
Software Product Line Adoption – Guidelines from a
Case Study

Pasi Kuvaja1, Jouni Similä1, and Hanna Hanhela2

1Department of Information Processing Science, University of Oulu,

FI-90014 University of Oulu, Finland, jouni.simila@oulu.fi pasi.kuvaja@oulu.fi
2Digia, Sepänkatu 20, FI-90100 Oulu, hanna.hanhela@digia.com

Abstract. It is possible to proceed with software product line adoption only
once without major reinvestments and loss of time and money. In the literature,
reported experiences of using the adoption models are not to be found, and
especially the suitability of the models has not been reported. The purpose of
this research is to compare known adoption models by formulating general
evaluation criteria for the selection of an adoption model. Next an adoption
model is selected for empirical research based on the context of a multimedia
unit of a global telecommunication company. The empirical part consists of a
case study analyzing the present state of adoption and producing plans for
proceeding with the adoption. The research results can be utilized when
selecting an adoption model for an empirical case and adopting a software
product line in a software intensive organization.

Keywords: software product line, adoption, adoption model, adoption strategy,
guidelines

1. Introduction

Over the last decade, software product line engineering has been recognized as one
of the most promising software development paradigms, which substantially increases
the productivity of IT-related industries, enables them to handle the diversity of global
markets, and reduces time to market [1]. In addition, the software product line
approach can be considered as the first intra-organizational software reuse approach
that has proven to be successful [2] and is a key strategic technology in attaining and
maintaining unique competitive positions [3]. Software product line is “a set of
software intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way” [4]. Thus, different systems
involving a product line are built by exploiting existing core assets. However, all of
the existing core assets are not necessary to be used in one system.

Transition from conventional system development mode towards product line
engineering requires adoption of a new approach. In software product line adoption,
an organization changes its operational mode to develop product lines consisting of
several products instead of developing products separately in-house. Adopting the

mailto:jouni.simila@oulu.fi
mailto:pasi.kuvaja@oulu.fi
mailto:hanna.hanhela@digia.com

new approach is not, however, effortless. During the adoption, planning and
coordinating of technical, management, organizational, and personnel changes are
required [2, 5]. Furthermore, an adoption can be made either starting a product line
from scratch or by exploiting existing systems [6, 7, 8, 9, and 10]. If the former
strategy is used, needed changes are even larger than when using the latter strategy.

There are stories about successful adoption. After adopting a software product line,
an organization can benefit in many different ways. Many studies have reported, that
development time has shortened as efficiency has increased, less personnel to produce
more systems is needed, more software is reused, overall and maintenance costs have
decreased, and defects have reduced without compromising customer satisfaction
[11,12,13,14,15]. Among the successful stories of software product line adoption
there are three common characteristics: exploring commonalities and variability,
architecture-centric development, and two-tiered organization in which one part
develops the reusable assets and the other develops products using the assets [9].
Regardless of the reported successful adoption stories, in the literature no reported
experiences of using the adoption models can be found. This study fulfils that gap
with respect to one adoption model.

2. Research Questions and Study Setup

There are two main research problems considered in this study. The problems are
further elaborated into sub-questions, which when answered will solve the main
research problems. The research problems with their sub-questions are as follows. (1)
How can a software product line be adopted? – How to choose an adoption strategy
and model among the existing strategies and models presented in the literature? What
are the general evaluation criteria for the selection of the adoption models for an
empirical case? (2) How does the chosen adoption model fit for the context of this
empirical research? - What are the experiences of using the adoption model? Are
there any missing characteristics in the model, which would have been essential in
this particular context?

The research performed consists of two parts: a literature review (first research
question) and an empirical study (second research question). Based on the literature,
the general evaluation criteria are identified to evaluate the adoption models. By
evaluating the adoption models, the most suitable model for the needs of the target
organization the research will be selected. The adoption is then applied in an
empirical case study performed in a multimedia unit of a global telecommunication
company.

3. State of the Art of Software Product Line Engineering and
Adoption

Principles of software product line engineering are presented to get a common
understanding of the approach and its terminology. Thereafter, different factors
impeding the successful adoption are described. Different adoption strategies are

introduced to illustrate ways a software product line can be adopted. At the end the
different adoption models according to the literature are presented with their common
phases and development parties. In addition, general evaluation criteria for the
selection of the adoption model are identified and the adoption models are evaluated
to find the most suitable one to be used in the empirical part of this research.

