lies in the definition of reusable HTCPNs structures (pat-
terns) involving typical components of cluster–based server structures. The pre-
liminary patterns are executable models of typical queueing systems. The queue-
ing systems templates may be arranged into server cluster subsystems by means
of packet distribution patterns. Finally, the subsystems patterns may be natu-
rally used for top level system modelling, where individual substitution transi-
tions “hide” the main components of the system.

The final model is a hierarchical timed coloured Petri net. Simulation and
performance analysis are the predominant methods that can be applied for the
model validaton. Queueing systems templates was checked whether they meet
theoretically derived performance functions.

The analysis of HTCPNs simulation reports makes it possible to predict
the load of the modelled system under the certain arrival request stream; to
detect the stability of the system; to test a new algorithms for Internet requests
redirection and for their service within cluster structures.

Currently, the software tool announced in the paper can be applied for a
limited web–server cluster structures modelling and validation. Thereafter the
main stream of author’s future research will concentrate on developing next web–
server node structures models. This may result in following advantages. First, an
open library of already proposed web–server cluster structures could be created
and applied by the future web–server developers. Second, some new solutions
for distributed web–server systems may be proposed and validated.
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