3.1 Software Product Line Engineering

Software product line engineering is based on the idea that software systems in a
particular domain share more common characteristics than uniqueness and those
systems are built repeatedly releasing product variants by adding new features [1].
Therefore, the scope of the product line is defined so, that the products involved in it
have a high degree of common characteristics and the implementation of a component
is shared over multiple products [2, 9]. Generally, approximately upfront investments
of three or four products are required to have return on those investments [9, 16, and
17]. Nevertheless, using an incremental transition approach with a large legacy code
base in a large organization, it is possible to adopt a software product line without a
large upfront investment and without disrupting ongoing product schedules [18].
Important issues related to software product line engineering are the definition of
scope [19], and the consideration of variability and commonalities [20, 21, and 22].

Architectures have a key role in software product line engineering [9, 19, 23, 24,
and 25]. There are three kinds of architectures in the context of product lines:
platform architecture, product line architecture, and product-specific architecture.
Platform architecture is used to build reusable assets within a platform and it focuses
on the internal structure of the platform [26]. A software platform is a set of software
subsystems and interfaces that form a common structure from which a set of
derivative products can be efficiently developed and produced [15]. A platform is the
basis of the product line and, in many cases, is built from components evolving
through the lifecycle of the product line. If developers cannot obtain the assets they
need from the platform itself, they must develop them. Afterwards, the new, single-
product assets might be integrated into the platform. [23].

To achieve the benefits of software product line engineering, an organization has
first to adopt the approach. The adoption is a major change process in the organization
affecting different groups in the organization [2]. According to Bosch, the different
alternatives of adoption should be understood and evaluated, rather than blindly
following a standard model [27]. The adoption itself starts with an assessment of the
current state [7]. Therefore, it is essential to understand different challenges, strategies
and models related to software product line adoption.

3.2 Software Product Line Adoption

Both organizational and technical skills are the key for a product line introduction
in existing domains [28]. Challenges related to technical aspects are wrong or
incomplete requirements for the platform and wrong platform architecture [26]. In
addition, if there is lack of either in architecture focus or architecture talent, an

otherwise promising product line effort can be killed [19]. Software product line
adoption affects employees’ roles and responsibilities. When an organization learns to
operate in a new mode, it is usually not achieved without problems [2]. There are
resistances within the adopting organization, which can affect the success of the
product line adoption [26].

When moving from conventional software development towards software product
line engineering, a selected adoption strategy defines how much investments are
needed in the beginning of the adoption and what the development time of the
products is. During the adoption, the change effort needed is usually underestimated
and timetables are often defined to be too tight [8, 26]. In addition, this is challenging,
as normally resources have to be shifted from existing projects, and those rarely have
resources to spare [7]. Organizations are typically hesitant to invest in changes if they
do not have obvious, short-term Return on Investment (ROI) [2].

One of the most essential issues to take into consideration during the adoption is
management commitment. Without explicit and sufficient management commitment
and involvement, product line business practices cannot be influenced upon and
successful [3, 19]. In addition, management commitment needs to be long-term [13]
and it doesn’t depend on the size of an organization [29]. According to Krueger [30],
minimally invasive transitions eliminate the adoption barriers. This means that while
moving from conventional one system development towards software product line
engineering, only minimal disruption of ongoing production schedules is allowed.
Minimally invasive transitions have two main techniques. The first technique focuses
on exploiting existing systems, in which existing assets, processes, infrastructure, and
organizational structures of an organization are carefully assessed to exploit them as
much as possible. The second technique concentrates on incremental adoption, in
which a small upfront investment creates immediate and incremental return on
investment (ROI). In such a case, the returns of the previous incremental step fund the
next incremental step, and the organization adopts a software product line not much
disrupting the ongoing production. In addition, to lower the adoption barriers, the
organization’s current strengths and interests should be taken into consideration
together with a reasonable speed of change [28].

3.3 Software Product Line Adoption Strategies

There are different strategies with different names on how to adopt software
product lines. McGregor et al. [9] present two main types of adoption strategies,
which they call heavyweight and lightweight strategies. Krueger [8] discusses about
proactive, reactive, and extractive adoption models. Further, according to Schmid and
Verlage [10], there are four types of situations when adopting a product line:
independent, project-integrating, reengineering-driven, and leveraged. Böckle et al.
[7] divide transition strategies into four groups, which are called incremental
introduction, incremental investment, pilot first, and big bang. Bosch [6] divides the
adoption process to two different approaches, evolutionary and revolutionary, for two
different situations depending on are the existing items utilized or not. Although there
are many different strategies for adopting a software product line, there are common

characteristics among them. Common to all the mentioned adoption strategies is that
the adoption either starts from scratch or exploits existing systems.

The main differences between the two strategies are related to duration of the
adoption time and needed upfront investment. In the starting from scratch strategy the
adoption time (and thus the development time of one product) is shorter but higher
upfront investments are needed than in the latter strategy and returns on investment
can only be seen when products are developed and maintained. In addition, the
cumulative costs are reduced faster in the starting from scratch strategy than in
exploitation of existing products. [9,31]. Starting from scratch strategy is like
waterfall approach in conventional software engineering whereas exploiting existing
systems refers to incremental software development [31].

There are also differences between the strategies in exploiting commonalities and
variability, in architecture development, and in organizational structure. In starting
from scratch strategy, the adoption starts from creating assets which satisfy the
specifications of the platform architecture. After that, creation of products takes place.
In addition, product line architecture is defined completely before delivering first
products. When using the starting from scratch strategy, there are particular teams
which produce assets such as architecture and components. In exploiting existing
systems strategy, assets are created from existing and currently developing products
and the product line architecture is not completed when the first products are
delivered. In that strategy, organizational structure does not change until the first few
products have been delivered. [9].

The choice of the adoption strategy may depend on the situation of an organization
and market demand. If the organization can afford to freeze conventional software
development while adopting the software product line, it can choose a starting from
scratch strategy. On the other hand, that strategy would be good in cases where the
organization has additional resources for adoption, or the transition doesn’t need to be
done quickly. In the cases where the organization has already products, or even a
product line, which are worth to utilize, it may choose an exploitation of existing
systems strategy. That strategy can also facilitate the adoption barrier of large-scale
reuse as the organization can reuse existing items (software, tools, people,
organization charts, and processes) to establish a product line [8].

3.4 Software Product Line Adoption Models

The adoption of software product line requires changes in technical, management,
organizational, process, and personnel aspects [2, 5, and 7]. Consequently, an
adoption model needs to take into consideration these aspects, if not all at least most
of them. The adoption models focusing on only certain aspects are not discussed in
this research, for example the ones where adoption is based on legacy products [32],
architecture [33, 34], organizational structure [27], or separation of concerns [35].

Böckle et al. [7] has introduced a General Adoption Process Model for adopting a
software product line. It has four main phases focusing on stakeholders, business
cases, adoption plan, and launching and institutionalizing. In addition to the main
phases, the model includes different factors contributing to the adoption: goals,
promotion, and adoption decision.

Software product line adoption requires many decisions which have to be made in
the adoption phase by an adopting organization. These decisions concern what
components are developed and in which order, how the architecture is harmonized,
and how the development teams are organized. For that purpose, Decision Framework
introduces five decision dimensions: feature selection, architecture harmonization,
R&D organization, funding, and shared component scoping [2]. In addition the model
contains three stages through which product line adoption typically evolves through:
initial adoption, increasing scope, and increasing maturity.

Product Line Software Engineering (PuLSE) methodology has a strong product-
centric focus for the conception and deployment of software product lines [36]. It
comprises three main elements which are deployment phases, technical components,
and support components. The deployment phases involve activities which are needed
when adopting and using a product line. There are four different deployment phases:
PuLSE initialization, product line infrastructure construction, product line
infrastructure usage, and product line infrastructure evolution and management. The
purpose of the technical components, the second element of the PuLSE methodology,
is to offer technical knowledge needed in all the phases of the product line
development. There are six technical components: customizing, scoping, modelling,
architecting, instantiating, and evolving and managing. The support components are
information packages or guidelines, the purpose of which is to enable a better
adoption, evolution, and deployment of the product line and they are used by
deployment phase components. There are three support components: project entry
points, maturity scale, and organization issues.

Business, Architecture, Process, and Organization (BAPO) model is a four-
dimensional evaluation framework which organizations can use for determining the
current state of the product family adoption and improvement priorities [37]. The
dimensions concern business, architecture, process, and organization. Each dimension
can be on five different levels which are defined with different evaluation aspects. For
example, in business dimension at reactive level, identity of an organization is
implicit (software product line engineering not visible), there is only short-term vision
and both objectives and strategic planning are missing.

Fig. 1. Adoption Factory [5]

Adoption Factory has, just as a decision framework including three main phases
(Establish Context, Establish Production Capability and Operate Product Line) for
software product line adoption (Figure 1). Different focus (Product, Process and
Organisation) areas are separated by horizontal dashed lines and arrows are the
indications of information flows and shift of emphasis among the elements. [5, 38].

4. Conduct of the Study

In the beginning of the study the idea was that the main evaluation criterion for the
selection of the adoption model would be derived from the reported experiments of
using the models by the adopting organizations. However, no reports were found in
the literature describing pros and cons of using the models in the adoption phase.
Some of the models had reported experiences in the literature: PuLSE [29, 39, and
40], Adoption Factory [41], 2005, and BAPO [26]. These reports nevertheless did not
discuss the applicability of the models.

The empirical research was carried out as a case study. According to Yin, case
study is suited for research which is focused on finding answers to “how”, “why” or
exploratory “what” questions, when the investigator has little control over the events,
and when a contemporary phenomenon is investigated in some real-life context [43].
A case study is either single-case or multiple case and the data gathering methods for
a case study are surveys, interviews, observation, and use of existing materials. This
research focused on a single-case. The empirical data was collected by semi-
structured interviews and by analyzing existing materials of the organization.

4.1 Choosing the adoption model

Due to the situation more general evaluation criteria were derived from the
literature including: supported adoption strategy, customization, separation of core
asset and product development, current state evaluation and guidelines. The supported
adoption strategy defines to which strategies the model is applicable; starting from
scratch, exploiting of existing systems, or both. Customization means the ability of an
organization to tailor the adoption model for its own needs. Separation of core asset
and product development defines whether these two development phases are
illustrated separately in the adoption model. The current state evaluation describes
how easy the evaluation is to do in higher level, and may have values easy or not
easy. The last evaluation criterion presents, whether guidelines for proceeding with
the adoption may be followed based on the adoption model. Customization,
separation of core asset and product development, and guidelines may have values yes
or no.

The adoption models were evaluated according to the defined criteria in order to
find the most suitable one for using in the empirical study (Table 1). Based on the

evaluation of the adoption models and the research context, Adoption Factory1 was
selected for the empirical case.

Table 1. Evaluation of the Adoption Models

 Supported
Adoption
Strategy

Custom-
ization

Separation of Core
Asset and Product
Development

Current
State
Evaluation

Guidelines

General
Adoption
Process

Both Yes No Not Easy No

Decision
Framework

Exploiting
Existing
Systems

No No Easy Yes

PuLSE Both Yes No Easy No
Adoption
Factory

Both Yes Yes Easy Yes

BAPO Both Yes No Not Easy Yes

4.2 Interviews

The themes for the interviews were selected from the Adoption Factory on the
basis of two reasons. As the purpose was to find out current status and future plans of
the software product line adoption, the selected themes should cover the model as
extensively as possible (but considering the resource limitations of the research) and
the interviewees should have knowledge about them. The themes are marked with
arrows in Figure 2. The structured questions for the interviews were derived from the
selected themes. The questions were partly planned beforehand, but not in very much
detail. In addition, there were also questions relating to the gathered experiments
which were utilized when defining the adoption guidelines for the target organisation.

Before the interviews, the interviewees were divided to different categories
according to different generic development phases of the organization in question.
The categories were road-mapping, product management, architecture, and
requirements engineering. The reason for these categories was that possible gaps
between them, for example in communication, could be found in order to minimize
the gaps when proceeding with the adoption. Another reason was to find out if all
aspects and steps of maturing market needs for requirements that could be
implemented were covered. In the interviews, the themes varied according to which
category the interviewee belonged to. Table 2 clarifies the relationships between the
themes and the interviewees. As in most of the cases all the selected themes belonging
to one sub-pattern were asked from the interviewee, the sub-patterns were used
instead of the themes as presented in Table 2.

1 The Adoption Factory is discussed in some more detail in the empirical section. A detailed

description of the Adoption Factory may be found in SEI’s web pages [42].

Fig. 2. Selected Themes for the Interviews from the Adoption Factory

Table 2. Summary of the interviewees

Interviewee Category Role of the Interviewee Date
1 road-mapping Senior Manager, Portfolio Management 7.8.2007
2 road-mapping Senior Product Manager, Road-mapping 7.8.2007
3 product management Product Manager 8.8.2007
4 product management Product Manager 8.8.2007
5 architecture Engine Product Manager 10.8.2007
6 architecture Product Chief Architect 13.8.2007
7 requirements

engineering
Product Requirement Manager 14.8.2007

8 requirements
engineering

SW Technology Manager, Requirements 23.8.2007

9 requirements
engineering

SW Requirements Operational Manager 23.8.2007

10 requirements
engineering

SW Implementation Operational
Manager

23.8.2007

4.3 Data Collection

In addition to the interviews, existing documents were analyzed to clarify the
current state and future plans related to the software product line adoption. The

analyzed materials were mainly mentioned during the interview by the interviewee, so
the interviews had an open-ended nature. Such material was, for example, a process
description of a certain development phase. The existing documents were analyzed
after the interviews.

After selecting the adoption model, an e-mail was sent to 10 persons who had
participated in the development of the product line and one product involving the
product line to inform them about the research. The e-mail consisted of general
information of the research and the Adoption Factory together with the purpose of the
research. Two days later, a new e-mail was sent to arrange an interview. In that e-
mail, there were a list of themes and the topics, which would be covered in every
theme: current situation, experiments, and future plans. Therefore, the interviewees
could be well-prepared beforehand [43]. No one declined the interview.

Among the interviewees there were two persons from road-mapping, product
management, and architecture categories, and four persons from requirements
engineering. The roles of the interviewees varied according to which category they
belonged to. Overall the interviewees covered the interview themes well. The
interviews were conducted in the same order as they are presented in Table 2.

All the interviews were face-to-face interviews with one interviewee at the time. In
the beginning of each interview, a short introduction was held to familiarize the
interviewees more closely with the research. The introduction consisted of the
Adoption Factory, which was gone through more in depth than in the e-mails,
research problems (and that the interviews will answer to the second research
question), how the research is conducted, and how the results are constituted. The
interviewees had a possibility to ask for more details, if necessary.

The interviews themselves lasted for an average of one and a half hours. All the
interviews were tape-recorded with a digital voice recorder, so that any of the
information they gave would not be wasted and only correct information would be
used when analyzing the results. After the interviews, the tape-recordings were
transcribed. Later, the data gathered by interviews and by using existing material were
read through several times together with the Adoption Factory to form a clear general
view to analyze the results more in depth.

4.4 Data Analysis and Results

In this study, the data was analyzed by classifying it according to the used themes.
By this, the current situation could be compared to the model, as well as the future
plans. With these classifications it is possible to see, if some focus area of the
adoption or a part of it is not considered. Together with the categories, the flow
between road-mapping, product management, architecture, and requirements
engineering could be seen and possible gaps were discovered. Hence, especially
conflicts between different categories were noticed, as those would affect the success
of the adoption negatively.

 The findings were classified according to the same categories, which were used in
the categorization of the interviewees. The categories are called road-mapping,
product management, architecture, and requirements engineering. In addition, the
findings related to several or all categories are discussed in the end of this section.

Table 3 summarizes the findings according to the category they belong to and a
possible reason for each finding. Findings and reasons were conducted from the
research data (interviews and using of existing material). Adoption Factory was also
considered when defining the reasons for the findings.

Table 3. Main findings with their possible reasons

Category Finding Reason
Road-
mapping

Period requirements described in a too
high level of abstraction

Period requirements defined for
several product lines

Road-mapping No commonalities for one product line Period requirements defined for
several product lines

Road-mapping Period requirements cannot be
implemented in a required timeframe

Processing of the period
requirements not been defined

Product
Management

Each product goes through the period
requirements by itself

No commonalities for one
product line

Product
Management

Documentation requires a lot of effort Each product team writes its
own documentations

Product
Management

Documents are not comparable between
the products

No common structure for the
documents

Product
Management

Inefficient communication No clear roles and
responsibilities

Architecture Architecture definition could not be
started before certain decisions related to
it were made

Insufficient management
commitment

Requirements
Engineering

Confusion among stakeholders No clear roles and
responsibilities

Requirements
Engineering

Lots of data is collected but it is utilized
poorly

No common structure for the
metrics

 Product line was established after
establishing the products

 Adoption plan has not been defined
 No common place for data distribution
 No training related to software product

lines

Based on the findings, guidelines for correcting and improving the situation in the

case organization were formulated. Table 4 describes which aspects to consider when
following the guidelines, and what benefits the guidelines would give. Both of these
were formulated based on the research data (interviews and using of existing material)
as well as on the Adoption Factory model. In the formulation one aspect can give
several benefits and one benefit can be a consequence of several aspects. The first two
guidelines were named in temporal order as short term new operational mode and
long term operational mode. Formulation of the adoption plan may be started
immediately while changing to a new short term operational mode. This applies
equally to place for data distribution, training, and data collection.

Table 4. How and why to take the guidelines into the daily practices

Guideline Aspects to Consider Benefit
Product line is
established
before the
products (new
short term
operational
mode)

• scoping for several product lines
• period requirements defined for the

product lines
• supplier starts to process the period

requirements immediately
• products of the product line

implement the same period
requirements

• product line is more responsible for
documentations

• development of products is more
efficient

• no need to cancel products
development (significant cost
savings)

• no unrealistic requirements
• diminished multiple work loads
• utilization of documents is more

efficient
• data collection is more efficient

Core asset
development
(new long
term
operational
mode)

• core asset development by exploiting
existing systems

• attached processes for core assets
• establishment of a core asset base

• reuse of core assets
• utilization of core assets
• development of products is more

efficient

Adoption plan • definition of practices, roles, and
responsibilities

• definition of different requirement
types

• definition of usage of period
requirements

• separation of product line and
products

• clear practices, roles, and
responsibilities

• helps with new operational mode
• mitigates adverse effects relating to

the changes
• utilization of period requirements
• communication and cooperation is

more efficient
• development of products is more

efficient
• valuable for future product lines

Place for data
distribution

• existing data is collected to the same
place (e.g. to a web page)

• possible pilot project
• hierarchical order

• utilization of existing data is more
efficient

• data can be found more easily
• helps in employee networking

Training • trainings should cover principles of
product line engineering, relations
between different requirement types,
each practice area

• other training needs should be
clarified

• sharing of knowledge is more
efficient

• development of products is more
efficient

Data
collection

• definition of data collectors
• definition of review points
• separation of product line and

products
• similar structure for the metrics

• helps in following the software
product line adoption

• needed changes to refine the product
line practices can be identified

• efforts for developing products can
be seen

• decreases duplicate work
• metrics are more comparable and

utilizable

5. Conclusions

In answering the first research question and two sub-questions the following was
found in the literature analysis. There are two basic alternatives, which are called
adoption strategies, for adopting software product lines. The first alternative is to do
everything from the very beginning and not utilizing any existing systems, which is
called a starting from scratch strategy. When using the starting from scratch strategy,
the development time of one product is shorter but higher upfront investments are
needed than in the other alternative, which is called an exploiting existing systems
strategy. In that strategy, existing systems are utilized as much as possible and the
cumulative costs are reduced faster than in the starting from scratch strategy.
Compared to the conventional software development, the starting from scratch is like
a waterfall approach and the exploiting existing systems strategy refers to incremental
software development.

Based on the literature review, five evaluation criteria were found for selection of
adoption models. As the situation of the organization and market demand as well as
the adoption time and needed upfront investments are the aspects, which should take
into consideration, when selecting a suitable adoption model, the supported adoption
strategy is the first criterion. To clarify whether an adoption model can be adapted to
the organizational needs, the customization of the adoption model is the second
evaluation criterion. Further, the software product line organization has two different
roles: the first role is to develop core assets and the other is to produce products by
exploiting the core assets. Due to this, the third evaluation criterion is called the
separation of core asset and product development. In addition according to the theory,
the adoption should start with a current state evaluation and the possibility for
evaluating the current state with the adoption model needs to be considered, when
selecting the adoption model. The last evaluation criterion is called guidelines. That
means that the adoption model should support the creation of guidelines the purpose
of which is to help to keep the adoption in the right track.

In answering the second research question and two sub-questions the empirical part
of the study concluded the following. First of all five guidelines were defined be taken
into consideration when proceeding with the adoption. The first is to change the
operational mode towards software product line engineering. As a short term
guideline, the operational mode will be changed to establish the product line before
the products involved in it. As a long term guideline, the operational mode is changed
to develop core assets and the products are developed based on the core assets. At the
same time with the new operational mode, an adoption plan should be created. The
purpose of it is to define new practices, roles, and responsibilities needed to adopt
software product line. After these, a place for data distribution is needed to utilize
existing systems as extensively as possible. In addition, training is needed to ensure
that the products of the product lines can be efficiently build. The last guideline is
called data collection, which helps to measure if the adoption plan is working and the
efforts needed to develop products are available. These three guidelines should be
considered in reverse order: data collection should be considered first, then training,
and the last, but not least, the place for data distribution should be established.

Secondly the used adoption model, Adoption Factory, was found to be the most
suitable one for this research context based on the literature review. The overall

comprehension of the model is that the model was utilizable in the empirical part of
the research. The phases and the focus areas of the model enabled the analysis of the
organization in question. In addition, the practice areas of the model were clear and
understandable when defining the interview themes and questions as well as the
guidelines. Based on the model, the current state could be estimated and it was
possible to set future guidelines were possible to constitute. The model suited well for
the context of the research.

As no reported empirical experiences were found in the literature of using the
adoption models, this study fulfils that gap for the Adoption Factory model, although
more case studies should be carried out to understand in which context a certain
adoption model would suit the best. Two missing characteristics in Adoption Factory
were found during the empirical study. First, the model is meant for a pure software
product line adoption. It doesn’t consider cases where software needs hardware
components for its operation and, therefore, totally new practice area could be
included in the Establish Context phase for considering architectural aspects of
embedded software product lines. Secondly, a new practice area or even an alternative
phase could also be added to the Establish Context phase to show how to share the
results of the marketing analysis between several product lines.

References

1. Sugumaran, V., Park, S., & Kang, K. C. (2006). Software product line engineering.
Communications of the ACM, 49(12), 28-32.

2. Bosch, J. (2004). On the development of software product-family components, Lecture notes
in computer science (pp. 146-164). Berlin / Heidelberg: Springer.

3. Birk, A., Heller, G., John, I., Schmid, K., von der Massen, T., Muller, K., et al. (2003).
Product line engineering: The state of the practice. Software, IEEE, 20(6), 52-60.

4. Clements, P., & Northrop, L. (2002). Software product lines: Practices and patterns. Boston:
Addison-Wesley.

5. Clements, P. C., Jones, L. G., McGregor, J. D., & Northrop, L. M. (2006). Getting there from
here: A roadmap for software product line adoption, Communications of the ACM, 49(12),
33-36.

6. Bosch, J. (2002). Maturity and evolution in software product lines: Approaches, artefacts and
organization. Software product lines : Second international conference, SPLC 2, San Diego,
CA, USA, august 19-22, 2002 (pp. 257-271). Berlin / Heidelberg: Springer.

7. Böckle, G., Munoz, J. B., Knauber, P., Krueger, C. W., Sampaio do Prado Leite, Julio Cesar,
van der Linden, Frank, et al. (2002). Adopting and institutionalizing a product line culture.
Lecture notes in computer science (pp. 1-8). Berlin / Heidelberg: Springer.

8. Krueger, C. (2002). Eliminating the adoption barrier IEEE Software, 19(4), 29-31
9. McGregor, J. D., Northrop, L. M., Jarrad, S., & Pohl, K. (2002). Initiating software product

lines, IEEE Software, 19(4), 24-27
10.Schmid, K., & Verlage, M. (2002). The economic impact of product line adoption and

evolution, IEEE Software, 19(4), 50-57
11. Brownsword, L., & Clements, P. C. (1996). A case study in successful product line

development, Pittsburgh: Carnegie Mellon University, Software Engineering Institute.
12. Donohoe, P. (2000). Software product lines: Experience and research directions.

Berlin/Heidelberg: Springer.

13. Jaaksi, A. (2002). Developing mobile browsers in a product line, Software, IEEE, 19(4),
73-80

14. Kiesgen, T., & Verlage, M. (2005). Five years of product line engineering in a small
company. Proceedings of the 27th International Conference on Software Engineering, 534-
543.

15. Meyer, M. H., & Lehnerd, A. P. (1997). The power of product platforms: Building value
and cost leadership. New York, N.Y.: Free Press.

16. Pohl, K., Böckle, G., & van der Linden, F. (2005). Software product line engineering:
Foundations, principles, and techniques. Berlin: Springer.

17. Weiss, D. M., & Lai, C. T. R. (1999). Software product-line engineering: A family-based
software development process. Reading (MA): Addison-Wesley.

18. Hetrick, W. A., Krueger, C. W., & Moore, J. G. (2006). Incremental return on incremental
investment: Engenio's transition to software product line practice. Conference on Object
Oriented Programming Systems Languages and Applications, 798-804.

19. Northrop, L. M. (2002). SEI's software product line tenets, IEEE Software, 19(4), 32-40
20. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., & Pohl, K. (2001).

Variability issues in software product lines. Software product family engineering: 4th
international workshop, PFE 2002, Bilbao, Spain, October 3-5, 2001 (pp. 303-338). Berlin /
Heidelberg: Springer.

21. Jaring, M., & Bosch, J. (2002). Representing variability in software product lines: A case
study, Proceedings of software product lines : Second international conference, SPLC 2, San
Diego, CA, USA, august 19-22, 2002 (pp. 19-22). Berlin / Heidelberg: Springer.

22. Coplien, J., Hoffman, D., & Weiss, D. (1998). Commonality and variability in software
engineering, IEEE Software, 15(6), 37-45

23. van der Linden, F. (2002). Software product families in Europe: The esaps & cafe projects.
IEEE Software, 19(4), 41-49.

24. Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a
product-line approach. ACM Press/Addison-Wesley Publishing Co. New York, NY, USA.

25. Mohagheghi, P., & Conradi, R. (2004). Different aspects of product family adoption,
Software product family engineering (pp. 459-464) Berlin/Heidelberg: Springer.

26. Wijnstra, J. G. (2002). Critical factors for a successful platform-based product family
approach, Lecture Notes in Computer Science, 2379/2002, 1611-3349, Proceedings of
Software Product Lines: Second International Conference, SPLC 2, San Diego, CA, USA,
August 19-22, 2002. Springer Berlin / Heidelberg

27. Bosch, J. (2001). Software product lines: Organizational alternatives. Proceedings of the
23rd International Conference on Software Engineering, 91-100

28. Stoermer, C., & Roeddiger, M. (2002). Introducing product lines in small embedded
systems, Software product family engineering: 4th international workshop, PFE 2002,
Bilbao, Spain, October 3-5, 2001. Revised papers (pp. 101-112) Springer

29. Knauber, P., Muthig, D., Schmid, K., & Wide, T. (2000). Applying product line concepts in
small and medium-sized companies, IEEE Software, 17(5), 88-95

30. Krueger, C. W. (2006). New methods in software product line practice. Communications of
the ACM, 49(12), 37-40.

31. Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE
Transactions on Software Engineering, 31(7), 529-536.

32. Simon, D., & Eisenbarth, T. (2002). Evolutionary introduction of software product lines,
Lecture Notes in Computer Science, 2379/2002, 1611-3349, Springer Berlin / Heidelberg.
Proceedings of Software Product Lines: Second International Conference, SPLC 2, San
Diego, CA, USA, August 19-22, 2002.

33. Myllymäki, T., Koskimies, K., & Mikkonen, T. (2002). Structuring product-lines: A
layered architectural style

34. Thiel, S. (2002). On the definition of a framework for an architecting process supporting
product family development, Software product family engineering: 4th international
workshop, PFE 2002, Bilbao, Spain, October 3-5, 2001. Revised papers (pp. 3-47)
Berlin/Heidelberg: Springer.

35. Krueger, C. W. (2002). Easing the transition to software mass customization, Proceedings
of the Distal Seminar No.01161: Product Family Development

36. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., et al. (1999). PuLSE:
A methodology to develop software product lines. SSR '99: Proceedings of the 1999
Symposium on Software Reusability, Los Angeles, California, United States. 122-131

37. van der Linden, Frank, Bosch, J., Kamsties, E., Känsälä, K., & Obbink, H. (2004), Software
product family evaluation, Lecture notes in computer science (pp. 110-129). Berlin /
Heidelberg: Springer.

38. Northrop, L. M. (2004). Software product line adoption roadmap, Pittsburgh: Carnegie
Mellon University, Software Engineering Institute.

39. Kolb, R., Muthig, D., Patzke, T., & Yamauchi, K. (2005). A case study in refactoring a
legacy component for reuse in a product line, Proceedings of the 21st IEEE International
Conference on Software Maintenance, 2005, 369-378

40.Schmid, K., John, I., Kolb, R., & Meier, G. (2005). Introducing the PuLSE approach to an
embedded system population at Testo AG, Proceedings of the 27th international conference
on Software engineering, 544-552

41. Donohoe, P., Jones, L., & Northrop, L. (2005). Examining product line readiness:
Experiences with the SEI product line technical probe. Proceedings of the 9th International
Software Product Line Conference,

42. Northrop, L. M., & Clements, P. C. (2007). A framework for software product line practice,
Retrieved 05/03, 2007, from http://www.sei.cmu.edu/productlines/framework.html

43. Yin, R. K. (2003). Case study research: Design and methods (3rd ed.), Thousand Oaks,
California: Sage Publications, corp.

